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Network Vertex Edge 

Internet Computer or router Cable or wireless 
data connection 

World Wide Web Web page Hyperlink 

Citation network Article, patent, or 
legal case 

Citation 

Power grid Generating station 
or substation 

Transmission line 

Friendship network Person Friendship 

Metabolic network Metabolite Metabolic reaction 

Neural network Neuron Synapse 

Food web Species Predation 

networks and their representation 
• a network (a graph) is a collection of vertices 

(nodes) joined by edges (links).  
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notations 

• n: the number of vertices in a network 

• m: the number of edges 

 

• multiedge, self-edge 

 

• multigraph: with multiedges 

multiedge 

self-edge 



edge list & adjacency matrix 
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adjacency matrix 
• no self-edge -> diagonal elements are all zero 

• symmetric (for undirected networks) 

 

• multiedge: setting Aij equal to the multiplicity 

• self-edge: setting Aij  equal to 2 (not 1)  
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weighted networks 

• weights represent 
– the amount of data flowing/bandwidth (Internet)  
– total energy flow (food web) 
– frequency of contact (social network) 

 
 
 

• weighted edge vs multiedge 
– switching between the two can be useful for analysis 

• weights can be negative  
– animosity (social network) 
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directed network (digraph) 

• each edge has a direction 
– hyperlink from one page to another (WWW) 

• adjacency matrix is asymmetric 
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cocitation and bibliograhic coupling 

• a directed network -> an undirected one 
– just ignoring the edge directions is easy, but it may 

lose valuable information 

– cocitation: # of vertices that have outgoing edges 
pointing to both i and j 

i j i j 

3 

papers i & j are often co-cited 
-> they are closely related 



Adjacency matrix of cocitation 
• C (cocitation matrix) 

– Cij : # of columns whose ith & jth elements are 1 
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more on citation matrix 

• if all elements in A are zero or one, 

 

• we ignore these diagonal elements 
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bibliographic coupling 
• # of other vertices to which both point 

 

 

 

• B (bibliographic coupling) 

i j 3 i & j often cite the same papers 
-> they are closely related 
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cocitation & bibliographic coupling 

• mathematically similar, but practically different 
• cocitation 

– is limited to influential papers 
– may change over time as the papers receive new 

citations 

• bibliographic coupling  
– is more uniform indicator of similarity than cocitation 

• because the size of bibliography vary less than # of citations 
paper receive 

– can be computed as soon as a paper is published 



Example with R 
> a <- rbind(c(0,0,0,1,0,0), 
+                     c(0,0,1,0,0,0), 
+                     c(1,0,0,0,1,0), 
+                     c(0,0,0,0,0,1), 
+                     c(0,0,0,1,0,1), 
+                     c(0,1,0,0,0,0)) 
> a 
     [,1] [,2] [,3] [,4] [,5] [,6] 
[1,]    0    0    0    1    0    0 
[2,]    0    0    1    0    0    0 
[3,]    1    0    0    0    1    0 
[4,]    0    0    0    0    0    1 
[5,]    0    0    0    1    0    1 
[6,]    0    1    0    0    0    0 

> c <- a %*% t(a) 
> diag(c) <- 0 
> c 
     [,1] [,2] [,3] [,4] [,5] [,6] 
[1,]    0    0    0    0    1    0 
[2,]    0    0    0    0    0    0 
[3,]    0    0    0    0    0    0 
[4,]    0    0    0    0    1    0 
[5,]    1    0    0    1    0    0 
[6,]    0    0    0    0    0    0 
> b <- t(a) %*% a 
> diag(b) <- 0 
> b 
     [,1] [,2] [,3] [,4] [,5] [,6] 
[1,]    0    0    0    0    1    0 
[2,]    0    0    0    0    0    0 
[3,]    0    0    0    0    0    0 
[4,]    0    0    0    0    0    1 
[5,]    1    0    0    0    0    0 
[6,]    0    0    0    1    0    0 
> 
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6 

definition of matrix A 

AAB T=

TAAC =
diagonal elements=0 

diagonal elements=0 

1&5 are cocited by 4 
4&5 are cocited by 6 

1&5 cocite 3 
4&6 cocite 5 



acyclic directed networks 

• cycle : a closed loop (including self-edge) 

• acyclic network (DAG) : without loop 

• acyclic directed network 
– citation network : vertices are time-ordered  
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no upward edges -> no loop 

old 

new 



proof of “acyclic -> no upward edges”  

• an acyclic network of n vertices 

• there must be at least one vertex that has no 
outgoing edges 
– a path across the network by following edges (at most 

n-1 times) will encounter a vertex with no outgoing 
edges  

• then put the vertex at the bottom of the picture 
and remove the vertex and attached edges 

• repeat the above process 



cyclic or acyclic? 

1. Find a vertex with no outgoing edges 

2. If no such vertex exists, the network is cyclic. 
Otherwise, if such a vertex does exist, 
remove it and all its ingoing edges from the 
network.  

3. If all vertices have been removed, the 
network is acyclic. Otherwise, go back to step 
1 



adjacency matrix of DAG is triangular 
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• vertices are numberd in the order they are 
removed in the previous algorithm 
– an edge from j to i only if j > i 

– no self-edge -> diagonal elements are 0  
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acyclic <-> eigenvalues are zero 

• -> 
– acyclic -> order the vertices described previously 
– adjacency matrix is strictly upper triangular 
– eigenvalues (diagonal elements) are all zero  

• <-  
– prove contraposition 

• “cyclic -> at least one nonzero eivenvalue” 

– the total number Lr of cycles of length r is 
•     : ith eigenvalue 

–  cyclic -> Lr > 0 -> at least one     is greater than zero  
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hypergraphs 
• Links sometimes join more than two vertices 

– families 

– actors in a film 

Network Vertex Group Section 

Film actors Actor Cast of a film 3.5 

Coauthorship Author Authors of an article 3.5 

Boards of directors Director Board of a company 3.5 

Social events People Participants at social event 3.1 

Recommender system People Those who like a book, film, etc. 4.3.2 

Keyword index Keywords Pages where words appear 4.3.3 

Rail connections Stations Train routes 2.4 

Metabolic reactions Metabolites Participants in a reaction  5.1.1 
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5 

{1,4} 
{1,2,3,4} 
{2,3,5} 
{3,4,5} 1 2 3 4 5 

vertices 

hyperedges 



bipartite networks 

• two kinds of vertices 
– original vertices and the groups to which they 

belong 

• edges run only between vertices of unlike 
types 

• incidence matrix B (g x n) 
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• bipartite -> unipartite 

• discards a lot of the information  

one-mode projection 

A B C D 

1 2 3 4 5 6 7 
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C D 

B 

1 

2 

3 4 

5 

6 

7 

movies 

actors 



weighted projection 
• projection onto (original) vertices 

– BkiBkj = 1 <-> i and j both belong to group k 

 

 
– diagonal elements 

• # of groups to which vertex i belong 

• projection onto groups 
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trees 
• connected, undirected network without any 

closed loop 

• forest : collection of trees 

• exactly one path between any pair of vertices 

• (# of vertices) = (# of edges) + 1 

root 

leaf 



planar network 
• a network that can be drawn on a plane 

without having any edges cross 

• trees are planar 

• examples 
– road network (without bridges) 

– shared borders between countries 
• four-color theorem 



planar or not? 

• Any network that contains a subset of vertices 
in the form of K5 or UG is not planar.  

 

 

• Any expansion of K5 or UG is not planar. 

• Kuratowski’s theorem 
– Every non-planar network contains at least one 

subgraph that is an expansion of K5 or UG. 

K5 UG 

expansion of K5 



degree 

• ki : the degree of vertex i 
– # of edges connected to it 

• (sum of all degrees) = 2 x (# of edges) 

 

• c : mean degree  

 

• maximum possible number of edges 
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density 

• density (or connectance) 

 

• dense :                    as  

• sparse :                   as 

• almost all of the networks we consider are 
sparse (except food webs) 
– important for developing algorithms and models 

• k-regular : all vertices have degree k 
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degrees in directed networks 

• in-degree 

• out-degree 

 

• mean in-degree cin 

• mean out-degree cout 

• -> we will just denote both by c 
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path 

• a route across the network that runs from vertex 
to vertex along the edges of the network 

• self-avoiding path : a path that does not intersect 
itself 

• length : # of edges traversed along the path 
• # of paths of a given length r 

–                if there is a path j -> k -> i 
– # of paths of length 2 from j to i : 
– # of paths of length r from j to i : 
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cycles 

• paths of length r that start and end at the 
same vertex 
– counting each loop only once is not easy  

• Lr in terms of eigenvalues of A (undirected) 

•   
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TUKUA =
orthogonal matrix of eigenvectors 

diagonal matrix of eigenvalues 

undirected graph -> A is symmetric  
-> A is diagonalizable 
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cycles of directed graphs 

•                is true also for directed graphs 
– although A cannot be diagonalized 

• proof 
– Every real matrix can be written in the form 

• Schur decomposition 

 
– Eigenvalues of T are the same as those of A 
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geodesic path (shortest path) 

• geodesic distance between vertices i and j 
– smallest value of r such that  

• self-avoiding: no loop 

• diameter : the longest geodesic path between 
any pair of vertices in the network 
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Eulerian and Hamiltonian path 

• Eulerian path  
– a path that traverses each edge exactly once 

 

• Hamiltonian path 
– a path that visit each vertex exactly once 

– self-avoiding 



Königsberg bridge problem 

• Does there exist any walking route that 
crosses all seven bridges exactly once each? 

 

 

 

• -> finding Eulerian path on the right network 
– at most two vertices with odd degree 

– all four vertices have odd degree -> no solution 



components 

• no path from A to B -> disconnected 

• component : subgroups in a network 

• block diagonal matrix 

 

• components in directed networks 
– two (undirected network) 

– five (directed network) 
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strongly connected components (SCC) 

• A and B are connected if and only if there 
exists both A->B and B->A 

• SCC is a maximal subset of vertices such that 
there is a directed path in both directions 
between every pair in the subset 

• each vertex belongs to exactly one SCC 

• every SCC with more than one vertex must 
contain at least one cycle 



out-component in a directed network 
• the set of vertices that are reachable via 

directed paths starting at a specific vertex A 

• depends on network and starting vertex 

A 

X 

Y 

B 

A 

X 

Y 

B 

out-component of vertex A out-component of vertex B 



in-component & out-component 
• in-component :reachable to vertex A 

• out-component : reachable from vertex A 

• SCC: intersection of in and out 

 

A 

in-component 

SCC 

out-component 



independent paths 

• edge-independent path share no edges 

• vertex-independent path share no vertices 
(except starting and ending vertices) 

• vertex-independent -> edge-independent 
– but the reverse is not true 

 

 

 

 

A 
C 

B 

2 edge-independent paths 
1 vertex-independent path 



more on independent paths 

• There can be only a finite number of 
independent paths between any two vertices 
in a finite network 

• connectivity : # of independent paths 
between a pair of vertices 
– A and B have edge connectivity 2 but vertex 

connectivity 1 
– strength of connection 

• discovering communities 
• finding bottlenecks 

 

A 
C 

B 



cut set 

• a set of vertices whose removal will 
disconnect a specified pair of vertices 
– C forms a cut set of size 1 for A&B 

 

• edge cut set  
– a set of edges whose removal will disconnect a 

specified pair of vertices 

• minimum cut set : the smallest cut set 

A 
C 

B 

no path from A to B 
if C is removed another cut set 



Menger’s theorem 
• If there is no cut set of size less than n 

between a given pair of vertices, then there 
are at least n independent paths between the 
same vertices 
– this theorem applies both to edges and to vertices 

• The size of the minimum vertex cut set that 
disconnects a given pair of vertices is equal to 
the vertex connectivity of the same vertices 

... ... 
min cut set          independent paths 
        n             ->         n or more 
   n or more   <-               n 



maximum flow 

• a network of water pipes 
• the max rate from A to B = 
(# of edge-independent pahts)*r 
• proof 

– n independent paths -> at least n*r of flows (lower 
bound) 

– a cut set of n edges ->  at most n*r of flows (upper 
bound) 

– the max rate is exactly n*r 
• max-flow/min-cut theorem 

– individual pipes can have different capacities 

A B 

pipe  
max rate: r 

... 

... 

... 



these three are numerically equal 

• the edge connectivity of a pair of vertices 
– the number of edge-independent paths 

• the size of the minimum edge cut set 
– the number of edges that must be removed to 

disconnect them 

• the maximum flow between the vertices 

 

 
 

these are equal for directed network as well 
 



max-flows on weighted networks 

• max-flows/min-cut theorem can be extended 
to weighted networks 
– the maximum flow between a given pair of 

vertices in a network is equal to the sum of the 
weights on the edges of the minimum edge cut 
set that separate the same two vertices 

• proof 
– transform weighted edges to multiedges  
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diffusion process on networks 

• spreading (ideas/diseases/...) on networks 

• ψi:some commodity or substance at vertex i 

• C(ψi-ψj) : flow from i to j (C:constant) 
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graph Laplacian (1) 

 

 

 

• graph Laplacian is for 
– random walk 

– resistor networks 

– graph partitioning 

– network connectivity 

ADL −=

graph Laplacian 

ψψ )( DAC
dt

d
−=

0=+ ψψ CL
dt

d

similar to diffusion equation 



graph Laplacian (2) 

 

 

 

 

• ψ as linear combination of eigenvectors of L  
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eigenvalues of graph Laplacian 

• Laplacian is symmetric, so it has real 
eigenvalues 

• they are also non-negative 



components and connectivity 

• Laplacian -> block diagonal 
 
 
 
 
 
 

• (# of zero eigenvalues) = (# of components)   

n1 
n2 
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
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is an eigenvector of L with eigenvalue zero 
vLv 0=

->the second eigenvalue of graph Laplacian     
is non-zero if and only if the network is connected 

2λ



random walk 

• a path across a network created by taking 
repeated random steps 
– used for sampling and ranking 

• pi(t):probability that the walk is at vertex i at 
time t )1()( −=∑ tp

k
A

tp j
j j

ij
i

j i 

degree:ki 

)1()( 1 −= − tt pADp
vector with 
element pi 
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reduced adjacency matrix 

 

 

• when 

 

 

 

• connected network ->only one eigenvector (with 
eigenvalue 0) whose components are all equal  

)1()( 1 −= − tt pADp
)]1(][[)( 2/12/12/12/1 −= −−−− tt pDADDpD

symmetric 

otherwise
kk ijji 1

0
/12/12/1 =





=−− A
ADD

∞→t
pADp 1−=

0)()( 111 ==−=− −−− pLDpDADpADI
->D-1p is an eigenvector of the 
Laplacian with eigenvalue 0 

1pD a=−1 ii akp = -> probability is proportional 
to the degree of the vertex D1p a= m

k
k

kp i

j j

i
i 2

==
∑



random walk with absorbing state(1) 
• first passage time:# of steps from u to v 

•        : probability that a walk is at v at time t 

•                    : prob. that a walk has  

            first passage time exactly t 

• mean first passage time 

 

• trick for calculating         is in the next slides 

u v 

... 

... 

... 

v:absorbing state 
(never go out from v) 

)(tpv

)1()( −− tptp vv

∑
∞
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0
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t

vv tptptτ

)(tpv



random walk with absorbing state(2) 

•            v is absorbing state 

)1()1()(
)(
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k
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k
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tp j
vj j

ij
j

j j

ij
i

0=ivA

)1(''')(' 1 −= − tt pDAp

0=ivA

if i≠v, no term in 
Avj in the sum 

p’(t):p with vth element removed 
A’,D’: A and D with vth row and column removed 
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random walk with absorbing state(3) 

 

 

• L’ can have inverse 

• Λ(v): equal to L’-1 with a vth row and column 
reintroduced 

1111 '']''[']''[ −−−− =−=− LDADDDAI
111][ −−− = ABAB
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
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0
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ij
v
ij

L
L
L
L

L’ : graph Laplacian with the vth row and 
column removed (vth reduced Laplacian) 

if i = v or j = v 
if i < v and j < v 
if i > v and j < v 
if i < v and j > v 
if i > v and j > v 

)(vΛ 1'−Lv 

v 

)0(''')0(']''[ 111 pLD1pDAI1 ⋅⋅=−= −−−Tτ



random walk with absorbing state(4) 

 

 

• mean first passage time to v is the sum over 
other starting vertices 

)0,...,0,1,...,0,0()0(' =p
)0(''' 1 pLD1 ⋅⋅= −τ

u 

∑ Λ=∴
i

v
iuik )(τ

a walk starting  at vertex u 
at time 0 
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