Complex Networks
measures and metrics



centrality

 which is the most important vertex?
— red?
— blue?
— green’?
— light blue?
— yellow?



degree centrality

e # of edges connected to a vertex

— friendship
— citation -




eigenvector centrality (1)

neighboring vertices are not equally important
setting initial values (x, = 1 for all i)
update by the sum of the centralities of the
neighbors =S Ax,

X = AX J J i
repeating this process

X(t) = A'x(0)

write x(0) as a linear combination of eigenvectors

X(O) = ZCiVi C,: some appropriate choice of constant
i



eigenvector centrality (2)

:
X(t) = AtZCiVi = Zi:ci/q‘vi = K{Zci {%j Vi o Alv =ty
K. : eigenvalue of A, «, :the largest one
k[, <1 for all i£1

when t—>o x(t) > ¢V,

the centrality x satisfy Ax=xx x =+*Y Ax,

J

— propsed by Bonacich in 1987
eigenvector centralities are non-negative



eigenvector centrality for undirected
networks

 [problem1l]adjacency matrix is asymmetric -> two
sets of eigenvectors

— left eigenvectors and right eigenvectors

: XA = AX . . Ax=
e in mé% cases, right elgenvecﬂfbrs are used

X; :Kl_lZAinj AX = KX
j
 [problem2] no incoming edges
-> centrality will be zero

— only SCCs and their out-components can,
have non-zero centralities




Katz centrality

simply give each vertex a small amount of

centrality
X =a) AX,+f  x=aAx+pl 1=(111..)

J
X= (- aA)_l -1 B =1 (absolute value of x is not important)
X=(1-aA)"-1
a:balance between the eigenvector term and
constant term

a—0, all vertices have the same centrality

as we increase a, x diverges when (I1-aA)™
diverges det(A-a™1)=0

O =K, the largest eigenvector of A

a should be less than 1/k,



calculating Katz centrality

* inverting matrix : (O(n3)) slow
X=(|—0!A)_1'1 l # of vertices l

e update x repeatedly:
X'=aAX+ 1

# of iteration # of edges




PageRank (1)

=a) AXtf .
 weakness of Katz centrality: if a vertex with

high Katz centrality points to may others, then
those others also get high centrality

— centrality should be diluted
e PageRank

— the centrality derived from neighbors is divided by
their out-degree
X

X :“ZAU kofjt +/
j j

for the vertices with zero outdegree (k,°“'=0), we artificially set k°°'*=1



PageRank (2)

X

Xi ZOlZ Aij kOth +/8
J ]

X = aAD X + ,Bl D: diagonal matrix with elements D,=max(k.°“t,1)

X = (I —OtAD_l)_l .1 PBissettol
Xx=D(D-aA)™"-1
e Google uses it as a central part of their Web
ranking technology

e a should be less than the inverse of the largest
eigenvalue of AD!

e 0=0.85 is often used



summary of centrality measures

_ with constant term without constant term

divide by out-degree X=D(D- (ZA)_l : X = ADx

PageRank degree centrality

no division X=(l- O(A)_1 1 X =K, AX
Katz centrality eigenvector centrality




hubs and authorities (1)

e two types of important vertices

— authorities: vertices that contain useful
information

— hubs: vertices that tell us where the best
authorities are to be found

e HITS (hyperlink-induced topic search) : search
authority centrality (x;) and hub centrality (y,)

good authority is pointed

X. good hub points to
' by many good hubs Yi

X: .
J' many good authorities




hubs and authorities (2)

e authority centrality (x;) and hub centrality (y,) are
mutually recursive

X. =aZAjyj Yi :ﬂzj:Ajin
X = Gy y = BATX
AATX = AX ATAy=y  A=(ap)”
e authority and hub centralities are given by

eigenvectors of AA" and A'A with the same
eigenvalue (leading eigenvalue should be used)

e AA" and A'A have the same eigenvalues

AAT X = Ax AT x is an eigenvector of ATA with the same eigenvalue A

ATAATX) = 1(ATx) Y=A'X



hubs and authorities (3)

e AA'is cocitation matrix
 A'Ais bibliographic coupling matrix

 hub and authority centralities circumvent the

problems of eigenvector centrality with directed
network

— problem: vertices outside of SCC or out-components
always have centrality zero

— vertices not cited by any others have authority

centrality zero, but they can still have no-zero hub
centrality



closeness centrality

mean distance from a vertex to other vertices
1
. :szij d;; : length of geodesic path fromi to j
J

low values for vertices that are close to others

closeness centrality : inverse of |.
1 n

=
| d.
[ j o] .

problems of closeness centrality

— span a rather small range from largest to smallest

— vertices in smaller component will get higher value



problems of closeness centrality

e span a rather small range from largest to
smallest

— difficult to distinguish between central and less
central ones (small fluctuations can change the
order)

— Internet Movie Database: half a million actors
e smallest centrality 2.4138, largest centrality 8.6681
e vertices in smaller component will get higher
value

— redefine closeness: C, I ..
n-1{7d;



mean geodesic distance

e for a network with only one component
1
—ZZdij :—Zli mean of |. over all vertices

e for azrlweiwork W|th more than one component
Ije(,zn i-

n

n. : # of vertices in component ¢ _

average only over the paths in the same component

e alternative approach : harmonic mean

distance
I_' n(n 1) ;_:_ZC




betweenness centrality (1)

# of geodesic paths a vertex Iiem
N 1 iisonthe path fromstot c
10 otherwise A
betweenness centrality x; W
X, = Zn;t counts each vertex pair twice Cjs importaqt £
ot passing messages
pIuraInpaths -> give weight (=1/(# of paths))

X, = Zt: gSt g : # of geodesic paths from s to t
S st

good also for directed networks

B



betweenness centrality (2)

e avertex on a bridge acquires high A
betweenness

— although its eigenvector/closeness/degree
centrality is low

 its values are distributed over a wide range

— maximum : star graph (n?-n+1)

— minimum : leaf (2n-1)

. 2
—ratio; nh-n+l 1
2n-1 2

large dynamic range -> clear winners/losers




variation of betweenness centrality

L. 1 <N,
e normalization: x,==) =
n st gst

e flow betweenness: n}, -> # of independent
paths between s and t that run through i

e random-walk betweenness:

;=) Ny  ni:#of timesthat the random walk
st

from s to t passes through i
—in general, n! =n!

— random-walk betweenness and shortest-path
betweenness often give quite similar results




groups of vertices

cliqgue : maximal subset of vertices such that every
vertex is connected to every other

k-plex : maximal subset of n vertices such that each
vertex is connected to at least n-k of the others

— 1 -plex -> clique

k-core : maximal subset of vertices such that each is
connected to at least k others in the subset

— k-core is (n-k)-plex

k-clique : maximal subset of vertices such that each is
no more than a distance k away from any of the others

k-clan (k-club) : same as k-clique, but paths should run
within the subset



components and k-components

e components: maximal subset of vertices such
that each is reachable from each of the others

e k-component: maximal subset of vertices such
that each is reachable from each of the others
by at least k vertex-independent paths

2-component

still reachable even if k-1
vertices are removed

i 1-component

3-component




transitivity

aeb and bec -> aec 5./ V

u & v are friends and v & w are friends
(# of closed paths of length two)

clustering coefficient:C= —— St oftength two)

— C=1:clique
— C=0:tree, square lattice
— (# of triangles) X 6 — (# of triangles) X 3
(# of paths of length two) (# of connected triples)

social networks tend to have high values



local clustering coefficient

__ (# of pairs of neighbors of i that are connected) |
C= -
I (# of paths of neighbors of i)

vertices with higher degree have lower local
clustering coefficient on average .-~

]
structural holes [ struetre %—’

— bad for info spread or traffic

— good for the central vertex

e it can control the flow of information

similar to betweenness centrality



redundancy

redundancy of i (R) : the mean number of
connections from a neighbor of i to other

neighborsofi g _1g,1,149)21
— minimum : 0 4

— maximum : I —
total number of connections
1 /[ between friends ]
C- _ 2 [

_k (k 1)7 totalnumber of pairs ]

of friends of i




another clustering coefficient

* C,: the mean of the local clustering
coefﬂuents for each vertex

Zc
e We need to be aware of both definitions and
clear which is being used



reciprocity ; é :
° 3 Ioop of length two in a directed network

1

:_ZAIJ i =—TFA2 m : # of edges
. example r= 4/7 @



sighed edges
e positive/negative edges m/-]

* negative edge # absence of edge
* possible triad configurations

A. A.A.A.

_ stable [- unstable ]
— stable T even number of minussigns

— unstable configurations occur far less often in real
social networks than stable configurations

| enemies I




b

structural balance

alanced network : containing only loops with

even numbers of minus signs

. F
C

arary’s theorem: a balanced network can be
ivided into connected groups of vertices such

that all connection between members of the

same group are positive and all connections

b
n

— such network is clusterable

etween members of different groups are
egative




proof of Harary’s theorem

e colorin the vertices according to the following

algorithm: 4 N
— connected by + : same color O/® E>O/O
— connected by - : different color O_/® |:>07‘

e conflict of coloring
— the # of — in the loop is odd -> unbalanced

odd # of —{_O_l_ even # of —{O_

e remove all — edges -> groups connected by +



similarity between vertices

e structural equivalence

— sharing many of the same network neighbors

e regular equivalence

— having neighbors who are themselves similar

4

structural equivalence

?

Y

N’

1

J

N g

regular equivalence



cosine similarity

 #of common neighbors of vertices i and |
n;; :ZAikAkj :[Az]ij
k

— normalization is required for the varying degrees

of vertices ith and jth rows of
X-y :! i . I

CoSHd =—=

e cosine similarity: X|y]
- cosn - 2 A
\/Z A.k \/Zk I

. unwe|ghted simple graph ->A; =10r0
A; = A foralliand ]

2 = =k ":ZkAikAkj: n;
Z A| ZkAi |:>G” \/m \/m




Pearson correlation coefficient (1)

 normalize by the expected number of
common neighbors if connections are made at

random

* vertices iand j have degrees k; and k;

n-1(=n)
A

[ 1
0000000

k.
i kj

—

probability that the 1st neighbor that j
chooses is one of k. vertices -> k,/n

probability that the k;th neighbor that j
chooses is one of k; vertices -> k,/n

—

expected # of common neighbors = kikj/n

(We neglect the possibility of choosing the same neighbor twice,
since it is small for a large networks)



Pearson correlation coefficient (2)

e (actual # of common neighbor) — (expected
number if chosen randomly)

;AikAkj_%:;AikAjk_%;AikZAjl
:ZAK ik n< >< >
—Z[Ak w—(ANAN
—Z(Ak ANAL—(A))
S-S An-(a)

positive -> i & j are similar _ZAK jk A,>
negative -> i & j are dissimilar _ZA”( ) n<'°\

M




Pearson correlation coefficient (3)

> (A =(ADA, =(A;)) =n-cov(A, A)
e normalize -> Pearson correlation coefficient
C_cov(AA) D AADA(A)
” i} \/ZK(AK _<Aﬁ>)2 \/Zk(Ajk _<Aj >)2

—1§rij <1




regular equivalence

* define similarity score o;; such thatiand j have
high similarity if they have neighbors k and |
that themselves have high similarity

oi=ay AdA Ty e |
ki
o = dAcA P S j

e problems

— not necessary give a high value for self-similarity
(0;)
|:> Oij = O‘Z AA 0 +9;

6 = aAGA+ |



regular equivalence (2)

. an%c)her problem: repeated iteration of o
" =0

o =1
¢\ =aA* +1
6P = a’A* + oA + 1
e better definition: i and j are similar if i has a
neighbor k that is itself similar to |

o :az A0y + O;
k
o :%AG+I
6=) (@A)"=(1-cA)™
m=0

why not consider paths of all length?




regular equivalence (3)

C = i(aA)m =(1-aA)™

Ionger paths will get less weight than shorter

ones

closely related to Katz centrality

a generalization of structural equivalence
— structural equivalence : # of paths of length two
— regular equivalence : # of paths of all length

variation

— penallze vertices of high degree

ZAlkaj

+5;, 0= oD Aa+ |
=(l-aD*A)*=(D-cA)'D



friendship network at a US high school

e the split from left to right i |s clearly primarily
along lines of race

e people have a strong
tendency to associate ° -
with others whom they
perceive as being similar
to themselves in some way
->“homophily”“

YeIIow White Race
assortative mixing” Green - Black Race

Pink - Other
http://www-personal.umich.edu/~mejn/networks/



assortative mixing by enumerative
characteristics

e vertices are classified according to some
enumerative values

— nationality, race, gender, language,...

 network is assortative if a significant fraction

type not good measure : the fraction is 1 if all
vertices belong to the same single type

assortative disassortative



better definition of assortative mixing

e (fraction of edges that run between vertices of
the same type)-(expected fraction of edges if
they are positioned at random)

* ¢ :class(type) of vertexi(1,..,n)

o (# of edges that connectlthe vertices of the
same type) :  2,5(c.c;) =22 AS(c.c))

edges(i, J)



expected # of edges if connections are
at random

e (expected # of edges between i and j if they
are positioned at random) :

m edges %d # of edges
probability that the other end
d

of a particular edge = k;/2m
k. 2m ends

k. | .
I ! \ counting all k; edges attached

! \
W \W to i, the total expected # of
i J

edges between i and j = kik/2m

e (expected # of edges between all pairs of
vertices of the same type) : lZﬁg(C_,C_)
24*2m



modularity (1)

o (# of edges that run between vertices of the same
type)-(expected # of edges if they are positioned
at random)

3 T A(0) 5 Do) =3 X (4~ 50, ¢)
. d|V|ded by thehlf(of edges
Z(A, )5(C C;)
. modularlty measure of the extent to which like is

connected to like in a network

— |less than 1

— positive if there are more edges than expected,
negative if there are less edges



modularity (2)

* modularity matrix B, = A —%
m
— used for community detection

 nhormalizing modularity :assortative coefficient
Q Zij_(,%—kikj /2m)s(c;,c;)

1 k.

=—(2m->» —L5(c,c, =

Quac =5 @M=25 0CCD) Q" 2m=3 (kk, /2m)ac, c,)
normalized version is rarely used



alternative form of modularity

® a
1 fraction of edges that join vertices of type r
€rs = %; A0 (. 1)o(c;, ) to vertices of type s
1 fraction of ends of edges attached to vertices
=2 ko(cn) of type r

5(c;.c;) :25(ci,r)5(cj,r)
Q——mZ(A., )25(C.J’)5(C,,f)
Z ZAjd(c,,r)ﬁ(cJ,r)——Zk5(c,,r)—Zk s5(c;,r)

= Z (e, —a ) useful when we have no explicit data on vertex degrees
r



assortative mixing by scalar
characteristics

e vertices are classified according to some scalar
values (age, income,...)

1A

— “assortatively mixed by age”, “stratified by age”

* the same approach as enumerative values will
miss much of the point about scalar
characteristics

— group vertices into bins (age 0-9,10-19,20-29,...)

and treat the bins as s{egarate type

(age 8 and 9) are similar, but (age 9 and 10) are entirely dissimilar




covariance measure

* X, :value of vertex i of the scalar quantity

* consider the pairs of values (x;,x;) for the

vertizces at the end of each edge (i,j) ikx_ 7‘X_Lj
A% Dk 1 | J

M= = Z ki, u:mean of value of x; at the end of an edge
> A ki 2m4 .
ij U (average over edges, not vertices)

e covariance of X; and x; over edges

cov(x;, X;) = ZU A IZ I:l)(x _IU) : ZAJ(X Xj_ﬂxi_ﬂxj+ﬂ2)

: ZA”XX B

2m
:%;A” i j_( m) ZklkJX,XJ

1 kik; positive if values at either end of an
o Aij i edge tend to be both large or both small




normalizing covariance

* cov(x;,X;) is maximum when x;=x;
1 KKi e = L Kk
%;(AJ ﬂjx - 2m§(ki ' om inxi
D kioix; =D kiSix; + > kidix; = > ki, :ZAJ.XJ
* normalize covariance
ZU(Aij —kik; /2m)x;x;
- > (ki —kik; 12m)xx,

i ]

-1<r<1



assortative mixing by degree

e assortative: high-degree vertices connect to
other high-degree vertices

e core/periphery structure :

common feature of social network®

e covariance
1 KK
cov(k;,k;) :%Z(Aj _—ijikj

2m

g disassortative

1

e correlation coefficient (assortativity coefficient)
> (A —kik; /2m)kik,
r =
> (kS —kik; /2m)kik,
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