Advanced Data Analysis: Spectral Clustering

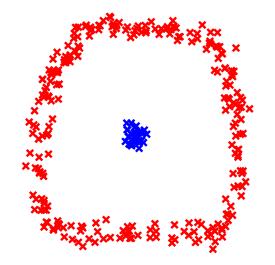
Masashi Sugiyama (Computer Science)

W8E-505, sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi

Kernel K-Means

- Ordinary k-means clustering does not work well if the data crowds have non-convex shapes.
- Kernel k-means is more flexible.
- However, solution depends crucially on the initial cluster assignments since clustering is carried out in a high-dimensional feature space.





Similarity-Based Clustering

- Similarity matrix W: $W_{i,j}$ is large if x_i and x_j are similar.
- \blacksquare Assumptions on W:
 - ullet Symmetric: $oldsymbol{W}_{i,j} = oldsymbol{W}_{j,i}$
 - Positive entries: $W_{i,j} \ge 0$
 - Invertible: $\exists W^{-1}$
 - Positive semi-definite: $\forall \boldsymbol{y}, \ \langle \boldsymbol{W} \boldsymbol{y}, \boldsymbol{y} \rangle \geq 0$

Examples of Similarity Matrix 160

$$\boldsymbol{W}_{i,j} = W(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

Distance-based:

$$W(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp(-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2 / \gamma^2) \quad \gamma > 0$$

Nearest-neighbor-based:

 $W(\boldsymbol{x}_i, \boldsymbol{x}_j) = 1$ if \boldsymbol{x}_i is a k'-nearest neighbor of \boldsymbol{x}_j or \boldsymbol{x}_j is a k'-nearest neighbor of \boldsymbol{x}_i . Otherwise $W(\boldsymbol{x}_i, \boldsymbol{x}_j) = 0$.

Combination of two is also possible.

$$W(\boldsymbol{x}_i, \boldsymbol{x}_j) = \begin{cases} \exp(-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2 / \gamma^2) \\ 0 \end{cases}$$

Local Scaling Heuristic

 $lue{\gamma}_i$: scaling around the sample $oldsymbol{x}_i$

$$\gamma_i = \|oldsymbol{x}_i - oldsymbol{x}_i^{(k)}\|$$

 $oldsymbol{x}_i^{(k)}$: k-th nearest neighbor sample of $oldsymbol{x}_i$

Local scaling based similarity matrix:

$$\boldsymbol{W}_{i,j} = \exp(-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2/(\gamma_i \gamma_j))$$

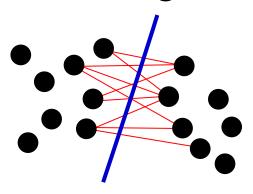
 \blacksquare A heuristic choice is k=7.

Cut Criterion

- Idea: Minimize sum of similarities between samples inside and outside the cluster
- In two-cluster cases:

$$\min_{\mathcal{C}_1, \mathcal{C}_2} \left[\sum_{\boldsymbol{x} \in \mathcal{C}_1} \sum_{\boldsymbol{x}' \in \mathcal{C}_2} W(\boldsymbol{x}, \boldsymbol{x}') + \sum_{\boldsymbol{x} \in \mathcal{C}_2} \sum_{\boldsymbol{x}' \in \mathcal{C}_1} W(\boldsymbol{x}, \boldsymbol{x}') \right]$$

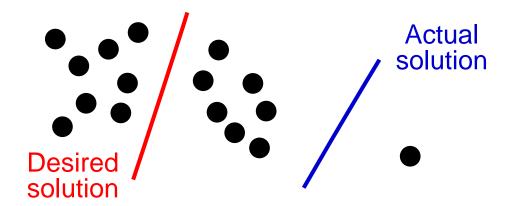
From a graph-theoretic viewpoint, this corresponds to finding minimum cut.



Cut Criterion (cont.)

$$\min_{\mathcal{C}_1, \mathcal{C}_2} \left[\sum_{\boldsymbol{x} \in \mathcal{C}_1} \sum_{\boldsymbol{x}' \in \mathcal{C}_2} W(\boldsymbol{x}, \boldsymbol{x}') + \sum_{\boldsymbol{x} \in \mathcal{C}_2} \sum_{\boldsymbol{x}' \in \mathcal{C}_1} W(\boldsymbol{x}, \boldsymbol{x}') \right]$$

Mincut method tends to give a cluster with a very small number of samples.



Normalized Cut Criterion

- Idea: Penalize small clusters
- In two-cluster cases:

$$\min_{\mathcal{C}_1,\mathcal{C}_2} \left[\frac{\sum_{\boldsymbol{x} \in \mathcal{C}_1} \sum_{\boldsymbol{x}' \in \mathcal{C}_2} W(\boldsymbol{x}, \boldsymbol{x}')}{\sum_{\boldsymbol{x}'' \in \mathcal{C}_1} \sum_{j=1}^n W(\boldsymbol{x}'', \boldsymbol{x}_j)} + \frac{\sum_{\boldsymbol{x} \in \mathcal{C}_2} \sum_{\boldsymbol{x}' \in \mathcal{C}_1} W(\boldsymbol{x}, \boldsymbol{x}')}{\sum_{\boldsymbol{x}'' \in \mathcal{C}_2} \sum_{j=1}^n W(\boldsymbol{x}'', \boldsymbol{x}_j)} \right]$$

Denominator is a normalization factor, which is the sum of similarities between samples inside the class and all samples.

Normalized Cut Criterion (cont.)65

In k -cluster cases, normalized cut is defined as

$$\underset{\{\mathcal{C}_i\}_{i=1}^k}{\operatorname{argmin}} \left[J_{Ncut} \right]$$

$$J_{Ncut} = \sum_{i=1}^{k} \left[\frac{\sum_{\boldsymbol{x} \in \mathcal{C}_i} \sum_{\boldsymbol{x}' \notin \mathcal{C}_i} W(\boldsymbol{x}, \boldsymbol{x}')}{\sum_{\boldsymbol{x}'' \in \mathcal{C}_i} \sum_{j=1}^{n} W(\boldsymbol{x}'', \boldsymbol{x}_j)} \right]$$

Normalized Cut As Weighted 166 Kernel K-Means (Homework)

Weighted kernel k-means criterion with

• Weight:
$$d(\boldsymbol{x}) = \sum_{i=1}^n W(\boldsymbol{x}, \boldsymbol{x}_i)$$

• Kernel: $K(\boldsymbol{x}_i, \boldsymbol{x}_i) = W(\boldsymbol{x}_i, \boldsymbol{x}_i)/(d(\boldsymbol{x}_i)d(\boldsymbol{x}_i))$

shares the same optimal solution as the normalized cut criterion:

$$\underset{\{\mathcal{C}_i\}_{i=1}^k}{\operatorname{argmin}} \left[J_{Ncut} \right] = \underset{\{\mathcal{C}_i\}_{i=1}^k}{\operatorname{argmin}} \left[J_{WS} \right]$$

$$J_{WS} = \sum_{i=1}^{k} \sum_{\boldsymbol{x} \in \mathcal{C}_i} d(\boldsymbol{x}) \|\phi(\boldsymbol{x}) - \boldsymbol{\mu}_i\|^2$$

$$\frac{\boldsymbol{\mu}_i = \frac{1}{s_i} \sum_{\boldsymbol{x}' \in \mathcal{C}_i} d(\boldsymbol{x}') \phi(\boldsymbol{x}')}{s_i = \sum_{i=1}^{k} d(\boldsymbol{x}')}$$

$$\mu_i = \frac{1}{s_i} \sum_{\boldsymbol{x'} \in \mathcal{C}_i} d(\boldsymbol{x'}) \phi(\boldsymbol{x'})$$
$$s_i = \sum_{\boldsymbol{x} \in \mathcal{C}_i} d(\boldsymbol{x})$$

Algorithm 1

Clustering based on the normalized cut criterion can be obtained by weighted kernel kmeans algorithm with

$$d(\mathbf{x}) = \sum_{i=1}^{n} W(\mathbf{x}, \mathbf{x}_i) \qquad K(\mathbf{x}_i, \mathbf{x}_j) = [\mathbf{D}^{-1} \mathbf{W} \mathbf{D}^{-1}]_{i,j}$$

- 1. Randomly initialize partition: $\{C_i\}_{i=1}^k$
- 2. Update cluster assignments until convergence:

$$oldsymbol{x}_j o \mathcal{C}_t$$

$$t = \underset{i}{\operatorname{argmin}} \left[-\frac{2}{s_i} \sum_{\boldsymbol{x'} \in \mathcal{C}_i} d(\boldsymbol{x'}) K(\boldsymbol{x}_j, \boldsymbol{x'}) + \frac{1}{s_i^2} \sum_{\boldsymbol{x'}, \boldsymbol{x''} \in \mathcal{C}_i} d(\boldsymbol{x'}) d(\boldsymbol{x''}) K(\boldsymbol{x'}, \boldsymbol{x''}) \right]$$

Normalized Cut As Weighted 168 Kernel K-Means (cont.)

- Normalized-cut clustering looks reasonable.
- But it is solved by (weighted) kernel k-means in the end.
- Thus the drawback (strong dependency on initial cluster assignment) of kernel k-means still remains.

Dual Formulation

$$\underset{\{\mathcal{C}_i\}_{i=1}^k}{\operatorname{argmin}} \left[J_{Ncut} \right]$$

Instead of optimizing $\{C_i\}_{i=1}^k$, we optimize cluster indicator A:

$$m{A}_{i,j} = egin{cases} 1 & ext{if } m{x}_j \in \mathcal{C}_i \ 0 & ext{o.w.} \end{cases}$$

 \blacksquare An optimizer of J_{Ncut} is given by

$$\operatorname*{argmin}_{\boldsymbol{A} \in \mathcal{B}^{k \times n}} \left[\operatorname{tr}(\boldsymbol{A} \boldsymbol{L} \boldsymbol{A}^\top) \right]$$

(Homework)

subject to
$$\boldsymbol{A}\boldsymbol{D}\boldsymbol{A}^{\top}=\boldsymbol{I}_k$$

 $\mathcal{B}^{k \times n}$: Set of all $k \times n$ matrices such that one of the elements in each column takes one and others are all zero

Relation to Laplacian Eigenmap⁷⁰

- Let us allow A to take any real values.
- Then relaxed problem is given as

$$\min_{m{A} \in \mathbb{R}^{k imes n}} \left[\operatorname{tr}(m{A}m{L}m{A}^ op)
ight]$$
 $\mathrm{subject\ to}\ m{A}m{D}m{A}^ op = m{I}_k$

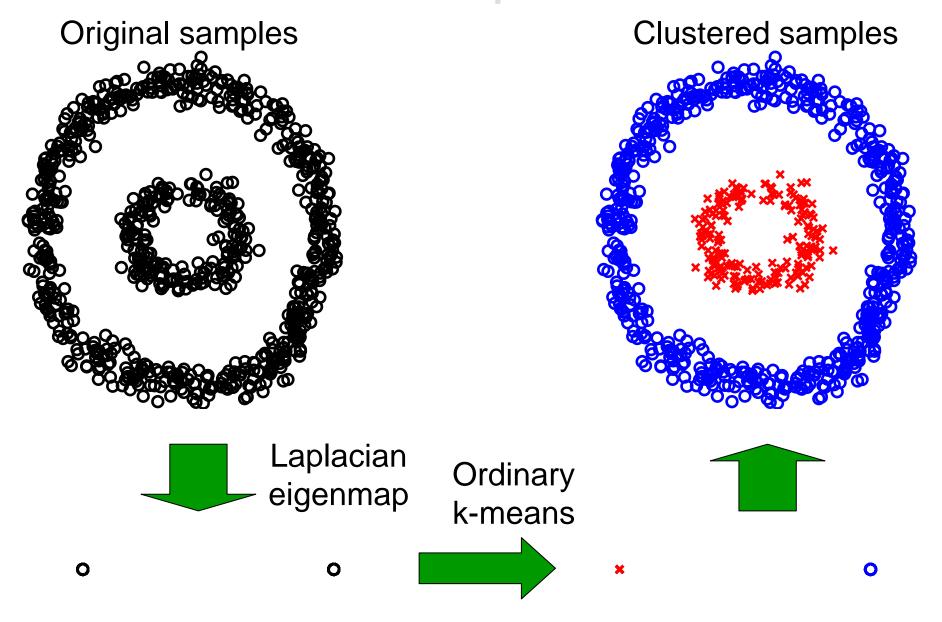
$$\boldsymbol{L} = \boldsymbol{D} - \boldsymbol{W} \quad \boldsymbol{D} = \operatorname{diag}(\sum_{j=1}^{n} \boldsymbol{W}_{i,j})$$

- This is equivalent to Laplacian eigenmap!
- Implication: Laplacian eigenmap embedding "softly" clusters the data samples!

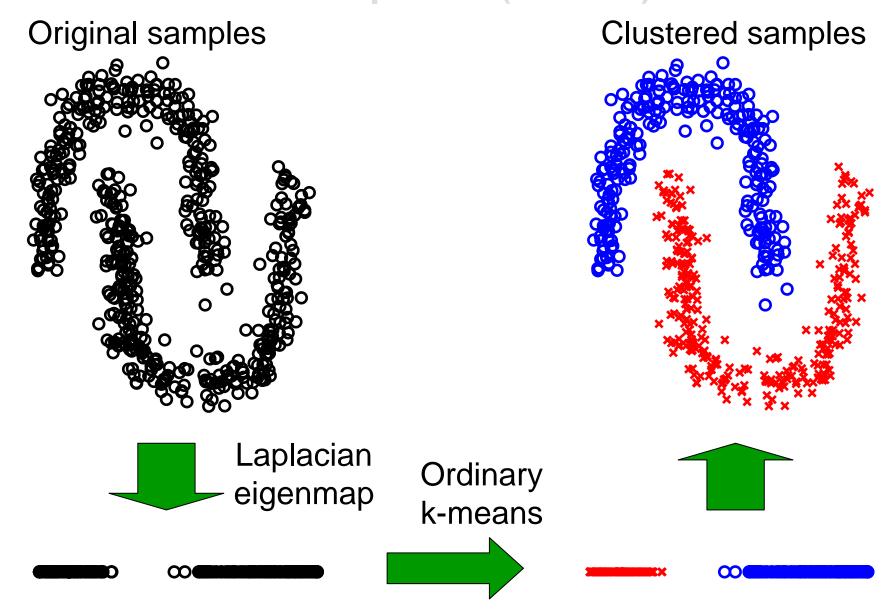
Algorithm 2 (Spectral Clustering)¹

- 1. Embed $\{x_i\}_{i=1}^n$ into (k-1)- dimensional space by Laplacian eigenmap embedding.
- 2. Cluster the embedded samples by (non-kernelized) k-means clustering algorithm.
- Kernel k-means had a drawback that the clustering results crucially depend on the initial cluster assignment.
- Since Laplacian eigenmap has soft clustering property, the above algorithm is less dependent on initialization.

Examples



Examples (cont.)



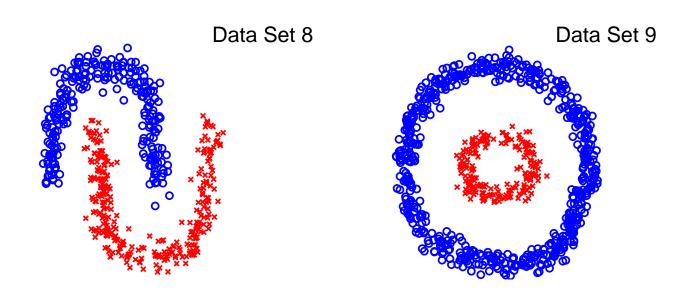
Summary of Clustering Methods⁴

- Three different families result in the same criterion!!
- K-means
- Kernel k-means
- Weighted kernel k-means
 - Min-cut
 - Normalized min-cut
 - Locality preserving projection
 - Laplacian eigenmap
 - "Hard" Laplacian eigenmap

Homework

1. Implement Algorithm 2 (spectral clustering) and reproduce the 2-dimensional examples shown in the class.

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis



Test the algorithm with your own (artificial or real) data and analyze their characteristics.

- Prove that weighted kernel k-means criterion with
 - Weight: $d(\boldsymbol{x}) = \sum_{i=1}^n W(\boldsymbol{x}, \boldsymbol{x}_i)$
 - Kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = W(\mathbf{x}_i, \mathbf{x}_j)/(d(\mathbf{x}_i)d(\mathbf{x}_j))$ shares the same optimal solution as the normalized cut criterion:

$$\underset{\{\mathcal{C}_i\}_{i=1}^k}{\operatorname{argmin}} [J_{Ncut}] = \underset{\{\mathcal{C}_i\}_{i=1}^k}{\operatorname{argmin}} [J_{WS}]$$

2. Hint:

Express all elements in J_{WS} in terms of the affinity $W(\boldsymbol{x},\boldsymbol{x}')$, e.g.,

$$s_i = \sum_{\boldsymbol{x''} \in \mathcal{C}_i} \sum_{j=1}^n W(\boldsymbol{x''}, \, \boldsymbol{x}_j)$$

$$J_{WS} = \sum_{i=1}^{k} \sum_{\boldsymbol{x} \in \mathcal{C}_i} d(\boldsymbol{x}) \|\phi(\boldsymbol{x}) - \boldsymbol{\mu}_i\|^2$$

$$\frac{\boldsymbol{\mu}_i = \frac{1}{s_i} \sum_{\boldsymbol{x}' \in \mathcal{C}_i} d(\boldsymbol{x}') \phi(\boldsymbol{x}')}{s_i = \sum_{i=1}^{k} d(\boldsymbol{x}')}$$

$$\boldsymbol{\mu}_i = \frac{1}{s_i} \sum_{\boldsymbol{x}' \in \mathcal{C}_i} d(\boldsymbol{x}') \phi(\boldsymbol{x}')$$

$$s_i = \sum_{\boldsymbol{x} \in \mathcal{C}_i} d(\boldsymbol{x})$$

$$J_{Ncut} = \sum_{i=1}^{k} \left[\frac{\sum_{\boldsymbol{x} \in \mathcal{C}_i} \sum_{\boldsymbol{x}' \notin \mathcal{C}_i} W(\boldsymbol{x}, \boldsymbol{x}')}{\sum_{\boldsymbol{x}'' \in \mathcal{C}_i} \sum_{j=1}^{n} W(\boldsymbol{x}'', \boldsymbol{x}_j)} \right]$$

3. Prove that an optimizer of J_{Ncut} is given by

$$\operatorname*{argmin}_{\boldsymbol{A} \in \mathcal{B}^{k \times n}} \left[\operatorname{tr}(\boldsymbol{A} \boldsymbol{L} \boldsymbol{A}^\top) \right]$$

subject to
$$\boldsymbol{A}\boldsymbol{D}\boldsymbol{A}^{\top}=\boldsymbol{I}_k$$

 $\mathcal{B}^{k \times n}$: Set of all $k \times n$ matrices such that one of the elements in each column takes one and others are all zero

$$egin{aligned} oldsymbol{L} &= oldsymbol{D} - oldsymbol{W} \ oldsymbol{D} &= \operatorname{diag}(\sum_{i=1}^n oldsymbol{W}_{i,j}) \end{aligned}$$

$$m{A}_{i,j} = egin{cases} 1 & ext{if } m{x}_j \in \mathcal{C}_i \ 0 & ext{o.w.} \end{cases}$$

3. Hint:

Let $A = (a_1 | a_2 | \cdots | a_k)^{\top}$ and express all elements in J_{Ncut} in terms of $\{a_i\}_{i=1}^k$, e.g.,

$$\sum_{\boldsymbol{x}'' \in \mathcal{C}_i} \sum_{j=1}^n W(\boldsymbol{x}'', \boldsymbol{x}_j) = \langle \boldsymbol{W} \boldsymbol{a}_i, \boldsymbol{1}_n \rangle = \langle \boldsymbol{D} \boldsymbol{a}_i, \boldsymbol{a}_i \rangle$$

$$J_{Ncut} = \sum_{i=1}^{k} \left[\frac{\sum_{\boldsymbol{x} \in \mathcal{C}_i} \sum_{\boldsymbol{x}' \notin \mathcal{C}_i} W(\boldsymbol{x}, \boldsymbol{x}')}{\sum_{\boldsymbol{x}'' \in \mathcal{C}_i} \sum_{j=1}^{n} W(\boldsymbol{x}'', \boldsymbol{x}_j)} \right]$$

Notification of Final Assignment

Data Analysis: Apply dimensionality reduction or clustering techniques to your own data set and "mine" something interesting!

- Deadline: July 22nd (Fri) 17:00
 - Bring the printed report to W8E-505

Mini-Conference on Data Analysis

- At the end of the semester, we have a mini-conference on data analysis.
- Some of the students may present their data analysis results.
- Those who give a talk at the conference will have very good grades!

Schedule

- June 14th: Spectral clustering
- June 18th: Saturday (no class)
- June 21st: Projection pursuit
- June 28th: Preparation for mini-conference (no class)
- July 5th: Preparation for mini-conference (no class)
- July 12th: Mini-conference on Data Analysis
- July 19th: Mini-conference on Data Analysis (reserve)

Mini-Conference on Data Analysis

- Application procedure: On June 21st, just say to me "I want to give a talk!".
- Presentation: approx. 10 min (?)
 - Description of your data
 - Methods to be used
 - Outcome
- Slides should be in English.
- Better to speak in English, but Japanese may also be allowed (perhaps your friends will provide simultaneous translation!).