Advanced Data Analysis: More on Kernels

Masashi Sugiyama (Computer Science)

W8E-505, sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi

Kernel Trick with Reproducing Kernel

For some transformation $\phi(x)$ (= f), there exists a bivariate function K(x, x') such that

$$oldsymbol{K}_{i,j} = \langle oldsymbol{f}_i, oldsymbol{f}_j
angle = K(oldsymbol{x}_i, oldsymbol{x}_j)$$

- Such implicit mapping $\phi(x)$ exists if
 - ullet K is symmetric: $K^ op = K$
 - \boldsymbol{K} is positive semi-definite: $\forall \boldsymbol{y}, \ \langle \boldsymbol{K} \boldsymbol{y}, \boldsymbol{y} \rangle \geq 0$

Combination of Reproducing Kernels

For any reproducing kernels (RKs)

$$K^{(1)}(\boldsymbol{x}, \boldsymbol{x}'), K^{(2)}(\boldsymbol{x}, \boldsymbol{x}')$$

Positive scaling of RK is still RK

$$K(\boldsymbol{x}, \boldsymbol{x}') = \alpha K^{(1)}(\boldsymbol{x}, \boldsymbol{x}') \quad \alpha > 0$$

Sum of RKs is still RK:

$$K(x, x') = K^{(1)}(x, x') + K^{(2)}(x, x')$$

Product of RKs is still RK:

$$K(x, x') = K^{(1)}(x, x')K^{(2)}(x, x')$$

Proof

We prove that there exists a feature map $\phi(x)$ such that $\langle \phi(x), \phi(x') \rangle = K(x, x')$.

For
$$\phi(x) = \sqrt{\alpha}\phi^{(1)}(x)$$
,
 $\langle \phi(x), \phi(x') \rangle = \alpha \langle \phi^{(1)}(x), \phi^{(1)}(x') \rangle = \alpha K^{(1)}(x, x')$

For
$$\phi(m{x})=egin{pmatrix} \phi^{(1)}(m{x}) \\ \phi^{(2)}(m{x}) \end{pmatrix}$$
,

$$\langle \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{x}') \rangle = \langle \boldsymbol{\phi}^{(1)}(\boldsymbol{x}), \boldsymbol{\phi}^{(1)}(\boldsymbol{x}') \rangle + \langle \boldsymbol{\phi}^{(2)}(\boldsymbol{x}), \boldsymbol{\phi}^{(2)}(\boldsymbol{x}') \rangle$$

= $K^{(1)}(\boldsymbol{x}, \boldsymbol{x}') + K^{(2)}(\boldsymbol{x}, \boldsymbol{x}')$

For $[\phi(x)]_{i,j} = [\phi^{(1)}(x)]_i [\phi^{(2)}(x)]_j$,

$$\begin{split} \langle \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{x}') \rangle &= \sum_{i,j} [\boldsymbol{\phi}^{(1)}(\boldsymbol{x})]_i [\boldsymbol{\phi}^{(2)}(\boldsymbol{x})]_j [\boldsymbol{\phi}^{(1)}(\boldsymbol{x}')]_i [\boldsymbol{\phi}^{(2)}(\boldsymbol{x}')]_j \\ &= \langle \boldsymbol{\phi}^{(1)}(\boldsymbol{x}), \boldsymbol{\phi}^{(1)}(\boldsymbol{x}') \rangle \langle \boldsymbol{\phi}^{(2)}(\boldsymbol{x}), \boldsymbol{\phi}^{(2)}(\boldsymbol{x}') \rangle \\ &= K^{(1)}(\boldsymbol{x}, \boldsymbol{x}') \ K^{(2)}(\boldsymbol{x}, \boldsymbol{x}') \end{split}$$

Exercise: Playing with Kernel Trick

■ Norm:

$$\|\boldsymbol{f}_i\| = \sqrt{K(\boldsymbol{x}_i, \boldsymbol{x}_i)}$$

Distance:

$$\|\boldsymbol{f}_i - \boldsymbol{f}_j\|^2 = K(\boldsymbol{x}_i, \boldsymbol{x}_i) - 2K(\boldsymbol{x}_i, \boldsymbol{x}_j) + K(\boldsymbol{x}_j, \boldsymbol{x}_j)$$

Angle:

$$\cos \theta = \frac{K(\boldsymbol{x}_i, \boldsymbol{x}_j)}{\sqrt{K(\boldsymbol{x}_i, \boldsymbol{x}_i)K(\boldsymbol{x}_j, \boldsymbol{x}_j)}}$$

$$\langle \boldsymbol{f}_i, \boldsymbol{f}_j \rangle = \| \boldsymbol{f}_i \| \| \boldsymbol{f}_j \| \cos \theta$$

Playing with Kernel Trick (cont.)19

- In particular, for Gaussian kernels,
 - $\|\boldsymbol{f}_i\|^2 = 1$
 - $\|\boldsymbol{f}_i \boldsymbol{f}_j\|^2 = 2 2K(\boldsymbol{x}_i, \boldsymbol{x}_j)$
 - $\bullet \cos \theta = K(\boldsymbol{x}_i, \boldsymbol{x}_j)$

$$K(\boldsymbol{x}, \boldsymbol{x}') = \exp\left(-\|\boldsymbol{x} - \boldsymbol{x}'\|^2/c^2\right)$$

$$c > 0$$

Kernel Trick Revisited

$$\langle \boldsymbol{f}_i, \boldsymbol{f}_j \rangle = K(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

- An inner product in the feature space can be efficiently computed by the kernel function.
- If a linear algorithm is expressed only in terms of the inner product, it can be nonlinearlized by the kernel trick:
 - PCA, LPP, FDA, LFDA
 - K-means clustering
 - Perceptron (support vector machine)

Kernel LPP

 \blacksquare Kernel LPP embedding of a sample f:

$$oldsymbol{g} = oldsymbol{A}^{ op} oldsymbol{k} = (K(oldsymbol{x}, oldsymbol{x}_1), K(oldsymbol{x}, oldsymbol{x}_2), \dots, K(oldsymbol{x}, oldsymbol{x}_n)^{ op} \ oldsymbol{A} = (oldsymbol{lpha}_{n-m+1} |oldsymbol{lpha}_{n-m+2}| \cdots |oldsymbol{lpha}_n)$$

• $\{\lambda_i, \alpha_i\}_{i=1}^m$: Sorted generalized eigenvalues and normalized eigenvectors of $KLK\alpha = \lambda KDK\alpha$

$$egin{align} \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n & \left\langle m{K}m{D}m{K}m{lpha}_i, m{lpha}_j
ight
angle = \delta_{i,j} \ & m{K} = m{F}^ op m{F} & m{L} = m{D} - m{W} \ & m{F} = (m{f}_1 | m{f}_2 | \cdots | m{f}_n) & m{D} = \mathrm{diag}(\sum_{i=1}^n m{W}_{i,j}) \ \end{pmatrix}$$

Note: When KDK is not full-rank, it should be replaced by $KDK + \varepsilon I_n$. ε :small positive scalar

Kernel LPP Embedding of Given Features

■ Kernel LPP embedding of $\{f_i\}_{i=1}^n$:

$$oldsymbol{G} = oldsymbol{A}^{ op} oldsymbol{K}$$
 $oldsymbol{G} = (oldsymbol{g}_1 | oldsymbol{g}_2 | \cdots | oldsymbol{g}_n)$

 $\blacksquare G$ can be directly obtained as

$$oldsymbol{G} = oldsymbol{\Psi}^ op \ oldsymbol{\Psi} = (oldsymbol{\psi}_{n-m+1} | oldsymbol{\psi}_{n-m+2} | \cdots | oldsymbol{\psi}_n)$$

• $\{\gamma_i, \psi_i\}_{i=1}^n$:Sorted eigenvalues and normalized eigenvectors of ${m L}\psi=\gamma {m D}\psi$

$$\gamma_1 \ge \gamma_2 \ge \dots \ge \gamma_n$$
 $\langle \boldsymbol{D}\boldsymbol{\psi}_i, \boldsymbol{\psi}_j \rangle = \delta_{i,j}$

Note: When similarity matrix W is sparse, L and D are also sparse!

Laplacian Eigenmap Embedding³

$$\boldsymbol{L}\boldsymbol{\psi} = \gamma \boldsymbol{D}\boldsymbol{\psi}$$

$$egin{aligned} oldsymbol{L} &= oldsymbol{D} - oldsymbol{W} \ oldsymbol{D} &= \operatorname{diag}(\sum_{j=1}^n oldsymbol{W}_{i,j}) \end{aligned}$$

■ Definition of L implies L1 = 0

In practice, we remove ψ_n and use

$$oldsymbol{G} = (oldsymbol{\psi}_{n-m} | oldsymbol{\psi}_{n-m+1} | \cdots | oldsymbol{\psi}_{n-1})^{ op}$$

This non-linear embedding method is called Laplacian eigenmap embedding.

Example

Note: Similarity matrix is defined by the nearestneighbor-based method with 10 nearest neighbors.

Laplacian eigenmap can successfully unfold the non-linear manifold.

Homework

1. Implement Laplacian eigenmap and unfold the 3-dimensional S-curve data.

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Test Laplacian eigenmap with your own (artificial or real) data and analyze its characteristics.

Homework (cont.)

2. Prove that the dual eigenvalue problem of (local) Fisher discriminant analysis is given by

$$KL^{(b)}K\alpha = \lambda KL^{(w)}K\alpha$$

$$\mathbf{L}^{(b)} = \mathbf{D}^{(b)} - \mathbf{W}^{(b)}$$

$$\mathbf{D}^{(b)} = \operatorname{diag}(\sum_{j=1}^{n} \mathbf{W}_{i,j}^{(b)})$$

$$\mathbf{W}_{i,j}^{(b)} = \begin{cases} 1/n - 1/n_{\ell} & (y_i = y_j = \ell) \\ 1/n & (y_i \neq y_j) \end{cases}$$

$$\mathbf{L}^{(b)} = \mathbf{D}^{(b)} - \mathbf{W}^{(b)}
\mathbf{D}^{(b)} = \operatorname{diag}(\sum_{j=1}^{n} \mathbf{W}_{i,j}^{(b)})
= \begin{cases} 1/n - 1/n_{\ell} & (y_i = y_j = \ell) \\ 1/n & (y_i \neq y_j) \end{cases}$$

$$\mathbf{L}^{(w)} = \mathbf{D}^{(w)} - \mathbf{W}^{(w)}
\mathbf{D}^{(w)} = \operatorname{diag}(\sum_{j=1}^{n} \mathbf{W}_{i,j}^{(w)})
\mathbf{W}_{i,j}^{(w)} = \begin{cases} 1/n_{\ell} & (y_i = y_j = \ell) \\ 0 & (y_i \neq y_j) \end{cases}$$

Note that when solving the above eigenproblem, we may need to regularize it as

$$KL^{(b)}K\alpha = \lambda(KL^{(w)}K + \epsilon I_n)\alpha$$

LFDA can also be kernelized similarly!