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contents of this chapter 

• algorithms for calculating centrality indices, 
finding components, calculating shortest 
paths and maximum flow 



software implementing common 
network algorithms 

 



Reasons for studying algorithms  
(even though ready-made software 

packages are available) 
• much time can be wasted when people 

misunderstand the answers the software can give 
them 

• you will sooner or later find that you need to do 
something that cannot be done with standard 
software and you’ll have to write some programs 
of your own 

• by relying on ready-made packages, researchers 
have become limited in what types of analysis 
they can perform  



running time and computational 
complexity 

• if the calculation you have started will take a 
thousand years to finish, it is basically useless 

• concept of complexity is useful because it 
helps us to avoid wasting our energies on 
programs that will not finish running in any 
reasonable amount of time 



computational complexity 

• a measure of the running time of a computer 
algorithm 

• example: to find the largest number in a list of 
n numbers 
– simply go through the list to the end, keeping a 

record of the largest number we have seen 
– worst case: every number is bigger than all the 

ones before it 
• its running time is nτ 
• time complexity of this algorithm is order n (O(n)) 



vertex incoming 
edges 

outgoing 
edges 

1 4 3,4 

2 

3 1 4 

4 3,1,5 5,1 

5 4 4 

algorithms for degrees and degree 
distributions 

• degree of a vertex 
– if network is stored in adjacency list: O(1) 

– if network is stored in adjacency matrix: O(n) 

• degree distribution pk : O(n) 

• cumulative degree distribution Pk   
– form a histogram of the degrees and calculate :O(n) 

 

– sorting degrees in descending order and rank from 1 
to n : O(nlogn) 
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cf. assortative mix, homophily 

• high-degree vertices tend to connect high-
degree ones 

• correlation coefficient 
• faster computation of r 

 
 

• social networks: positive r 
• other networks: negative r 
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correlation coefficient 

• computing Se takes time O(m)  

• computing S1, S2, and S3 take time O(n) 

• total time is O(m+n) 
– sparse networks (m    n) : O(m+n)     O(n) 

– dense networks (m    n2): O(m)     O(n2)  

# of edges 

≡
≡

∝
∝

mean degree 
c=2m/n is constant 



cf. transitivity 

• a•b and b•c -> a•c 

• u & v are friends and v & w are friends 

• clustering coefficient:C= 
– C=1:clique 

– C=0:tree, square lattice 

• C=                                 = 

• social networks tend to have high values 

u 

v 

w u 

v 

w 
closed 

(# of closed paths of length two)  
(# of paths of length two) 

(# of triangles)×6 
(# of paths of length two) 

(# of triangles)×3 
(# of connected triples) 



cf. local clustering coefficient 

• Ci= 

• vertices with higher degree have lower local 
clustering coefficient on average 

• structural holes 
– bad for info spread or traffic 

– good for the central vertex  
• it can control the flow of information 

• similar to betweenness centrality 
 

(# of pairs of neighbors of i that are connected)  
(# of paths of neighbors of i) 

i 

structural 
holes 

i 



clustering coefficients 

• local clustering coefficient 

 
– go through every pair of neighbors of i, and count 

how many are connected 

• overall clustering coefficient 

 
– we consider for every vertex each pair of 

neighbors and find whether they are connected  

 

(# of pairs of neighbors of i that are connected)  
(# of paths of neighbors of i) Ci = 

(# of triangles)×3 
(# of connected triples) C = 

<naive method> 



complexity of naive method 

• vertex i with degree ki has                      pairs of 
neighbors 

• total number of checks: 

 

• depends on degree distribution 
– if a network follows a power law                , the 

second moment         formally diverges if  

– it will take an infinite amount of time! 
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vertex neighbors 

1 3,4 

2 

3 4,1 

4 5,1,3 

5 4 

more careful calculation (1) 

• a network is stored in adjacency list 

• for a single vertex i 
– # of pairs of neighbors (j and l) : 

– for each pair, check whether an edge exist 
between them : time proportional to kj or kl 

– if chosen at random : time proportional to kj + kl 

–     : set of neighbors of vertex i 

– total time to check for edges between all pairs: 

1 2 

3 4 
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more careful calculation (2) 

• sum of the quantity over all vertices i: 
 

• compare with the expression of assortativity 
 

• time to calculate clustering coefficient depends 
on whether the degrees of vertices are correlated 
or not 

• if no correlation, r=0 
• running time for clustering coefficient: 
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cf. assortative mixing by degree 

• assortative: high-degree vertices connect to 
other high-degree vertices 

• core/periphery structure : 

common feature of social networks 

• covariance  

 

• correlation coefficient (assortativity coefficient) 
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more careful calculation (3) 

• if a network is simple with no multiedges, 
→maximum degree is k=n, and the degree 
distribution is cut off → <k2> scales at worst as 
n3-α 

• running time of clustering coefficient would go 
as n×n3-α×n3-α = n7-2α  

• α=3: O(n) 

• α=2: O(n3) 



shortest paths and breadth-first search 

• the study of each of these algorithms has 
three parts 
– description of the algorithm 

– analysis of its running time 

– proof that the algorithm performs the calculation 
it claims to 



breadth-first search (1) 

• finds the shortest distance from a given 
starting vertex s to every other vertex in the 
same component as s 

• s have distance 0 from itself 

• find all the neighbors of s (distance 1) 

• find all the neighbors of those  

    vertices (distance 2) 

• ... 
0 1 2 3 



breadth-first search (2) 

• every vertex whose shortest distance from s is 
d has a network neighbor whose shortest 
distance from s is d-1 

• breadth-first search finds the component to 
which vertex s belongs 

s 

t 



naive implementation 

• array of n elements to store the distance of  
    each vertex from the source vertex s 
• distance variable d 
1. find all vertices that are distance d from s 
2. find all the neighbors of those vertices and check to 

see if distance from s is unknown 
3. if # of neighbors with unknown distance is zero, the 

algorithm is over. otherwise, set the distance of each 
of those neighbors to d+1 

4. increase the value of d by 1 
5. repeat from step 1 

vertex distance 

1 -1 

2 -1 

s 0 

4 -1 

5 -1 

O(n) time for 
setting up 

find vertices of distance d:O(n) 
distance 1~r: O(rn) 

vertices of distance d: 
n ×O(m/n)=O(m) 

neighbors 
of a vertex 

total running time:  
O(n + rn + m) 

r: diameter  
n (in the worst case)->O(m+n2) 

log n (in most cases)->O(m+nlogn) 



better implementation (1) 

• time consuming part is step 1 (find vertices 
that are distance d from the starting vertex s) 

• use distance array and queue 

5 2 6 4 1 9 3          

read pointer 
(next item  
to read) 

write pointer 
(next empty  
space to fill) 

vertex distance 

1 -1 

2 -1 

s 0 

4 -1 

5 -1 

n elements 



better implementation (2) 

1. place s in the queue, set 0 in distance array 

2. if read and write pointers are pointing the same 
element, the algorithm is finished. otherwise, 
read the vertex label pointed by read pointer 

3. find the distance d for that vertex 

4. go through each neighboring vertex in turn 
1. if it has a known distance, leave it alone 

2. if it has unknown distance, assign it distance d+1, 
store its label in the queue array 

s 

vertex distance 

1 -1 

2 -1 

s 0 

4 -1 

5 -1 

distance:0 distance:d distance:d+1 



better implementation (3) 

• running time 
– O(n) to set up the distance array 
– for each element in the queue, we run through its 

neighbors (O(m/n) on average), calculate their 
distance and add them to the queue or do nothing 
(O(1)) 

• we require overall at most at time n×O(m/n) = O(m) 

– the whole algorithm takes time O(m+n)  
• better than O(m+nlogn) 
• for sparse network with m ≈ n, O(n) 



finding shortest paths (1) 

• the previous breadth-first search does not tell 
us  the particular path(s) by which that 
shortest distance is achieved 

• a small modification of the bread-first search 
algorithm 
– if a vertex j (neighbor of i) has unknown distance 

• assign j a distance and store it in a queue 
• add a directed edge from j to i  

• its running time is still O(m+n) 0 1 2 3 

j 

i 



finding shortest paths (2) 

• for multiple shortest paths 
– if a vertex j (neighbor of i) has unknown distance 

• assign j a distance and store it in a queue 

• add a directed edge from j to i  

– if a vertex j has distance d+1 
• add an extra directed edge from j to i 

0 1 2 3 

j 

i 



betweenness centrality 

• betweenness of v : # of geodesic paths between 
pairs of vertices that pass through v 

• simplest way: (1) use breadth-first search to find 
the shortest path between s and t, and see if the 
vertex v lies along the path (2) repeat this process 
for every distinct pair s, t. 

• this is correct, but slow 
– O(m+n) to find a shortest path between two vertices 
– n(n-1)/2 distinct pairs of vertices 
– calculating betweenness for v will take O(n2(m+n)) (or 

O(n3) when m ≈ n (sparse network)) 



calculation of betweenness centrality 
(1) 

• O(m+n) for finding paths between s and all other 
vertices (a shortest path tree) 

• trace the paths from each vertex back to s and 
count the number of paths that go through v : 
O(nlogn) 

• O(m+nlogn) for each s 
• repeat this calculation for all  s -> O(n(m+nlogn)) 

(or O(n2logn)) 
– much better than O(n3) 
– betweenness of all vertices will be calculated at the 

same time 

n paths of length logn 



we can still do better 

• many of the shortest paths share many of the same 
edges 

• score of each vertex (betweenness count for paths that 
end at vertex s) 
– leaves:1 
– others:1+∑(score of its immediate children) 

• the queue array created by BFS have a  
list of vertices in order of decreasing  
distance from s -> O(m+n) for each s 
• O(n(m+n)) for all vertices 
  

s 
7 

2 

1 

4 

2 

1 

1 

leaves 

s 

distance:0 distance:d distance:d+1 

BFS: O(m+n) 

worst case:  
checking  every 

neighbor of every 
vertex -> O(m+n) 



more than one shortest path (1) 

1. assign vertex s distance zero, set d=0, and assign s a 
weight ws=1 

2. for each vertex i whose distance is d, follow each attached 
edge to the vertex j at its other end, and then do one of 
the following three things: 
• if j has not yet been assigned a distance, assign it distance d+1 

and weight wj=wi 

• if j has already been assigned distance d+1, then wj <- wj+wi 

• if j has already been assigned a distance less than d+1, do 
nothing 

3. increase d by 1 
4. repeat from 2 until there are no vertices that have 

distance d 

s 
7 

1 

2 1 

3 1 

1 

1 1 

1 
6

11
6
25

3
7

3
5

3 shortest paths 
give each path weight 1/3 

counting the number of shortest paths from each vertex 

weight 



more than one shortest path (2) 

• the fraction of the paths to s that pass through 
j and that also pass through i is wi/wj 

1. find every leaf vertex t and assign it a score of 
xi=1 

2. from the bottom of the tree, assign to each 
vertex i a score                          (j is a neighbor 
immediately below vertex i) 

3. repeat 2 until vertex s is reached 

 

 

s 
7 

1 

2 1 

3 1 

1 

1 1 

1 
6

11
6
25

3
7

3
5

3 shortest paths 
give each path weight 1/3 
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shortest paths in networks with 
varying edge lengths 

• the shortest path may traverse many edges 

• Dijkstra’s algorithm  
– finds the shortest distance from a given source 

vertex s to every other vertex, 

– it takes the lengths of edges into account 

– it keeps a record of the shortest distance so far 
and update that record whenever a shorter one is 
found 

1 

3 

1 
1 

3 

1 

s t 



Dijkstra’s algorithm 

• two arrays of n elements 
– current estimates of the distance from s 
– certainty of the estimates 

• find vertex j that has the smallest estimated distance 
(smallest and not yet certain) 

• mark this distance as being certain 
• calculate the distances from s via v to each of the 

neighbors of v. if the resulting distance is smaller, 
replace the estimate 

• repeat from 1 until the distances to all vertices are 
certain 

∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ 
current estimates 
(upper bound) 

s 

n vertices 

0 0 0 0 0 0 0 0 certainty of the  
estimates 

s 



the smallest estimated distance is 
certain 

• if v is the vertex with the smallest estimated 
distance from s, then that estimated distance 
must be the true shortest distance to v. 

• if there were a shorter path s,…,x,y,…,v,  
– all points along the path must have shorter 

distances from s than v’s estimated distance 

– it means that y has a smaller estimated       
distance than v, which is impossible. 



running time of Dijkstra’s algorithm 

• simplest implementation 
– find the smallest estimated distance : O(n) 
– calculate new estimates of its neighbors:O(m/n) 
– repeat above for n rounds : O(m+n2) 

• better implementation 
– find the smallest estimate from binary heap:O(logn) 
– replacing an estimated distance a new one : O(logn) (x 

O(m/n)times in the worst case) 
– repeat n rounds : O((m+n)logn) (or O(nlogn) for a 

sparse network) 
 

O(m/n+n) 



maximum flows and minimum cuts 

• augmenting path algorithm (Ford-Fulkerson) : 
O((m+n)m/n) 

• basic idea:  
– find a path from s to t using BFS 

– find another using only the edges not used in the 
path 

 

 

s t 

s t 



augmenting path algorithm 

• the procedure will not always find the 
maximum flow 
– if we remove the edges of the 

shortest path, there is no more paths  

• if we allow flows in both directions 

along an edge, we can find another  

• the maximum possible flow is 2 s t 

s t 

but there are two edge 
independent paths 



residual graph (1) 
• a directed network in which the edges 

connect the pairs of vertices on the original 
network between which we still have capacity 
available to carry one or more units of flow in 
the given direction 

s t s t 

s t s t 

original  
network 

initial  
residual network 

a path found  
by BFS 

updated 
residual network 



residual graph (2) 

 
 
 
 
 

• the largest number of edges we update : O(m) 
• BFS : O(m+n) 
• the number of independent paths ≤ min(ks,kt) 
• time complexity of this algorithm: O(min(ks,kt)(m+n)) 
• average running time: O((m+n)m/n) 

s t s t 

s t s t 

a path found  
by BFS 

updated 
residual graph 

next path updated 
residual graph 

nmkkk ts 2),min( =≤O(n) on a sparse 
network with m≈n 



why augmenting path algorithm 
correctly finds maximum flows 

• if at some point in our algorithm the flow from 
s to t is less than the maximum possible flow, 
then there must exist at least one augmenting 
path on the current residual graph 

• f: flows on the network  

• fmax: maximum possible flow 

• ∆f=fmax-f 



correctness of the augmenting path 
algorithm 

 

s t 

s t 

maximum flow (fmax) 

s t 

submaximal flow (f) 

difference flow (∆f) 



finding independent paths 

• augmenting paths ≠ independent paths 

s t s t 

s t 



reconstructing the independent paths 
from the residual graph 

• deleting every pair of edges that join the same 
two vertices in opposite directions -> graph 
consisting of the independent paths only 

s t s t 



finding a minimum cut set 

• maximum flows                 residual graph 

s t s t 

Vs: reachable from s 

Vt: reachable from t 

minimum cut set 



finding vertex-independent paths 
• almost the same as augmenting path 

algorithm 
– but no two paths may pass through the same 

vertex 

• mapping from the vertex-independent path 
problem to the edge-independent path 
problem 
– replace each vertex (except for s and t) with a pair 

of vertices with a directed edge between them  



vertex transformation for the vertex-
independent path algorithm 

• each vertex is replaced by a pair of vertices 
joined by a single directed edge 

s t 

s t 

s t 
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