Complex Networks
the large-scale structure of networks



contents of this chapter

component sizes

path lengths and small-world effect
degree distributions and power law
clustering coefficient



components

e |arge component: usually more than half and
not infrequently over 90%
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metrics in real networks

S: the size of the largest component as a fraction of total network size

network type n m z ¢ a | oV c® r | Ref(s). S

film actors undirected 449913 25516 482 113.43 3.48 2.3 0.20 0.78 0.208 20, 416 0.980
company directors undirected T6T3 55392 14.44 4.60 - 0.59 0.88 0.276 105, 323  0.876
math coauthorship undirected 253339 496 489 3.92 7.57 — | 0.15 0.34 0.120 107, 182 0.822
physics coauthorship undirected 52909 245300 9.27 6.19 — 0.45 0.56 0.363 311, 313 (0.838

= biology coauthorship undirected 1520251 11803 064 15.53 4,92 - 0.088 0.60 0.127 311, 313 0.918

fé telephone call graph undirected 47000000 80000000 3.16 2.1 8,9 -
email messages directed 59912 86 300 1.44 4.95 1.5/2.0 0.16 136 0.952
emalil address books directed 16881 57029 3.38 5.22 - 0.17 0.13 0.092 321 0.590
student relationships undirected 573 477 1.66 16.01 - 0.005 0.001 —0.029 45 0.503
sexual contacts undirected 2810 3.2 265, 266 -

o WWW nd.edu directed 269 504 1497135 5.55 11.27 2.1/24 0.11 0.29 —0.067 14, 34 1.000

g WWW Altavista directed 203 549046 2130000000 10.46 16.18 2.1/2.7 74 0.914

£ | citation network directed 783339 6716198 8.57 3.0/- 351 _

L-E Roget’s Thesaurus directed 1022 5103 4.99 4.87 - 0.13 0.15 0.157 244 0.977
word co-occurrence undirected 460902 17000000 70.13 2.7 0.44 119, 157 1.000
Internet undirected 10697 31992 5.08 3.31 2.5 0.035 0.39 —0.189 86, 148 1.000

G power grid undirected 4941 6594 2.67 18.99 - 0.10 0.080 —0.003 416 1.000

g.c train routes undirected 587 19603 66.79 2.16 0.69 —0.033 366 1.000

E software packages directed 1439 1723 1.20 2.42 1.6/1.4 0.070 0.082 —0.016 318 0.998

E software classes directed 1377 2213 1.61 1.51 - 0.033 0.012 —0.119 395 1.000

. electronic circuits undirected 24097 53248 4.34 11.05 3.0 0.010 0.030 —0.154 155 1.000
peer-to-peer network undirected 880 1296 1.47 4.28 2.1 0.012 0.011 —0.366 6, 354 0.805

_ metabolic network undirected 765 3686 9.64 2.56 2.2 0.090 0.67 —0.240 214 0.996

§ protein interactions undirected 2115 2240 2.12 6.80 2.4 0.072 0.071 —0.156 212 0.689

E’O marine food web directed 135 598 4.43 2.05 — | 0.16 0.23 —0.263 | 204 1.000

E freshwater food web directed 92 997 10.84 1.90 - | 0.20 0.087 | —0.326 | 272 1:000
neural network directed 307 2359 7.68 3.97 — 0.18 0.28 —0.226 416, 421 0.967

TABLE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total
number of edges m; mean degree z; mean vertex—vertex distance £; exponent « of degree distribution if the distribution follows a power law (or “-” if not; in/out-degree
exponents are given for directed graphs); clustering coefficient C'*) from Eq. (3); clustering coefficient ¢ from Eq. (6); and degree correlation coefficient r, Sec. IILF.
The last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

M. Newman “The structure and function of complex networks”
http://arxiv.org/abs/cond-mat/0303516



two Iarge component
no Iarge component

e two large components -> (n/2)? pairs

-> no connection is highly unlikely am

* NO Iarge component

-> people don’t usually represent such situations
by networks at all.



components in directed networks
* SCC, in-component, and out-component

Central core
56 million pages

Tendrils and tubes
44 million pages

Dizconnected components
17 million pages

“The web is a bow tie”
http://www.nature.com/nature/journal/v405/n6783/full/405113a0.html



small-world effect

e Stanley Milgram’s letter-passing experiment

— people were asked to send a letter to a distant target
person by passing it from acquaintance to acquaintance

— # of hops between two arbitrary persons is around six on
average
e remarkably small (although the network have millions
of vertices)
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degree distributions

* p, : fraction of the vertices that have degree k

12 4 2 1 ®
Po=19 P10 P27 P70 P T

e degree sequence:{k,,k,,....k. }
{011,2,2,2,2,3,3,4}

e there is more than one network

with the same degree distribution
I



the degree distribution of the Internet

e X axis: degree (k)

* y axis: fraction (p,) of
vertices with degree k

e most of the vertices
have low degree

e significant “tail” -- hubs

e the degree distribution
is right-skewed



power laws and scale-fre\e networks
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both axes are logarithmic  © | N\

Inp, =—alnk+c P, =Ck™ )

dlstrlbutlons of this form are~ o
called as “power laws”
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values in the range 2<a <3 bR
are typical

iIn many cases, the power law
Is obeyed only in the tail of
the distribution

“scale-free networks”
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detecting and visualizing power laws

e asimple histogram presents some problems

— poor statistics in the tail of the distribution

— noisy signal will make it difficult to detect power

laws

e solutions
— use a histogram with larger bins «
— using bins of different sizes

e wide bins in the tail

e narrow ones at the left-hand end
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logarithmic binning

e each bin is made wider than its predecessor by a
constant factor a (a=2 is common)

— 15t bin: 1 <k<2
— nth bin: a"! <k<a"
— width : a"-a"! = (a-1)a"?!
e the histogram is much
less noisy
e the bins have equal width

on a log-scale histogram
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cumulative distribution function

* P, fraction of vertices that have degree k or

greater P, = Zpk

k'=k g 0’_ 3
* p,follows apowerlaw = \

— P, =Ck™ for k>k . ] ml?_ e
vl .
e for k>k_. Pab ‘
P, CZk‘“~c [kedk=C gen 0wt

-1
+ if the distribution p, follows a power law, so

does the cumulative distribution function P



advantages of cumulative distribution
functions

* P, does not require binning

e easy to calculate: sort the degrees of vertices
in descending order and number them from 1

to nin that order | x axis
degree : (highest) (lowest

rank: 1 2 3 roo.. n ! .
y axis
P: 1/n 2/n 3/n r/n n/n

Cumulative distribution function

2 4 2 4 0 1 2 3
10° 10" 10° 10 10 10 10 10 10

In-degree Out-degree In-degree

(a) World Wide Web (b) World Wide Web (c) Citation



example

X axis y axis
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disadvantages of cumulative
distribution functions

e |ess easy to interpret
e successive points on a plot are correlated

— not valid to extract the exponent of a power law
distribution by fitting the slope on the straight-line
portion of a plot and equating the result with o-

— fitting (such as least squares} '+

i)
o

assume independence between = °
the data points E




calculating a directly from the data

* not good to evaluate exponent (a) from
cumulative distribution functions or ordinary
histograms

e calculating a directly

" K.in: the minimum degree for which
a=1+N Z In i the power law holds
i k _1 N: # of vertices with degree > k..
min
2 |

* statistical error on a

| e
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properties of power-law distributions

e power-laws appear in a wide varieties of places

— the size of city populations, earthquakes, moon
creators, solar flares, computer files, wars

— the frequency of use of words in human languages
— the frequency of occurrence of personal names

— the number of papers scientists write

— the number of hits on Web pages

— the sales of books, music recordings, and almost every
other branded commodity



normalization

e pure power-law distribution(k starts from 1)

Z Pv = p =Ck™
k=0 1

1
Z —a C = - [ . ,
C K k = 1 Z;o:1 k_a C(Of Riemann zeta function ]

Pe = k>0, py=0
. ¢(a)
e deviation from power-law for small k
K™ K™
pk - Zoo K@ é/(Ol kmm)/[generahzed zeta functlon]

e orthe tail i¥ approximated by an integral

Cz— 1  —(g—1k= L aa-l k)
jk_k—“dk Tk ko

min mi



moments (1)

e moments of degree distribution

(k) = kak < > Zkzpk < > kapk

e if p, has a power- law tail for k> kmln .

Kmin —1

(k™) = kapk+Cka“
< >; ékmpﬁcjkmfmadk

— kin_lkm pk + C [k m-a+1 ]Znin
k=0

:! approximate by an integral ]

m-oa+1

depends on mand a ]

well-defined if and only if a > m+1



moments (2)

e second moment (k*) arises in many
calculations

— mean degree of neighbors
— robustness calculations
— epidemiological processes

e for large network, it is finite if and only if a > 3

— but 2 € a £ 3 for most real-world networks

e for any finite networks, it is finite

(k)= 2ok



top-heavy distribution

e the fraction W of end of edges attached to a fraction P
of the highest-degree vertices in a network

W = ple-2ia-) |
* Lorenz curves
e example: WWW
oa=2.2
P=0.5 => W=0.89
— 89% of all hyperlinks link to pages in

'S

Fraction of ends of edges W

the top half of the degree distribution R e R

W=0.5=> P=0.015 Faciontveies P

— 50% of links go to 1.5% richest vertices



clustering coefficient (C)

average probability that two neighbors or a
vertex are themselves neighbors Z\?

density of triangles in a network 1 [ k>]2

random network: Cis small €= - <k>3

social network : Cis large (10% - 60%)

— because of the process (triadic closure) Z :{>A

Internet: observed C is smaller than expected
— C=0.012, but expected value=0.84



local clustering coefficient

o C = (# of pairs of neighbors of i that are connected)
i (# of paths of neighbors of i)

vertices of higher degree

i Ci decrease Wlth k Ci ~ k_0'75 tend to have lower local

clustering coefficient

— because of community structure

e vertices in a small community are constrained to have
low degree, and their C; will tend to be larg

Wak e




assortative mix, homophily

high-degree vertices tend to connect high-
degree ones > (A =ik 12m)kik;

correlation coefficient ' Z (kiS; —kik, / 2m)k;k
TR | [
faster computation of r

585.-8¢ S =ZA, kikj =2 > kik,

edges(i, j)
8-S, g, _Zk =3k S = 2K

social networ %s posmve r

other networks: negative r
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