Advanced Data Analysis: More on Kernels

Masashi Sugiyama (Computer Science)

W8E-505, sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/~sugi

Kernel Trick

with Reproducing Kernel

For some transformation $\phi(\boldsymbol{x})(=\boldsymbol{f})$, there exists a bivariate function $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ such that

$$
\boldsymbol{K}_{i, j}=\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

\square Such implicit mapping $\phi(x)$ exists if

- \boldsymbol{K} is symmetric: $\boldsymbol{K}^{\top}=\boldsymbol{K}$
- \boldsymbol{K} is positive semi-definite: $\forall \boldsymbol{y},\langle\boldsymbol{K} \boldsymbol{y}, \boldsymbol{y}\rangle \geq 0$

Combination of
 Reproducing Kernels

For any reproducing kernels (RKs)

$$
K^{(1)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right), K^{(2)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)
$$

Positive scaling of RK is still RK

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\alpha K^{(1)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \quad \alpha>0
$$

- Sum of RKs is still RK:

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=K^{(1)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)+K^{(2)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)
$$

- Product of RKs is still RK:

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=K^{(1)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) K^{(2)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)
$$

Proof

We prove that there exists a feature map $\phi(x)$
such that $\left\langle\boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)\right\rangle=K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$.
\square For $\phi(x)=\sqrt{\alpha} \phi^{(1)}(\boldsymbol{x})$,

$$
\left\langle\boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)\right\rangle=\alpha\left\langle\boldsymbol{\phi}^{(1)}(\boldsymbol{x}), \boldsymbol{\phi}^{(1)}\left(\boldsymbol{x}^{\prime}\right)\right\rangle=\alpha K^{(1)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)
$$

For $\phi(\boldsymbol{x})=\binom{\phi^{(1)}(\boldsymbol{x})}{\boldsymbol{\phi}^{(2)}(\boldsymbol{x})}$,

$$
K^{(i)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\langle\phi^{(i)}(\boldsymbol{x}), \phi^{(i)}\left(\boldsymbol{x}^{\prime}\right)\right\rangle
$$

$$
\left\langle\boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)\right\rangle=\left\langle\boldsymbol{\phi}^{(1)}(\boldsymbol{x}), \phi^{(1)}\left(\boldsymbol{x}^{\prime}\right)\right\rangle+\left\langle\boldsymbol{\phi}^{(2)}(\boldsymbol{x}), \phi^{(2)}\left(\boldsymbol{x}^{\prime}\right)\right\rangle
$$

$$
=K^{(1)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)+K^{(2)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)
$$

- For $[\boldsymbol{\phi}(\boldsymbol{x})]_{i, j}=\left[\boldsymbol{\phi}^{(1)}(\boldsymbol{x})\right]_{i}\left[\boldsymbol{\phi}^{(2)}(\boldsymbol{x})\right]_{j}$,

$$
\begin{aligned}
\left\langle\phi(\boldsymbol{x}), \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)\right\rangle & =\sum_{i, j}\left[\boldsymbol{\phi}^{(1)}(\boldsymbol{x})\right]_{i}\left[\boldsymbol{\phi}^{(2)}(\boldsymbol{x})\right]_{j}\left[\boldsymbol{\phi}^{(1)}\left(\boldsymbol{x}^{\prime}\right)\right]_{i}\left[\boldsymbol{\phi}^{(2)}\left(\boldsymbol{x}^{\prime}\right)\right]_{j} \\
& =\left\langle\boldsymbol{\phi}^{(1)}(\boldsymbol{x}), \boldsymbol{\phi}^{(1)}\left(\boldsymbol{x}^{\prime}\right)\right\rangle\left\langle\boldsymbol{\phi}^{(2)}(\boldsymbol{x}), \boldsymbol{\phi}^{(2)}\left(\boldsymbol{x}^{\prime}\right)\right\rangle \\
& =K^{(1)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) K^{(2)}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)
\end{aligned}
$$

Exercise: Playing with Kernel Triek

- Norm:

$$
\left\|\boldsymbol{f}_{i}\right\|=\sqrt{K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right)}
$$

Distance:

$$
\left\|\boldsymbol{f}_{i}-\boldsymbol{f}_{j}\right\|^{2}=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right)-2 K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)+K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{j}\right)
$$

- Angle:

$$
\begin{aligned}
\cos \theta & =\frac{K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)}{\sqrt{K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right) K\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{j}\right)}} \\
\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle & =\left\|\boldsymbol{f}_{i}\right\|\left\|\boldsymbol{f}_{j}\right\| \cos \theta
\end{aligned}
$$

Playing with Kernel Trick (cont. ${ }^{19}{ }^{19}$

- In particular, for Gaussian kernels,
- $\left\|\boldsymbol{f}_{\boldsymbol{i}}\right\|^{2}=1$
- $\left\|\boldsymbol{f}_{i}-\boldsymbol{f}_{j}\right\|^{2}=2-2 K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$
- $\cos \theta=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$

$$
\begin{array}{r}
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} / c^{2}\right) \\
c>0
\end{array}
$$

Kernel Trick Revisited 120

$$
\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

\square An inner product in the feature space can be efficiently computed by the kernel function.

- If a linear algorithm is expressed only in terms of the inner product, it can be nonlinearlized by the kernel trick:
- PCA, LPP, FDA, LFDA
- K-means clustering
- Perceptron (support vector machine)

Kernel LPP

■ Kernel LPP embedding of a sample \boldsymbol{f} :

$$
\begin{array}{ll}
\boldsymbol{g}=\boldsymbol{A}^{\top} \boldsymbol{k} & \boldsymbol{k}=\left(K\left(\boldsymbol{x}, \boldsymbol{x}_{1}\right), K\left(\boldsymbol{x}, \boldsymbol{x}_{2}\right), \ldots, K\left(\boldsymbol{x}, \boldsymbol{x}_{n}\right)\right)^{\top} \\
\boldsymbol{A}=\left(\boldsymbol{\alpha}_{n-m+1}\left|\boldsymbol{\alpha}_{n-m+2}\right| \cdots \mid \boldsymbol{\alpha}_{n}\right)
\end{array}
$$

- $\left\{\lambda_{i}, \boldsymbol{\alpha}_{i}\right\}_{i=1}^{m}$:Sorted generalized eigenvalues and normalized eigenvectors of $\boldsymbol{K} \boldsymbol{L K} \boldsymbol{\alpha}=\lambda \boldsymbol{K} \boldsymbol{D} \boldsymbol{K} \boldsymbol{\alpha}$

$$
\begin{array}{cc}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} & \left\langle\boldsymbol{K} \boldsymbol{D} \boldsymbol{K} \boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}_{j}\right\rangle=\delta_{i, j} \\
\boldsymbol{K}=\boldsymbol{F}^{\top} \boldsymbol{F} & \boldsymbol{L}=\boldsymbol{D}-\boldsymbol{W} \\
\boldsymbol{F}=\left(\boldsymbol{f}_{1}\left|\boldsymbol{f}_{2}\right| \cdots \mid \boldsymbol{f}_{n}\right) & \boldsymbol{D}=\operatorname{diag}\left(\sum_{j=1}^{n} \boldsymbol{W}_{i, j}\right)
\end{array}
$$

\square Note: When $\boldsymbol{K D K}$ is not full-rank, it should be replaced by $\boldsymbol{K} \boldsymbol{D} \boldsymbol{K}+\varepsilon \boldsymbol{I}_{n}$.
ε :small positive scalar

Kernel LPP Embedding of Given Features

- Kernel LPP embedding of $\left\{\boldsymbol{f}_{i}\right\}_{i=1}^{n}$:

$$
\boldsymbol{G}=\boldsymbol{A}^{\top} \boldsymbol{K} \quad \boldsymbol{G}=\left(\boldsymbol{g}_{1}\left|\boldsymbol{g}_{2}\right| \cdots \mid \boldsymbol{g}_{n}\right)
$$

$\square G$ can be directly obtained as

$$
\boldsymbol{G}=\boldsymbol{\Psi}^{\top} \quad \boldsymbol{\Psi}=\left(\boldsymbol{\psi}_{n-m+1}\left|\boldsymbol{\psi}_{n-m+2}\right| \cdots \mid \psi_{n}\right)
$$

- $\left\{\gamma_{i}, \boldsymbol{\psi}_{i}\right\}_{i=1}^{n}$:Sorted eigenvalues and normalized eigenvectors of $\boldsymbol{L} \boldsymbol{\psi}=\gamma \boldsymbol{D} \boldsymbol{\psi}$

$$
\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{n} \quad\left\langle\boldsymbol{D} \boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle=\delta_{i, j}
$$

- Note: When similarity matrix \boldsymbol{W} is sparse, L and D are also sparse!

Laplacian Eigenmap Embeddinţ3²

$$
\boldsymbol{L} \psi=\gamma \boldsymbol{D} \psi
$$

$$
\begin{aligned}
\boldsymbol{L} & =\boldsymbol{D}-\boldsymbol{W} \\
\boldsymbol{D} & =\operatorname{diag}\left(\sum_{j=1}^{n} \boldsymbol{W}_{i, j}\right)
\end{aligned}
$$

\square Definition of L implies $L \mathbf{1}=\mathbf{0}$

$$
\longmapsto \psi_{n} \propto 1
$$

- In practice, we remove ψ_{n} and use

$$
\boldsymbol{G}=\left(\boldsymbol{\psi}_{n-m}\left|\boldsymbol{\psi}_{n-m+1}\right| \cdots \mid \boldsymbol{\psi}_{n-1}\right)^{\top}
$$

- This non-linear embedding method is called Laplacian eigenmap embedding.

Example

Original data (3D)

Embedded Data (2D)

Note: Similarity matrix is defined by the nearest-neighbor-based method with 10 nearest neighbors.

- Laplacian eigenmap can successfully unfold the non-linear manifold.

Homework

129

1. Implement Laplacian eigenmap and unfold the 3-dimensional S-curve data.
http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis
Test Laplacian eigenmap with your own (artificial or real) data and analyze its characteristics.

Homework (cont.)

2. Prove that the dual eigenvalue problem of (local) Fisher discriminant analysis is given by

$$
\begin{aligned}
& \boldsymbol{K} \boldsymbol{L}^{(b)} \boldsymbol{K} \boldsymbol{\alpha}=\lambda \boldsymbol{K} \boldsymbol{L}^{(w)} \boldsymbol{K} \boldsymbol{\alpha} \\
& \boldsymbol{L}^{(b)}=\boldsymbol{D}^{(b)}-\boldsymbol{W}^{(b)} \\
& \boldsymbol{L}^{(w)}=\boldsymbol{D}^{(w)}-\boldsymbol{W}^{(w)} \\
& \boldsymbol{D}^{(b)}=\operatorname{diag}\left(\sum_{j=1}^{n} \boldsymbol{W}_{i, j}^{(b)}\right) \\
& \boldsymbol{W}_{i, j}^{(b)}=\left\{\begin{array}{cc}
1 / n-1 / n_{\ell} & \left(y_{i}=y_{j}=\ell\right) \\
1 / n & \left(y_{i} \neq y_{j}\right)
\end{array}\right. \\
& \boldsymbol{D}^{(w)}=\operatorname{diag}\left(\sum_{j=1}^{n} \boldsymbol{W}_{i, j}^{(w)}\right) \\
& \boldsymbol{W}_{i, j}^{(w)}=\left\{\begin{array}{cc}
1 / n_{\ell} & \left(y_{i}=y_{j}=\ell\right) \\
0 & \left(y_{i} \neq y_{j}\right)
\end{array}\right.
\end{aligned}
$$

Note that when solving the above eigenproblem, we may need to regularize it as

$$
\boldsymbol{K} \boldsymbol{L}^{(b)} \boldsymbol{K} \boldsymbol{\alpha}=\lambda\left(\boldsymbol{K} \boldsymbol{L}^{(w)} \boldsymbol{K}+\epsilon \boldsymbol{I}_{n}\right) \boldsymbol{\alpha}
$$

■ LFDA can also be kernelized similarly!

