
Complex Networks
network algorithms (1)

2011.11.28

contents of this chapter

• algorithms for calculating centrality indices,
finding components, calculating shortest
paths and maximum flow

software implementing common
network algorithms

Reasons for studying algorithms
(even though ready-made software

packages are available)
• much time can be wasted when people

misunderstand the answers the software can give
them

• you will sooner or later find that you need to do
something that cannot be done with standard
software and you’ll have to write some programs
of your own

• by relying on ready-made packages, researchers
have become limited in what types of analysis
they can perform

running time and computational
complexity

• if the calculation you have started will take a
thousand years to finish, it is basically useless

• concept of complexity is useful because it
helps us to avoid wasting our energies on
programs that will not finish running in any
reasonable amount of time

computational complexity

• a measure of the running time of a computer
algorithm

• example: to find the largest number in a list of
n numbers
– simply go through the list to the end, keeping a

record of the largest number we have seen
– worst case: every number is bigger than all the

ones before it
• its running time is nτ
• time complexity of this algorithm is order n (O(n))

vertex incoming
edges

outgoing
edges

1 4 3,4

2

3 1 4

4 3,1,5 5,1

5 4 4

algorithms for degrees and degree
distributions

• degree of a vertex
– if network is stored in adjacency list: O(1)

– if network is stored in adjacency matrix: O(n)

• degree distribution pk : O(n)

• cumulative degree distribution Pk
– form a histogram of the degrees and calculate :O(n)

– sorting degrees in descending order and rank from 1
to n : O(nlogn)

11
1'

'1
'

' −−

∞

−=
−

∞

=

−=+−== ∑∑ kk
kk

kk
kk

kk pPpppP 1
0'

'0 == ∑
∞

=k
kpP

of vertices

1 2

3 4

5

cf. assortative mix, homophily

• high-degree vertices tend to connect high-
degree ones

• correlation coefficient
• faster computation of r

• social networks: positive r
• other networks: negative r

∑
∑

−

−
=

ij jijiiji

ij jijiij

kkmkkk

kkmkkA
r

)2/(

)2/(

δ

2
231

2
21

SSS
SSSr e

−
−

=
∑∑ ==

),(
2

jiedges
ji

ij
jiije kkkkAS

∑∑∑ ===
i

i
i

i
i

i kSkSkS 3
3

2
21 ,,

correlation coefficient

• computing Se takes time O(m)

• computing S1, S2, and S3 take time O(n)

• total time is O(m+n)
– sparse networks (m n) : O(m+n) O(n)

– dense networks (m n2): O(m) O(n2)

of edges

≡
≡

∝
∝

mean degree
c=2m/n is constant

cf. transitivity

• a•b and b•c -> a•c

• u & v are friends and v & w are friends

• clustering coefficient:C=
– C=1:clique

– C=0:tree, square lattice

• C= =

• social networks tend to have high values

u

v

w u

v

w
closed

(# of closed paths of length two)
(# of paths of length two)

(# of triangles)×6
(# of paths of length two)

(# of triangles)×3
(# of connected triples)

cf. local clustering coefficient

• Ci=

• vertices with higher degree have lower local
clustering coefficient on average

• structural holes
– bad for info spread or traffic

– good for the central vertex
• it can control the flow of information

• similar to betweenness centrality

(# of pairs of neighbors of i that are connected)
(# of paths of neighbors of i)

i

structural
holes

i

clustering coefficients

• local clustering coefficient

– go through every pair of neighbors of i, and count

how many are connected

• overall clustering coefficient

– we consider for every vertex each pair of

neighbors and find whether they are connected

(# of pairs of neighbors of i that are connected)
(# of paths of neighbors of i) Ci =

(# of triangles)×3
(# of connected triples) C =

<naive method>

complexity of naive method

• vertex i with degree ki has pairs of
neighbors

• total number of checks:

• depends on degree distribution
– if a network follows a power law , the

second moment formally diverges if

– it will take an infinite amount of time!

)1(
2
1

−ii kk

)(
2
1)1(

2
1 2 kknkk

i
ii −=−∑ ∑=

i
ik

n
k 22 1

n
mk

n
k

i
i

21
== ∑

α−≈ kpk

3<α2k

vertex neighbors

1 3,4

2

3 4,1

4 5,1,3

5 4

more careful calculation (1)

• a network is stored in adjacency list

• for a single vertex i
– # of pairs of neighbors (j and l) :

– for each pair, check whether an edge exist
between them : time proportional to kj or kl

– if chosen at random : time proportional to kj + kl

– : set of neighbors of vertex i

– total time to check for edges between all pairs:

1 2

3 4

5)1(
2
1

−ii kk

iΓ

∑∑∑∑
Γ∈≠Γ∈≠Γ∈<Γ∈

−==+=+
iiii j

ji
ljlj
j

ljlj
lj

ljlj
lj kkkkkkk)1()(

2
1)(

:,:,:,

more careful calculation (2)

• sum of the quantity over all vertices i:

• compare with the expression of assortativity

• time to calculate clustering coefficient depends
on whether the degrees of vertices are correlated
or not

• if no correlation, r=0
• running time for clustering coefficient:

∑∑∑∑ ∑ −=−=−
Γ∈ j

j
ij

jiij
ij

jiij
i j

ji kkkAkkAkk
i

2)1()1(j
i

ij kA =∑

∑
∑

−

−
=

ij jijiiji

ij jijiij

kkmkkk

kkmkkA
r

)2/(

)2/(

δ
same

2
222

2
1

2
1









== ∑∑∑

i
i

ij
ji

ij
jiij k

m
kk

m
kkA












−=−







 ∑∑ 1
2
1

2
22

2
2

k
k

knkk
m j

j
i

i

knkm
i

i ==∑2
depends on <k2>: it can become large for

highly skewed degree distributions

cf. assortative mixing by degree

• assortative: high-degree vertices connect to
other high-degree vertices

• core/periphery structure :

common feature of social networks

• covariance

• correlation coefficient (assortativity coefficient)

∑ 







−=

ij
ji

ji
ijji kk

m
kk

A
m

kk
22

1),cov(

assortative

disassortative

∑
∑

−

−
=

ij jijiiji

ij jijiij

kkmkkk

kkmkkA
r

)2/(

)2/(

δ

more careful calculation (3)

• if a network is simple with no multiedges,
→maximum degree is k=n, and the degree
distribution is cut off → <k2> scales at worst as
n3-α

• running time of clustering coefficient would go
as n×n3-α×n3-α = n7-2α

• α=3: O(n)

• α=2: O(n3)

shortest paths and breadth-first search

• the study of each of these algorithms has
three parts
– description of the algorithm

– analysis of its running time

– proof that the algorithm performs the calculation
it claims to

breadth-first search (1)

• finds the shortest distance from a given
starting vertex s to every other vertex in the
same component as s

• s have distance 0 from itself

• find all the neighbors of s (distance 1)

• find all the neighbors of those

 vertices (distance 2)

• ...
0 1 2 3

breadth-first search (2)

• every vertex whose shortest distance from s is
d has a network neighbor whose shortest
distance from s is d-1

• breadth-first search finds the component to
which vertex s belongs

s

t

naive implementation

• array of n elements to store the distance of
 each vertex from the source vertex s
• distance variable d
1. find all vertices that are distance d from s
2. find all the neighbors of those vertices and check to

see if distance from s is unknown
3. if # of neighbors with unknown distance is zero, the

algorithm is over. otherwise, set the distance of each
of those neighbors to d+1

4. increase the value of d by 1
5. repeat from step 1

vertex distance

1 -1

2 -1

s 0

4 -1

5 -1

O(n) time for
setting up

find vertices of distance d:O(n)
distance 1~r: O(rn)

vertices of distance d:
n ×O(m/n)=O(m)

neighbors
of a vertex

total running time:
O(n + rn + m)

r: diameter
n (in the worst case)->O(m+n2)

log n (in most cases)->O(m+nlogn)

better implementation (1)

• time consuming part is step 1 (find vertices
that are distance d from the starting vertex s)

• use distance array and queue

5 2 6 4 1 9 3

read pointer
(next item
to read)

write pointer
(next empty
space to fill)

vertex distance

1 -1

2 -1

s 0

4 -1

5 -1

n elements

better implementation (2)

1. place s in the queue, set 0 in distance array

2. if read and write pointers are pointing the same
element, the algorithm is finished. otherwise,
read the vertex label pointed by read pointer

3. find the distance d for that vertex

4. go through each neighboring vertex in turn
1. if it has a known distance, leave it alone

2. if it has unknown distance, assign it distance d+1,
store its label in the queue array

s

vertex distance

1 -1

2 -1

s 0

4 -1

5 -1

distance:0 distance:d distance:d+1

better implementation (3)

• running time
– O(n) to set up the distance array
– for each element in the queue, we run through its

neighbors (O(m/n) on average), calculate their
distance and add them to the queue or do nothing
(O(1))

• we require overall at most at time n×O(m/n) = O(m)

– the whole algorithm takes time O(m+n)
• better than O(m+nlogn)
• for sparse network with m ≈ n, O(n)

finding shortest paths (1)

• the previous breadth-first search does not tell
us the particular path(s) by which that
shortest distance is achieved

• a small modification of the bread-first search
algorithm
– if a vertex j (neighbor of i) has unknown distance

• assign j a distance and store it in a queue
• add a directed edge from j to i

• its running time is still O(m+n) 0 1 2 3

j

i

finding shortest paths (2)

• for multiple shortest paths
– if a vertex j (neighbor of i) has unknown distance

• assign j a distance and store it in a queue

• add a directed edge from j to i

– if a vertex j has distance d+1
• add an extra directed edge from j to i

0 1 2 3

j

i

betweenness centrality

• betweenness of v : # of geodesic paths between
pairs of vertices that pass through v

• simplest way: (1) use breadth-first search to find
the shortest path between s and t, and see if the
vertex v lies along the path (2) repeat this process
for every distinct pair s, t.

• this is correct, but slow
– O(m+n) to find a shortest path between two vertices
– n(n-1)/2 distinct pairs of vertices
– calculating betweenness for v will take O(n2(m+n)) (or

O(n3) when m ≈ n (sparse network))

calculation of betweenness centrality
(1)

• O(m+n) for finding paths between s and all other
vertices (a shortest path tree)

• trace the paths from each vertex back to s and
count the number of paths that go through v :
O(nlogn)

• O(m+nlogn) for each s
• repeat this calculation for all s -> O(n(m+nlogn))

(or O(n2logn))
– much better than O(n3)
– betweenness of all vertices will be calculated at the

same time

n paths of length logn

we can still do better

• many of the shortest paths share many of the same
edges

• score of each vertex (betweenness count for paths that
end at vertex s)
– leaves:1
– others:1+∑(score of its immediate children)

• the queue array created by BFS have a
list of vertices in order of decreasing
distance from s -> O(m+n) for each s
• O(n(m+n)) for all vertices

s
7

2

1

4

2

1

1

leaves

s

distance:0 distance:d distance:d+1

BFS: O(m+n)

worst case:
checking every

neighbor of every
vertex -> O(m+n)

more than one shortest path (1)

1. assign vertex s distance zero, set d=0, and assign s a
weight ws=1

2. for each vertex i whose distance is d, follow each attached
edge to the vertex j at its other end, and then do one of
the following three things:
• if j has not yet been assigned a distance, assign it distance d+1

and weight wj=wi

• if j has already been assigned distance d+1, then wj <- wj+wi

• if j has already been assigned a distance less than d+1, do
nothing

3. increase d by 1
4. repeat from 2 until there are no vertices that have

distance d

s
7

1

2 1

3 1

1

1 1

1
6

11
6
25

3
7

3
5

3 shortest paths
give each path weight 1/3

counting the number of shortest paths from each vertex

weight

more than one shortest path (2)

• the fraction of the paths to s that pass through
j and that also pass through i is wi/wj

1. find every leaf vertex t and assign it a score of
xi=1

2. from the bottom of the tree, assign to each
vertex i a score (j is a neighbor
immediately below vertex i)

3. repeat 2 until vertex s is reached

s
7

1

2 1

3 1

1

1 1

1
6

11
6
25

3
7

3
5

3 shortest paths
give each path weight 1/3

∑+=
j jiji wwxx /1

shortest paths in networks with
varying edge lengths

• the shortest path may traverse many edges

• Dijkstra’s algorithm
– finds the shortest distance from a given source

vertex s to every other vertex,

– it takes the lengths of edges into account

– it keeps a record of the shortest distance so far
and update that record whenever a shorter one is
found

1

3

1
1

3

1

s t

Dijkstra’s algorithm

• two arrays of n elements
– current estimates of the distance from s
– certainty of the estimates

• find vertex j that has the smallest estimated distance
(smallest and not yet certain)

• mark this distance as being certain
• calculate the distances from s via v to each of the

neighbors of v. if the resulting distance is smaller,
replace the estimate

• repeat from 1 until the distances to all vertices are
certain

∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
current estimates
(upper bound)

s

n vertices

0 0 0 0 0 0 0 0 certainty of the
estimates

s

the smallest estimated distance is
certain

• if v is the vertex with the smallest estimated
distance from s, then that estimated distance
must be the true shortest distance to v.

• if there were a shorter path s,…,x,y,…,v,
– all points along the path must have shorter

distances from s than v’s estimated distance

– it means that y has a smaller estimated
distance than v, which is impossible.

running time of Dijkstra’s algorithm

• simplest implementation
– find the smallest estimated distance : O(n)
– calculate new estimates of its neighbors:O(m/n)
– repeat above for n rounds : O(m+n2)

• better implementation
– find the smallest estimate from binary heap:O(logn)
– replacing an estimated distance a new one : O(logn) (x

O(m/n)times in the worst case)
– repeat n rounds : O((m+n)logn) (or O(nlogn) for a

sparse network)

O(m/n+n)

maximum flows and minimum cuts

• augmenting path algorithm (Ford-Fulkerson) :
O((m+n)m/n)

• basic idea:
– find a path from s to t using BFS

– find another using only the edges not used in the
path

s t

s t

augmenting path algorithm

• the procedure will not always find the
maximum flow
– if we remove the edges of the

shortest path, there is no more paths

• if we allow flows in both directions

along an edge, we can find another

• the maximum possible flow is 2 s t

s t

but there are two edge
independent paths

residual graph (1)
• a directed network in which the edges

connect the pairs of vertices on the original
network between which we still have capacity
available to carry one or more units of flow in
the given direction

s t s t

s t s t

original
network

initial
residual network

a path found
by BFS

updated
residual network

residual graph (2)

• the largest number of edges we update : O(m)
• BFS : O(m+n)
• the number of independent paths ≤ min(ks,kt)
• time complexity of this algorithm: O(min(ks,kt)(m+n))
• average running time: O((m+n)m/n)

s t s t

s t s t

a path found
by BFS

updated
residual graph

next path updated
residual graph

nmkkk ts 2),min(=≤O(n) on a sparse
network with m≈n

why augmenting path algorithm
correctly finds maximum flows

• if at some point in our algorithm the flow from
s to t is less than the maximum possible flow,
then there must exist at least one augmenting
path on the current residual graph

• f: flows on the network

• fmax: maximum possible flow

• ∆f=fmax-f

correctness of the augmenting path
algorithm

s t

s t

maximum flow (fmax)

s t

submaximal flow (f)

difference flow (∆f)

finding independent paths

• augmenting paths ≠ independent paths

s t s t

s t

reconstructing the independent paths
from the residual graph

• deleting every pair of edges that join the same
two vertices in opposite directions -> graph
consisting of the independent paths only

s t s t

finding a minimum cut set

• maximum flows residual graph

s t s t

Vs: reachable from s

Vt: reachable from t

minimum cut set

finding vertex-independent paths
• almost the same as augmenting path

algorithm
– but no two paths may pass through the same

vertex

• mapping from the vertex-independent path
problem to the edge-independent path
problem
– replace each vertex (except for s and t) with a pair

of vertices with a directed edge between them

vertex transformation for the vertex-
independent path algorithm

• each vertex is replaced by a pair of vertices
joined by a single directed edge

s t

s t

s t

	Complex Networks�network algorithms (1)
	contents of this chapter
	software implementing common network algorithms
	Reasons for studying algorithms �(even though ready-made software packages are available)
	running time and computational complexity
	computational complexity
	algorithms for degrees and degree distributions
	cf. assortative mix, homophily
	correlation coefficient
	cf. transitivity
	cf. local clustering coefficient
	clustering coefficients
	complexity of naive method
	more careful calculation (1)
	more careful calculation (2)
	cf. assortative mixing by degree
	more careful calculation (3)
	shortest paths and breadth-first search
	breadth-first search (1)
	breadth-first search (2)
	naive implementation
	better implementation (1)
	better implementation (2)
	better implementation (3)
	finding shortest paths (1)
	finding shortest paths (2)
	betweenness centrality
	calculation of betweenness centrality (1)
	we can still do better
	more than one shortest path (1)
	more than one shortest path (2)
	shortest paths in networks with varying edge lengths
	Dijkstra’s algorithm
	the smallest estimated distance is certain
	running time of Dijkstra’s algorithm
	maximum flows and minimum cuts
	augmenting path algorithm
	residual graph (1)
	residual graph (2)
	why augmenting path algorithm correctly finds maximum flows
	correctness of the augmenting path algorithm
	finding independent paths
	reconstructing the independent paths from the residual graph
	finding a minimum cut set
	finding vertex-independent paths
	vertex transformation for the vertex-independent path algorithm

