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centrality 

• which is the most important vertex? 
– red? 

– blue? 

– green? 

– light blue? 

– yellow? 



degree centrality 

• # of edges connected to a vertex 
– friendship 

– citation 
A 

B 



eigenvector centrality (1) 

• neighboring vertices are not equally important  

• setting initial values (xi = 1 for all i)  

• update by the sum of the centralities of the 
neighbors 

 

• repeating this process 

 

• write x(0) as a linear combination of eigenvectors 
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eigenvector centrality (2) 

 

• κi : eigenvalue of A,    κ1 : the largest one 

•              for all i≠1 

• when          ,  

• the centrality x satisfy 
– propsed by Bonacich in 1987 

• eigenvector centralities are non-negative  
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eigenvector centrality for undirected 
networks 

• [problem1]adjacency matrix is asymmetric -> two 
sets of eigenvectors 
– left eigenvectors and right eigenvectors 

• in most cases, right eigenvectors are used 
 

• [problem2] no incoming edges 
     -> centrality will be zero 

– only SCCs and their out-components can  
     have non-zero centralities 
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Katz centrality 

• simply give each vertex a small amount of 
centrality 
 
 

• α:balance between the eigenvector term and 
constant term 

• α→0, all vertices have the same centrality β 
• as we increase α, x diverges when               

diverges   
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calculating Katz centrality 

• inverting matrix : (O(n3))         slow 

 

• update x repeatedly: (rm) 
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PageRank (1) 

• weakness of Katz centrality: if a vertex with 
high Katz centrality points to may others, then 
those others also get high centrality 
– centrality should be diluted 

• PageRank 
– the centrality derived from neighbors is divided by 

their out-degree 
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PageRank (2) 

 
 
 
 

• Google uses it as a central part of their Web 
ranking technology 

• α should be less than the inverse of the largest 
eigenvalue of AD-1 

• α=0.85 is often used 
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summary of centrality measures 

with constant term without constant term 

divide by  out-degree  
PageRank 

 
degree centrality 

no division  
Katz centrality 

 
eigenvector centrality 
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hubs and authorities (1) 

• two types of important vertices 
– authorities: vertices that contain useful 

information 

– hubs: vertices that tell us where the best 
authorities are to be found 

• HITS (hyperlink-induced topic search) : search 
authority centrality (xi) and hub centrality (yi) 

good authority is pointed 
by many good hubs 

yi xj 
xi yj 

good hub points to 
many good authorities 



hubs and authorities (2) 

• authority centrality (xi) and hub centrality (yi) are 
mutually recursive 
 
 
 

• authority and hub centralities are given by 
eigenvectors of AAT and ATA with the same 
eigenvalue (leading eigenvalue should be used) 

• AAT and ATA have the same eigenvalues 
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hubs and authorities (3) 

• AAT is cocitation matrix 
• ATA is bibliographic coupling matrix 
• hub and authority centralities circumvent the 

problems of eigenvector centrality with directed 
network  
– problem: vertices outside of SCC or out-components 

always have centrality zero 
– vertices not cited by any others have authority 

centrality zero, but they can still have no-zero hub 
centrality 



closeness centrality 

• mean distance from a vertex to other vertices 

 

• low values for vertices that are close to others 

• closeness centrality : inverse of li  

 

• problems of closeness centrality 
– span a rather small range from largest to smallest 

– vertices in smaller component will get higher value 
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problems of closeness centrality 

• span a rather small range from largest to 
smallest  
– difficult to distinguish between central and less 

central ones (small fluctuations can change the 
order) 

– Internet Movie Database: half a million actors 
• smallest centrality 2.4138, largest centrality 8.6681 

• vertices in smaller component will get higher 
value 
– redefine closeness: ∞ ∑
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mean geodesic distance 

• for a network with only one component 

 

• for a network with more than one component 

 

 

• alternative approach : harmonic mean 
distance 
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betweenness centrality (1) 

• # of geodesic paths a vertex lies on 

 

• betweenness centrality xi 

 

• plural paths -> give weight (=1/(# of paths)) 

 

• good also for directed networks 

A 
C 

B 

C is important for 
passing messages 
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betweenness centrality (2) 

• a vertex on a bridge acquires high 
betweenness 
– although its eigenvector/closeness/degree 

centrality is low 

• its values are distributed over a wide range 
– maximum : star graph (n2-n+1) 

– minimum : leaf (2n-1) 

– ratio :  
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variation of betweenness centrality 

• normalization: 

• flow betweenness:      -> # of independent 
paths between s and t that run through i 

• random-walk betweenness: 

 
– in general, 

– random-walk betweenness and shortest-path 
betweenness often give quite similar results  
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groups of vertices 

• clique : maximal subset of vertices such that every 
vertex is connected to every other 

• k-plex : maximal subset of n vertices such that each 
vertex is connected to at least n-k of the others 
– 1 -plex -> clique 

• k-core : maximal subset of vertices such that each is 
connected to at least k others in the subset 
– k-core is (n-k)-plex 

• k-clique : maximal subset of vertices such that each is 
no more than a distance k away from any of the others 

• k-clan (k-club) : same as k-clique, but paths should run 
within the subset 
 



components and k-components 

• components: maximal subset of vertices such 
that each is reachable from each of the others 

• k-component: maximal subset of vertices such 
that each is reachable from each of the others 
by at least k vertex-independent paths 

1-component 

2-component 

3-component 

still reachable even if k-1 
vertices are removed 



transitivity 

• a•b and b•c -> a•c 

• u & v are friends and v & w are friends 

• clustering coefficient:C= 
– C=1:clique 

– C=0:tree, square lattice 

• C=                                 = 

• social networks tend to have high values 

u 

v 

w u 

v 

w 
closed 

(# of closed paths of length two)  
(# of paths of length two) 

(# of triangles)×6 
(# of paths of length two) 

(# of triangles)×3 
(# of connected triples) 



local clustering coefficient 

• Ci= 

• vertices with higher degree have lower local 
clustering coefficient on average 

• structural holes 
– bad for info spread or traffic 

– good for the central vertex  
• it can control the flow of information 

• similar to betweenness centrality 
 

(# of pairs of neighbors of i that are connected)  
(# of paths of neighbors of i) 

i 

structural 
holes 

i 



redundancy 

• redundancy of i (Ri) : the mean number of 
connections from a neighbor of i to other 
neighbors of i 
– minimum : 0 

– maximum : ki – 1 
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another clustering coefficient 

• CWS: the mean of the local clustering 
coefficients for each vertex 

 

• We need to be aware of both definitions and 
clear which is being used 
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reciprocity 

• a loop of length two in a directed network 

 

• example: r = 4/7 
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signed edges 

• positive/negative edges 
• negative edge ≠ absence of edge 
• possible triad configurations 

 
 
 
– stable : even number of minus signs 
– unstable configurations occur far less often in real 

social networks than stable configurations 

+ - 

friends enemies 
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stable unstable 



structural balance 

• balanced network : containing only loops with 
even numbers of minus signs 

• Harary’s theorem: a balanced network can be 
divided into connected groups of vertices such 
that all connection between members of the 
same group are positive and all connections 
between members of different groups are 
negative 
– such network is clusterable 

+ 

+ 

+ 
− − 

− − 



proof of Harary’s theorem 

• color in the vertices according to the following 
algorithm:  
– connected by + : same color 
– connected by − : different color 

• conflict of coloring 
– the # of − in the loop is odd -> unbalanced 

 
 

• remove all − edges -> groups connected by + 

− ? − 

+ ? + 

+ odd # of − 

− 
− 
− 

− even # of − 

− 

− 



similarity between vertices 

• structural equivalence 
– sharing many of the same network neighbors 

• regular equivalence 
– having neighbors who are themselves similar 

i j i j 
structural equivalence regular equivalence 



cosine similarity 

• # of common neighbors of vertices i and j 

 
– normalization is required for the varying degrees 

of vertices 

• cosine similarity: 

 

• unweighted simple graph -> Aij = 1 or 0 
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Pearson correlation coefficient (1) 

• normalize by the expected number of 
common neighbors if connections are made at 
random 

• vertices i and j have degrees ki and kj  

 
n-1(≈n) 

i 

ki 

j 

kj 

probability that the 1st neighbor that j 
chooses is one of ki vertices -> ki/n 

probability that the kjth neighbor that j 
chooses is one of ki vertices -> ki/n 

: kj 

expected # of common neighbors = kikj/n 
(We neglect the possibility of choosing the same neighbor twice, 
since it is small for a large networks) 



Pearson correlation coefficient (2) 

• (actual # of common neighbor) – (expected 
number if chosen randomly) 
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Pearson correlation coefficient (3) 

 

• normalize -> Pearson correlation coefficient  
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regular equivalence 

• define similarity score σij such that i and j have 
high similarity if they have neighbors k and l 
that themselves have high similarity 

 

 

• problems 
– not necessary give a high value for self-similarity 

(σii ) 
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regular equivalence (2) 

• another problem: repeated iteration of σ 

 

 

 

• better definition: i and j are similar if i has a 
neighbor k that is itself similar to j 
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regular equivalence (3) 

 
• longer paths will get less weight than shorter 

ones 
• closely related to Katz centrality 
• a generalization of structural equivalence 

– structural equivalence : # of paths of length two 
– regular equivalence : # of paths of all length 

• variation 
– penalize vertices of high degree  
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friendship network at a US high school 

• the split from left to right is clearly primarily 
along lines of race 

• people have a strong 
tendency to associate 
with others whom they 
perceive as being similar 
to themselves in some way 
->“homophily”,“assortative mixing” 

Yellow - White Race 
Green - Black Race 
Pink - Other 

http://www-personal.umich.edu/~mejn/networks/ 



assortative mixing by enumerative 
characteristics 

• vertices are classified according to some 
enumerative values 
– nationality, race, gender, language,... 

• network is assortative if a significant fraction 
of the edges run between vertices of the same 
type 

assortative disassortative 

not good measure : the fraction is 1 if all 
vertices belong to  the same single type 



better definition of assortative mixing 

• (fraction of edges that run between vertices of 
the same type)-(expected fraction of edges if 
they are positioned at random) 

• ci : class(type) of vertex i (1,..,nc) 

• (# of edges that connect the vertices of the 
same type) : ∑∑ =

ij
jiij

jiedges
ji ccAcc ),(

2
1),(

),(
δδ



expected # of edges if connections are 
at random 

• (expected # of edges between i and j if they 
are positioned at random) : 

 

 

 

 

• (expected # of edges between all pairs of 
vertices of the same type) :  

 

m edges 

2m ends kj 

j 

probability that the other end 
of a particular edge = kj/2m  

ki 

i 

counting all ki edges attached 
to i, the total expected # of 
edges between i and j = kjkj/2m  
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modularity (1) 

• (# of edges that run between vertices of the same 
type)-(expected # of edges if they are positioned 
at random) 
 

• divided by the # of edges 
 

• modularity: measure of the extent to which like is 
connected to like in a network 
– less than 1 
– positive if there are more edges than expected, 

negative if there are less edges 
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modularity (2) 

• modularity matrix 
– used for community detection  

• normalizing modularity :assortative coefficient 
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alternative form of modularity 

• a 
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assortative mixing by scalar 
characteristics 

• vertices are classified according to some scalar  
values (age, income,...) 
– “assortatively mixed by age”, “stratified by age” 

• the same approach as enumerative values will 
miss much of the point about scalar 
characteristics 
– group vertices into bins (age 0-9,10-19,20-29,...) 

and treat the bins as separate type  

(age 8 and 9) are similar, but (age 9 and 10) are entirely dissimilar 



covariance measure 

• xi : value of vertex i of the scalar quantity 

• consider the pairs of values (xi,xj) for the 
vertices at the end of each edge (i,j) 

 

• covariance of xi and xj over edges 
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normalizing covariance 

• cov(xi,xj) is maximum when xi=xj 

 

 

• normalize covariance 
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assortative mixing by degree 

• assortative: high-degree vertices connect to 
other high-degree vertices 

• core/periphery structure : 

common feature of social networks 

• covariance  

 

• correlation coefficient (assortativity coefficient) 
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