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Kernel K-Means 153

Ordinary k-means clustering does not work well
If the data crowds have non-convex shapes.

Kernel k-means is more flexible.

However, solution depends crucially on the
Initial cluster assignments since clustering Is
carried out in a high-dimensional feature space.
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Similarity-Based Clustering *°°

Similarity matrix W . W, ;is large if x;
and x; are similar.

Assumptions on W .

e Symmetric: W, ; = W,

e Positive entries: W ; > 0

o Invertible: W

e Positive semi-definite: Yy, (Wy,y) > 0




Examples of Similarity Matrix *®°

Wi ,; =Wz, x;)

Distance-based.

W(zi,z;) = exp(—[lz; — z;[I°/v") ~ >0
Nearest-neighbor-based:
W(x;,xz;) =1 if x;is a k’-nearest neighbor
of ¢; or =; is a k'-nearest neighbor of x;.
Otherwise W(x;,z;) =0 .
Combination of two Is also possible.

W (2, x;) = { (e)XP(—Hwi —z;]1*/7%)




Local Scaling Heuristic 1!

7i . scaling around the sample x;
(k)
—x; |

Y = ||z

k
$§ ) . k-th nearest neighbor sample of I;

Local scaling based similarity matrix:

W, ,; =exp(—|z; — z;||°/(viv;))

A heuristic choicei1s k=7 .



Cut Criterion 162

ldea: Minimize sum of similarities between
samples inside and outside the cluster

In two- cluster cases:

érnicn Z ZWCBZB —I—L LWCBCB

lxcCq ' €Co xcCo x’ €Cy

From a graph-theoretic viewpoint, this
corresponds to finding minimum cut.




Cut Criterion (cont.) 163

émicn Z ZW:cw —|—L LWCL‘ZB

lxcCq ' €Co xcCo x’ €Cy

Mincut method tends to give a cluster
with a very small number of samples.
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Normalized Cut Criterion 1°4

ldea: Penalize small clusters
In two-cluster cases:

>4 >J W(w7w) SJ SJ W(w7w)
. xcCr 2’ €Co xcCo x €C1
min - —+
C1,C2 - R 17
>J >JW($ ,Z;) S S W (z" , ;)
Lz’ €Cq =1 ”GCQJ 1

Denominator i1s a normalization factor, which
IS the sum of similarities between samples
Inside the class and all samples.



Normalized Cut Criterion (cont}*”

In k -cluster cases, normalized cut Is
defined as

argmin |J eyt )
{Ci }?:1

INcut = Ek: | Zweci Zm/gci W(z,z') _
- i=1 Z:L’”EC»@ Z?Zl W(:‘BH7 :'BJ)




Normalized Cut As Weighted °°

Kernel K-Means (Homework)
Weighted kernel k-means criterion with

e Weight: d(z ZW x,T;)

e Kernel: K(wz,mj) Wi(x;,x;)/(d(x;)d(x;))
shares the same optimal solution as
the normalized cut criterion:

argmin [Jn¢¢] = argmin [Jyy s
& }k {Ci}i'{::l

H;
JWS — > > d ||¢ ||2 im’ECi
1=1 x€C; Si = Z d(x)




Algorithm 1 167

Clustering based on the normalized cut
criterion can be obtained by weighted kernel k-
means algorithm with

B ZW(.’B,ZIH) K(zi ;) = [D"WD™ ',

Randomly initialize partition: {C;}7_,
Update cluster assignments until convergence:
wj—+Ct

1
_2
Si

t = argmin | —— dlx')K(x;,x
i |2 3 deK e,

1

> d@)d(=")K (x x")
x',x"eC;




Normalized Cut As Weighted 1°°
Kernel K-Means (cont.)

Normalized-cut clustering looks reasonable.

But it Is solved by (weighted) kernel k-means
In the end.

Thus the drawback (strong dependency on
initial cluster assignment) of kernel k-means
still remains.



Dual Formulation 169

argmin |J eyt ]

{Ci}f?:l
Instead of optimizing {C;}_, , we optimize
cluster indicator A : | ifx. €C
AIL ] — { J ’
! 0 o.w.

An optimizer of Jxcut IS given by

argmin {tr(ALAT)}

A (Homework)

subject to ADA' = I,

B¥*" - Set of all £ x » matrices such that
one of the elements in each column
takes one and others are all zero



Relation to Laplacian Eigenmap’®
Let us allow A to take any real values.

Then relaxed problem is given as

min_ [tr(ALAT)}

subject to ADA' = I,

L=D-W D= diag(Z?:1 W)

This iIs equivalent to Laplacian eigenmap!

Implication: Laplacian eigenmap embedding
“softly” clusters the data samples!



Algorithm 2 (Spectral Clustering})*

Embed {x;};=; into (k — 1)- dimensional
space by Laplacian eigenmap embedding.

Cluster the embedded samples by (non-
kernelized) k-means clustering algorithm.

Kernel k-means had a drawback that the
clustering results crucially depend on the
Initial cluster assignment.

Since Laplacian eigenmap has soft
clustering property, the above algorithm Is
less dependent on initialization.



Examples 172

Original samples Clustered samples

Laplacian

. Ordinary
eigenmap

k-means

o o




Examples (cont.) 173

Original samples Clustered samples

Laplacian

. Ordinary
eigenmap

k-means

) — oo




Summary of Clustering MethodS*

Three different families result
INn the same criterion!!

K-means
Kernel k-means
Weighted kernel k-means

Min-cut
Normalized min-cut

Locality preserving projection
Laplacian eigenmap
“Hard” Laplacian eigenmap



Homework 175

Implement Algorithm 2 (spectral clustering)
and reproduce the 2-dimensional examples

shown In the class.
http://suglyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Data Set 8 Data Set 9

Test the algorithm with your own (artificial or
real) data and analyze their characteristics.



Homework (cont.) H70

Prove that weighted kernel k-means
criterion with

e Weight: d(z ZW (z, x;)

e Kernel: K(wz,wj) Wi(x;,x;)/(d(x;)d(x;))
shares the same optimal solution as
the normalized cut criterion:

argmin |Jy¢yt| = argmin [Jyy ]
{Ci}?zl {C’L}f’le



Homework (cont.) L1
Hint:
Express all elements in Jws In terms of
the affinity W(x,x'), e.q.,
Si = Z zn:W(a:”, x;)

x''eC; j=1

=
Jws = d(z)||¢(x) — pill” e
" ;; S; = Z d(x)

INcut = zk: | Zweci Z“”gci W(x, x')
i=1 _Zm”ecz Z;L:l W(CE”? w])_




Homework (cont.) L1

Prove that an optimizer of Jycut IS given by

argmin {tr(ALAT)}
AcBkXn

subject to ADA' = I,

B&*™ - Set of all £ x n matrices such that
one of the elements In each column
takes one and others are all zero

L=D-W 1 ifz; €
0 o.w.

. " A =
D = dlag(Zj:1 Wi,j) K



Homework (cont.) L19

Hint:

Let A= (ai|as] - |ax)' and express all elements
N Jyewr iNterms of {a;};,, €.g.,

Y YW (", x;) = (Wa;, 1,) = (Da;, a;)

x''eC; =1

INcut = zk: | Zmeci Zm/gci W(w’m/) -
- i=1 _Za‘:”éci Z;L:l W(CU//, w])_




Notification of 180
Final Assignment

Data Analysis: Apply dimensionality
reduction or clustering technigues to
your own data set and “mine” something
Interesting!

Deadline: July 22" (Fri) 17:00
e Bring the printed report to W8E-505



Mini-Conference 181
on Data Analysis

At the end of the semester, we have a
mini-conference on data analysis.

Some of the students may present their
data analysis results.

Those who give a talk at the conference
will have very good grades!



Schedule 182

June 14%; Spectral clustering

June 18™: Saturday (no class)

June 218t Projection pursuit

June 28t Preparation for mini-conference (no class)
July 5t: Preparation for mini-conference (no class)
July 12t: Mini-conference on Data Analysis

July 19t: Mini-conference on Data Analysis (reserve)




Mini-Conference 183

on Data Analysis

Application procedure: On June 215,
just say to me “| want to give a talk!”.

Presentation: approx. 10 min (?)
e Description of your data

e Methods to be used
e Outcome

Slides should be in English.

Better to speak in English, but Japanese
may also be allowed (perhaps your friends
will provide simultaneous translation!).




