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contents of this chapter 

• component sizes 

• path lengths and small-world effect 

• degree distributions and power law 

• clustering coefficient 



components 

• large component: usually more than half and 
not infrequently over 90% 

 



metrics in real networks 

•   

M. Newman “The structure and function of complex networks” 
http://arxiv.org/abs/cond-mat/0303516 

S: the size of the largest component as a fraction of total network size 
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two large component  
no large component 

• two large components -> (n/2)2 pairs  

-> no connection is highly unlikely 

 

• no large component 

-> people don’t usually represent such situations 
by networks at all. 
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components in directed networks 
• SCC, in-component, and out-component 

“The web is a bow tie” 
http://www.nature.com/nature/journal/v405/n6783/full/405113a0.html 



small-world effect 
• Stanley Milgram’s letter-passing experiment 

– people were asked to send a letter to a distant target 
person by passing it from acquaintance to acquaintance 

– # of hops between two arbitrary persons is around six on 
average 

• remarkably small (although the network have millions  
of vertices)  

• path length scale as log n  
with the number n of network  
vertices 

   

 



degree distributions 

• pk : fraction of the vertices that have degree k 

 

• degree sequence:{k1,k2,...,kn} 

 

• there is more than one network 

with the same degree distribution 
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the degree distribution of the Internet 

• x axis: degree (k) 

• y axis: fraction (pk) of 
vertices with degree k 

• most of the vertices 
have low degree 

• significant “tail” -- hubs 

• the degree distribution 
is right-skewed 

 



power laws and scale-free networks 

• both axes are logarithmic 
 

• distributions of this form are 
called as “power laws” 

• values in the range  
    are typical 
• in many cases, the power law 

is obeyed only in the tail of 
the distribution 

• “scale-free networks”  

ckpk +−= lnln α α−= Ckpk

32 ≤≤α



detecting and visualizing power laws 

• a simple histogram presents some problems 
– poor statistics in the tail of the distribution 

– noisy signal will make it difficult to detect power 
laws 

• solutions 
– use a histogram with larger bins 

– using bins of different sizes 
• wide bins in the tail 

• narrow ones at the left-hand end 



logarithmic binning 

• each bin is made wider than its predecessor by a 
constant factor a  (a=2 is common) 
– 1st bin: 1 ≤k<2 
– nth bin: an-1 ≤k<an 
– width : an-an-1 = (a-1)an-1  

• the histogram is much  
    less noisy 
• the bins have equal width 
    on a log-scale histogram 

 
 



cumulative distribution function 

• Pk: fraction of vertices that have degree k or 
greater 

• pk follows a power law 
–                    for  

• for  

 

• if the distribution pk follows a power law, so 
does the cumulative distribution function Pk           
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advantages of cumulative distribution 
functions 

• Pk does not require binning 

• easy to calculate: sort the degrees of vertices 
in descending order and number them from 1 
to n in that order 

degree : (highest)                                            (lowest) 
rank:         1      2      3       ....       r      ...             n 
Pk:            1/n 2/n 3/n                r/n                   n/n 

x axis 

y axis 



example 

 
degree k rank r Pk = r/n 

4 1 0.1 

3 2 0.2 

3 3 0.3 

2 4 0.4 

2 5 0.5 

2 6 0.6 

2 7 0.7 

1 8 0.8 

1 9 0.9 

0 10 1.0 

x axis y axis 



disadvantages of cumulative 
distribution functions 

• less easy to interpret 

• successive points on a plot are correlated 
– not valid to extract the exponent of a power law 

distribution by fitting the slope on the straight-line 
portion of a plot and equating the result with α-1 

– fitting (such as least squares) 

assume independence between  

the data points 



calculating α directly from the data  

• not good to evaluate exponent (α) from 
cumulative distribution functions or ordinary 
histograms 

• calculating α directly 

 

 

• statistical error on α 
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kmin: the minimum degree for which  
         the power law holds 
N: # of vertices with degree ≥ kmin 



properties of power-law distributions 

• power-laws appear in a wide varieties of places 
– the size of city populations, earthquakes, moon 

creators, solar flares, computer files, wars 

– the frequency of use of words in human languages 

– the frequency of occurrence of personal names 

– the number of papers scientists write 

– the number of hits on Web pages 

– the sales of books, music recordings, and almost every 
other branded commodity 



normalization 

• pure power-law distribution(k starts from 1) 

 

 

 

• deviation from power-law for small k 

 

• or the tail is approximated by an integral 
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moments (1) 

• moments of  degree distribution 

 

• if pk has a power-law tail for k≥kmin : 
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moments (2) 

• second moment        arises in many 
calculations 
– mean degree of neighbors 

– robustness calculations 

– epidemiological processes 

• for large network, it is finite if and only if α > 3 
– but 2 ≤ α ≤ 3 for most real-world networks 

• for any finite networks, it is finite 
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top-heavy distribution 

• the fraction W of end of edges attached to a fraction P 
of the highest-degree vertices in a network 
 

• Lorenz curves 
• example: WWW 

α = 2.2  
P=0.5        W=0.89 
– 89% of all hyperlinks link to pages in                                       

the top half of the degree distribution 
W=0.5      P=0.015 
– 50% of links go to 1.5% richest vertices 
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clustering coefficient (C) 

• average probability that two neighbors or a 
vertex are themselves neighbors 

• density of triangles in a network 

• random network: C is small 

• social network : C is large (10% - 60%) 
– because of the process (triadic closure) 

• Internet: observed C is smaller than expected 
– C =0.012, but expected value=0.84 
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local clustering coefficient 

• Ci =  

• Ci decrease with k 
– because of community structure 

• vertices in a small community are constrained to have 
low degree, and their Ci  will tend to be larger  

(# of pairs of neighbors of i that are connected)  
(# of paths of neighbors of i) 

75.0−≈ kCi
vertices of higher degree 
tend to have lower local 

clustering coefficient 



assortative mix, homophily 

• high-degree vertices tend to connect high-
degree ones 

• correlation coefficient 
• faster computation of r 

 
 

• social networks: positive r 
• other networks: negative r 
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