
Complex Networks
mathematics of networks

2011.10.17

contents (1)

• networks and their representation

• the adjacency matrix

• weighted networks

• directed networks

• hypergraphs

• bipartite networks

• trees

contents (2)

• planar networks

• degree

• paths

• components

• independent paths, connectivity, and cut sets

• the graph laplacian

• random walks

Network Vertex Edge

Internet Computer or router Cable or wireless
data connection

World Wide Web Web page Hyperlink

Citation network Article, patent, or
legal case

Citation

Power grid Generating station
or substation

Transmission line

Friendship network Person Friendship

Metabolic network Metabolite Metabolic reaction

Neural network Neuron Synapse

Food web Species Predation

networks and their representation
• a network (a graph) is a collection of vertices

(nodes) joined by edges (links).

node

edge

1

2

3
4

5 6

notations

• n: the number of vertices in a network

• m: the number of edges

• multiedge, self-edge

• multigraph: with multiedges

multiedge

self-edge

edge list & adjacency matrix

node

edge

1

2

3
4

5 6

























=

000
000
000

100
101
110

111
001
010

010
101
010

A





=
0
1

ijA
if there is an edge between vertices i and j,

otherwise.

edge list

adjacency matrix

(1,2),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6)
n=6

adjacency matrix
• no self-edge -> diagonal elements are all zero

• symmetric (for undirected networks)

• multiedge: setting Aij equal to the multiplicity

• self-edge: setting Aij equal to 2 (not 1)

multiedge

self-edge

1 2

3

4

5 6
























=

200
000
000

100
103
110

111
001
030

020
221
010

A

weighted networks

• weights represent
– the amount of data flowing/bandwidth (Internet)
– total energy flow (food web)
– frequency of contact (social network)

• weighted edge vs multiedge
– switching between the two can be useful for analysis

• weights can be negative
– animosity (social network)
















=

05.01
5.002

120
A 1

2

3

2

1

0.5

directed network (digraph)

• each edge has a direction
– hyperlink from one page to another (WWW)

• adjacency matrix is asymmetric

























=

000
101
100

010
000
000

010
000
001

001
100
000

A





=
0
1

ijA
if there is an edge from j to i,

otherwise.

2

1

3
4

5
6

j

i

cocitation and bibliograhic coupling

• a directed network -> an undirected one
– just ignoring the edge directions is easy, but it may

lose valuable information

– cocitation: # of vertices that have outgoing edges
pointing to both i and j

i j i j

3

papers i & j are often co-cited
-> they are closely related

Adjacency matrix of cocitation
• C (cocitation matrix)

– Cij : # of columns whose ith & jth elements are 1

∑∑
==

==
n

k

T
kjik

n

k
jkikij AAAAC

11





































=

........

........

..11..

........

........

....1..

....1..

........

C

k j

i j

k

TAA



















=

........

....1..

....1..

........

A
i

k

j

j

i

i

k

TA : transpose of A

TAAC =

l l

l

l

C is symmetric because

CAAAAC TTTT ===)(

ji ≠

more on citation matrix

• if all elements in A are zero or one,

• we ignore these diagonal elements
∑∑
==

==
n

k
ik

n

k
ikii AAC

11

2
-> # of 1s in ith row







= ∑
=

0
1

n

k

T
kjik

ij
AAC ji ≠

ji =

bibliographic coupling
• # of other vertices to which both point

• B (bibliographic coupling)

i j 3 i & j often cite the same papers
-> they are closely related

i j

∑∑
==

==
n

k
kj

T
ik

n

k
kjkiij AAAAB

11
ji ≠

AAB T=

i j

k l


















=

........

........

..11..

........

A

i

k

j

l





































=

........

........

..11..

........

........

....1..

....1..

........

B

k j

TA A

j

i

i

k

l

l

B is symmetric







= ∑
=

0
1

n

k
kj

T
ik

ij
AAB ji ≠

ji =

cocitation & bibliographic coupling

• mathematically similar, but practically different
• cocitation

– is limited to influential papers
– may change over time as the papers receive new

citations

• bibliographic coupling
– is more uniform indicator of similarity than cocitation

• because the size of bibliography vary less than # of citations
paper receive

– can be computed as soon as a paper is published

Example with R
> a <- rbind(c(0,0,0,1,0,0),
+ c(0,0,1,0,0,0),
+ c(1,0,0,0,1,0),
+ c(0,0,0,0,0,1),
+ c(0,0,0,1,0,1),
+ c(0,1,0,0,0,0))
> a
 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 1 0 0
[2,] 0 0 1 0 0 0
[3,] 1 0 0 0 1 0
[4,] 0 0 0 0 0 1
[5,] 0 0 0 1 0 1
[6,] 0 1 0 0 0 0

> c <- a %*% t(a)
> diag(c) <- 0
> c
 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 0 1 0
[2,] 0 0 0 0 0 0
[3,] 0 0 0 0 0 0
[4,] 0 0 0 0 1 0
[5,] 1 0 0 1 0 0
[6,] 0 0 0 0 0 0
> b <- t(a) %*% a
> diag(b) <- 0
> b
 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 0 1 0
[2,] 0 0 0 0 0 0
[3,] 0 0 0 0 0 0
[4,] 0 0 0 0 0 1
[5,] 1 0 0 0 0 0
[6,] 0 0 0 1 0 0
>

2

1

3
4

5
6

definition of matrix A

AAB T=

TAAC =
diagonal elements=0

diagonal elements=0

1&5 are cocited by 4
4&5 are cocited by 6

1&5 cocite 3
4&6 cocite 5

acyclic directed networks

• cycle : a closed loop (including self-edge)

• acyclic network (DAG) : without loop

• acyclic directed network
– citation network : vertices are time-ordered

5

8
7

6

1 2

9

3
4

no upward edges -> no loop

old

new

proof of “acyclic -> no upward edges”

• an acyclic network of n vertices

• there must be at least one vertex that has no
outgoing edges
– a path across the network by following edges (at most

n-1 times) will encounter a vertex with no outgoing
edges

• then put the vertex at the bottom of the picture
and remove the vertex and attached edges

• repeat the above process

cyclic or acyclic?

1. Find a vertex with no outgoing edges

2. If no such vertex exists, the network is cyclic.
Otherwise, if such a vertex does exist,
remove it and all its ingoing edges from the
network.

3. If all vertices have been removed, the
network is acyclic. Otherwise, go back to step
1

adjacency matrix of DAG is triangular

5

8
7

6

1 2

9

3
4



































=

000
000
110

000
000
000

000
000
000

001
101
010

000
000
010

000
000
000

000
000
000

100
100
010

000
100
100

A

• vertices are numberd in the order they are
removed in the previous algorithm
– an edge from j to i only if j > i

– no self-edge -> diagonal elements are 0

i

j

acyclic <-> eigenvalues are zero

• ->
– acyclic -> order the vertices described previously
– adjacency matrix is strictly upper triangular
– eigenvalues (diagonal elements) are all zero

• <-
– prove contraposition

• “cyclic -> at least one nonzero eivenvalue”

– the total number Lr of cycles of length r is
• : ith eigenvalue

– cyclic -> Lr > 0 -> at least one is greater than zero

∑
=

=
n

i

r
irL

1
κ

iκ

iκ

hypergraphs
• Links sometimes join more than two vertices

– families

– actors in a film

Network Vertex Group Section

Film actors Actor Cast of a film 3.5

Coauthorship Author Authors of an article 3.5

Boards of directors Director Board of a company 3.5

Social events People Participants at social event 3.1

Recommender system People Those who like a book, film, etc. 4.3.2

Keyword index Keywords Pages where words appear 4.3.3

Rail connections Stations Train routes 2.4

Metabolic reactions Metabolites Participants in a reaction 5.1.1

1

2
3

4

5

{1,4}
{1,2,3,4}
{2,3,5}
{3,4,5} 1 2 3 4 5

vertices

hyperedges

bipartite networks

• two kinds of vertices
– original vertices and the groups to which they

belong

• edges run only between vertices of unlike
types

• incidence matrix B (g x n)





=
0
1

ijB
if vertex j belongs to group i,

otherwise.


















=

1
1
0
0

1
0
1
1

1
1
1
0

0
1
1
0

0
0
1
1

B
i

j
i

j

of groups # of vertices

groups

vertices

• bipartite -> unipartite

• discards a lot of the information

one-mode projection

A B C D

1 2 3 4 5 6 7

A

C D

B

1

2

3 4

5

6

7

movies

actors

weighted projection
• projection onto (original) vertices

– BkiBkj = 1 <-> i and j both belong to group k

– diagonal elements

• # of groups to which vertex i belong

• projection onto groups

∑∑
==

==
g

k
kj

T
ik

g

k
kjkiij BBBBP

11



















=

1
1
0
0

1
0
1
1

1
1
1
0

0
1
1
0

0
0
1
1

B

i j

g groups

n vertices

k
BBP T=

groups

vertices
n x n matrix

∑∑
==

==
g

k
ki

g

k
kiii BBP

11

2

TBBP =' g x g matrix

trees
• connected, undirected network without any

closed loop

• forest : collection of trees

• exactly one path between any pair of vertices

• (# of vertices) = (# of edges) + 1

root

leaf

planar network
• a network that can be drawn on a plane

without having any edges cross

• trees are planar

• examples
– road network (without bridges)

– shared borders between countries
• four-color theorem

planar or not?

• Any network that contains a subset of vertices
in the form of K5 or UG is not planar.

• Any expansion of K5 or UG is not planar.

• Kuratowski’s theorem
– Every non-planar network contains at least one

subgraph that is an expansion of K5 or UG.

K5 UG

expansion of K5

degree

• ki : the degree of vertex i
– # of edges connected to it

• (sum of all degrees) = 2 x (# of edges)

• c : mean degree

• maximum possible number of edges

∑
=

=
n

j
iji Ak

1

mAk
n

i

n

j
ij

n

i
i 2

1 11
==∑∑∑

= ==

1

3 4

2



















=

0110
1010
1101
0010

A
k2

n
mk

n
c

n

i
i

21
1

== ∑
=

)1(
2
1

22 −=







= nn

n
Cn

m

density

• density (or connectance)

• dense : as

• sparse : as

• almost all of the networks we consider are
sparse (except food webs)
– important for developing algorithms and models

• k-regular : all vertices have degree k

n
c

n
c

nn
m

n
m

≈
−

=
−

=









=

1)1(
2

2

ρ

10 ≤≤ ρ networks is sufficiently large

const→ρ ∞→n
∞→n0→ρ

degrees in directed networks

• in-degree

• out-degree

• mean in-degree cin

• mean out-degree cout

• -> we will just denote both by c

∑
=

=
n

j
ij

in
i Ak

1
1

3 4

2



















=

0110
0010
0001
0000

A
k2

in

∑
=

=
n

i
ij

out
i Ak

1

k2
out

∑∑∑ ===
== ij

ij

n

j

out
j

n

i

in
i Akkm

11

out

n

j

out
j

n

i

in
iin ck

n
k

n
c === ∑∑

== 11

11

n
mc =

path

• a route across the network that runs from vertex
to vertex along the edges of the network

• self-avoiding path : a path that does not intersect
itself

• length : # of edges traversed along the path
• # of paths of a given length r

– if there is a path j -> k -> i
– # of paths of length 2 from j to i :
– # of paths of length r from j to i :

1=kjik AA
[]ijkj

n

k
ikij AAAN 2

1

)2(==∑
=

[]ijrr
ij AN =)(

cycles

• paths of length r that start and end at the
same vertex
– counting each loop only once is not easy

• Lr in terms of eigenvalues of A (undirected)

•

[] r
n

i
ii

r
r TrAAL ==∑

=1

1->2->3->1 and
2->3->1->2 are distinct

TUKUA =
orthogonal matrix of eigenvectors

diagonal matrix of eigenvalues

undirected graph -> A is symmetric
-> A is diagonalizable

() TrrTr UUKUKUA ==
∑====

i

r
i

rrTTr
r TrKUKUTrUUKTrL κ)()(

EUUUU TT ==

iκ : ith eigenvalue of A)()(BATrABTr =

cycles of directed graphs

• is true also for directed graphs
– although A cannot be diagonalized

• proof
– Every real matrix can be written in the form

• Schur decomposition

– Eigenvalues of T are the same as those of A

∑=
i

r
irL κ

TQTQA =
orthogonal matrix

upper triangular matrix

∑=====
i

r
i

rrTTrr
r TrTQTQTrQQTTrTrAL κ)()(

geodesic path (shortest path)

• geodesic distance between vertices i and j
– smallest value of r such that

• self-avoiding: no loop

• diameter : the longest geodesic path between
any pair of vertices in the network

[] 0>ij
rA

Eulerian and Hamiltonian path

• Eulerian path
– a path that traverses each edge exactly once

• Hamiltonian path
– a path that visit each vertex exactly once

– self-avoiding

Königsberg bridge problem

• Does there exist any walking route that
crosses all seven bridges exactly once each?

• -> finding Eulerian path on the right network
– at most two vertices with odd degree

– all four vertices have odd degree -> no solution

components

• no path from A to B -> disconnected

• component : subgroups in a network

• block diagonal matrix

• components in directed networks
– two (undirected network)

– five (directed network)

A
B
















=







0
0

A

strongly connected components (SCC)

• A and B are connected if and only if there
exists both A->B and B->A

• SCC is a maximal subset of vertices such that
there is a directed path in both directions
between every pair in the subset

• each vertex belongs to exactly one SCC

• every SCC with more than one vertex must
contain at least one cycle

out-component in a directed network
• the set of vertices that are reachable via

directed paths starting at a specific vertex A

• depends on network and starting vertex

A

X

Y

B

A

X

Y

B

out-component of vertex A out-component of vertex B

in-component & out-component
• in-component :reachable to vertex A

• out-component : reachable from vertex A

• SCC: intersection of in and out

A

in-component

SCC

out-component

independent paths

• edge-independent path share no edges

• vertex-independent path share no vertices
(except starting and ending vertices)

• vertex-independent -> edge-independent
– but the reverse is not true

A
C

B

2 edge-independent paths
1 vertex-independent path

more on independent paths

• There can be only a finite number of
independent paths between any two vertices
in a finite network

• connectivity : # of independent paths
between a pair of vertices
– A and B have edge connectivity 2 but vertex

connectivity 1
– strength of connection

• discovering communities
• finding bottlenecks

A
C

B

cut set

• a set of vertices whose removal will
disconnect a specified pair of vertices
– C forms a cut set of size 1 for A&B

• edge cut set
– a set of edges whose removal will disconnect a

specified pair of vertices

• minimum cut set : the smallest cut set

A
C

B

no path from A to B
if C is removed another cut set

Menger’s theorem
• If there is no cut set of size less than n

between a given pair of vertices, then there
are at least n independent paths between the
same vertices
– this theorem applies both to edges and to vertices

• The size of the minimum vertex cut set that
disconnects a given pair of vertices is equal to
the vertex connectivity of the same vertices

... ...
min cut set independent paths
 n -> n or more
 n or more <- n

maximum flow

• a network of water pipes
• the max rate from A to B =
(# of edge-independent pahts)*r
• proof

– n independent paths -> at least n*r of flows (lower
bound)

– a cut set of n edges -> at most n*r of flows (upper
bound)

– the max rate is exactly n*r
• max-flow/min-cut theorem

– individual pipes can have different capacities

A B

pipe
max rate: r

...

...

...

these three are numerically equal

• the edge connectivity of a pair of vertices
– the number of edge-independent paths

• the size of the minimum edge cut set
– the number of edges that must be removed to

disconnect them

• the maximum flow between the vertices

these are equal for directed network as well

max-flows on weighted networks

• max-flows/min-cut theorem can be extended
to weighted networks
– the maximum flow between a given pair of

vertices in a network is equal to the sum of the
weights on the edges of the minimum edge cut
set that separate the same two vertices

• proof
– transform weighted edges to multiedges

 1
3

1

2
1

2
1

diffusion process on networks

• spreading (ideas/diseases/...) on networks

• ψi:some commodity or substance at vertex i

• C(ψi-ψj) : flow from i to j (C:constant)

)(ij
j

ij
i AC

dt
d ψψψ

−= ∑ i j

iij
j

ij
j

ijij
j

ij
i kCACACAC

dt
d ψψψψψ

−=−= ∑∑∑
jiij

j
ij kAC ψδ)(−= ∑

ψψ)(DAC
dt

d
−=

degree of i

1 if i=j
0 otherwise



















=









3

2

1

00
00
00

k
k

k

D

graph Laplacian (1)

• graph Laplacian is for
– random walk

– resistor networks

– graph partitioning

– network connectivity

ADL −=

graph Laplacian

ψψ)(DAC
dt

d
−=

0=+ ψψ CL
dt

d

similar to diffusion equation

graph Laplacian (2)

• ψ as linear combination of eigenvectors of L

ADL −=








−=
0
1
i

ij

k
L

if i = j,

if i ≠ j and there is an edge (i,j),
otherwise 


















−

−

=









3

2

1

01
00
10

k
k

k

D

degree edge

ijiijij AkL −= δ

0=





 +∑ i

i
ii

i vaC
dt
da λ

i
i

i vtat)()(∑=ψ iv :eigenvectors of L iii vLv λ=

0=+ ψψ CL
dt

d

eigenvectors of a
symmetric matrix

are orthogonal

0=+ ii
i aC

dt
da λ tC

ii
ieata λ−=)0()(

eigenvalues of graph Laplacian

• Laplacian is symmetric, so it has real
eigenvalues

• they are also non-negative

components and connectivity

• Laplacian -> block diagonal

• (# of zero eigenvalues) = (# of components)

n1
n2

nc

:
















=







0
0

L

Laplacian of
each component



















=





0

1

v
n1 ones

zeros

is an eigenvector of L with eigenvalue zero
vLv 0=

->the second eigenvalue of graph Laplacian
is non-zero if and only if the network is connected

2λ

random walk

• a path across a network created by taking
repeated random steps
– used for sampling and ranking

• pi(t):probability that the walk is at vertex i at
time t)1()(−=∑ tp

k
A

tp j
j j

ij
i

j i

degree:ki

)1()(1 −= − tt pADp
vector with
element pi





















=









3

2

1

2/1

00
00
00

k
k

k

D


















=−









3

2

1

1

/100
0/10
00/1

k
k

k

D

reduced adjacency matrix

• when

• connected network ->only one eigenvector (with
eigenvalue 0) whose components are all equal

)1()(1 −= − tt pADp
)]1(][[)(2/12/12/12/1 −= −−−− tt pDADDpD

symmetric

otherwise
kk ijji 1

0
/12/12/1 =





=−− A
ADD

∞→t
pADp 1−=

0)()(111 ==−=− −−− pLDpDADpADI
->D-1p is an eigenvector of the
Laplacian with eigenvalue 0

1pD a=−1 ii akp = -> probability is proportional
to the degree of the vertex D1p a= m

k
k

kp i

j j

i
i 2

==
∑

random walk with absorbing state(1)
• first passage time:# of steps from u to v

• : probability that a walk is at v at time t

• : prob. that a walk has

 first passage time exactly t

• mean first passage time

• trick for calculating is in the next slides

u v

...

...

...

v:absorbing state
(never go out from v)

)(tpv

)1()(−− tptp vv

∑
∞

=

−−=
0

)]1()([
t

vv tptptτ

)(tpv

random walk with absorbing state(2)

• v is absorbing state

)1()1()(
)(

−=−= ∑∑
≠

tp
k
A

tp
k
A

tp j
vj j

ij
j

j j

ij
i

0=ivA

)1(''')(' 1 −= − tt pDAp

0=ivA

if i≠v, no term in
Avj in the sum

p’(t):p with vth element removed
A’,D’: A and D with vth row and column removed

)0(']''[)(' 1 pDAp tt −=
)('1)(1)(

)(
ttptp T

vi
iv p1−=−= ∑

≠
,...)1,1,1(=1

)0(']''[)](')1('[)]1()([11

00
pDAI1pp1 −−

∞

=

∞

=

−=−−=−−= ∑∑ T

t

T

t
vv ttttptptτ

∑
∞

=

−− −=−
0

11][)(
t

ttt MIMM

random walk with absorbing state(3)

• L’ can have inverse

• Λ(v): equal to L’-1 with a vth row and column
reintroduced

1111 '']''[']''[−−−− =−=− LDADDDAI
111][−−− = ABAB














=Λ

−−
−

−
−

−
−

−

1,1
1

1,
1

,1
1

1

)(

]'[
]'[
]'[
]'[

0

ji

ji

ji

ij
v
ij

L
L
L
L

L’ : graph Laplacian with the vth row and
column removed (vth reduced Laplacian)

if i = v or j = v
if i < v and j < v
if i > v and j < v
if i < v and j > v
if i > v and j > v

)(vΛ 1'−Lv

v

)0(''')0(']''[111 pLD1pDAI1 ⋅⋅=−= −−−Tτ

random walk with absorbing state(4)

• mean first passage time to v is the sum over
other starting vertices

)0,...,0,1,...,0,0()0(' =p
)0(''' 1 pLD1 ⋅⋅= −τ

u

∑ Λ=∴
i

v
iuik)(τ

a walk starting at vertex u
at time 0

	Complex Networks�mathematics of networks
	contents (1)
	contents (2)
	networks and their representation
	notations
	edge list & adjacency matrix
	adjacency matrix
	weighted networks
	directed network (digraph)
	cocitation and bibliograhic coupling
	Adjacency matrix of cocitation
	more on citation matrix
	bibliographic coupling
	cocitation & bibliographic coupling
	Example with R
	acyclic directed networks
	proof of “acyclic -> no upward edges”
	cyclic or acyclic?
	adjacency matrix of DAG is triangular
	acyclic <-> eigenvalues are zero
	hypergraphs
	bipartite networks
	one-mode projection
	weighted projection
	trees
	planar network
	planar or not?
	degree
	density
	degrees in directed networks
	path
	cycles
	cycles of directed graphs
	geodesic path (shortest path)
	Eulerian and Hamiltonian path
	Königsberg bridge problem
	components
	strongly connected components (SCC)
	out-component in a directed network
	in-component & out-component
	independent paths
	more on independent paths
	cut set
	Menger’s theorem
	maximum flow
	these three are numerically equal
	max-flows on weighted networks
	diffusion process on networks
	graph Laplacian (1)
	graph Laplacian (2)
	eigenvalues of graph Laplacian
	components and connectivity
	random walk
	reduced adjacency matrix
	random walk with absorbing state(1)
	random walk with absorbing state(2)
	random walk with absorbing state(3)
	random walk with absorbing state(4)

