Advanced Data Analysis: Kernel PCA

Masashi Sugiyama (Computer Science)

W8E-505, sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/~sugi

Data with Curved Structures ${ }^{86}$

- If the data cloud is bent, any linear methods cannot find the curved structure.

Non-Linearizing Linear Methods ${ }^{77}$

- A simple non-linear extension of linear methods while keeping computational advantages of linear methods:
- Map the original data to a feature space by a non-linear transformation
- Run linear algorithm in the feature space

Example

$\square d=2$

Linear PCA

Example (cont.)

- Polar coordinate:

$$
\boldsymbol{x}=\binom{a}{b} \longrightarrow \boldsymbol{f}=\binom{r \cos \theta}{r \sin \theta}
$$

Centered data in input space

Centered data
in feature space

Example (cont.)

Run PCA in feature space.

Example (cont.)

91
\square Pull the results back to input space.

- Non-linear PCA describes the original data much better than linear PCA.

Notation Revisited

■ Input samples:

$$
\left\{\boldsymbol{x}_{i}\right\}_{i=1}^{n} \quad \boldsymbol{x}_{i} \in \mathbb{R}^{d}
$$

■ Feature mapping:

$$
\phi: \mathbb{R}^{d} \rightarrow \mathcal{F}
$$

\square Samples in feature space:

$$
\boldsymbol{f}_{i}=\phi\left(\boldsymbol{x}_{i}\right)
$$

Centering in Feature Space ${ }^{93}$

\square PCA requires centered samples, thus we need to center samples by

$$
\overline{\boldsymbol{f}}_{i}=\boldsymbol{f}_{i}-\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{f}_{j}
$$

- In matrix form,

$$
\overline{\boldsymbol{F}}=\boldsymbol{F} \boldsymbol{H}
$$

$$
\begin{aligned}
& \boldsymbol{F}=\left(\boldsymbol{f}_{1}\left|\boldsymbol{f}_{2}\right| \cdots \mid \boldsymbol{f}_{n}\right) \\
& \overline{\boldsymbol{F}}=\left(\overline{\boldsymbol{f}}_{1}\left|\overline{\boldsymbol{f}}_{2}\right| \cdots \mid \overline{\boldsymbol{f}}_{n}\right)
\end{aligned}
$$

$$
\boldsymbol{H}=\boldsymbol{I}_{n}-\frac{1}{n} \mathbf{1}_{n \times n} \quad \begin{aligned}
& \boldsymbol{I}_{n}: n \text {-dimensional identity matrix } \\
& \mathbf{1}_{n \times n}: n \times n \text { matrix with all ones }
\end{aligned}
$$

PCA in Feature Space (Primal) ${ }^{94}$

$$
\overline{\boldsymbol{C}} \boldsymbol{\psi}=\lambda \boldsymbol{\psi} \quad \overline{\boldsymbol{C}}=\overline{\boldsymbol{F}} \overline{\boldsymbol{F}}^{\top}
$$

- PCA solution:

$$
B_{P C A}=\left(\psi_{1}\left|\psi_{2}\right| \cdots \mid \psi_{m}\right)^{\top}
$$

- $\left\{\lambda_{i}, \boldsymbol{\psi}_{i}\right\}_{i=1}^{m}$:Sorted eigenvalues and normalized eigenvectors of $\overline{\boldsymbol{C}} \boldsymbol{\psi}=\lambda \boldsymbol{\psi}$

$$
\left\langle\boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle=\delta_{i, j} \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\mu}
$$

■ PCA embedding of a sample \boldsymbol{f} :

$$
\overline{\boldsymbol{g}}=\boldsymbol{B}_{P C A}\left(\boldsymbol{f}-\frac{1}{n} \boldsymbol{F} \mathbf{1}_{n}\right)
$$

$\mu=\operatorname{dim}(\mathcal{F})$
$\mathbf{1}_{n}$: n-dimensional vector with all ones

PCA in High-Dimensional 95 Feature Space

$$
\mu=\operatorname{dim}(\mathcal{F})
$$

\square If μ is high,

- Description ability of non-linear PCA will increase.
- However, computational cost increases since the dimension of \bar{C} is μ.
- It would be possible to reduce computational cost since

$$
\begin{aligned}
& \operatorname{rank}(\overline{\boldsymbol{C}})=\min (\mu, n) \leq \mu \\
& \qquad \overline{\boldsymbol{C}}=\overline{\boldsymbol{F}} \overline{\boldsymbol{F}}^{\top} \quad \overline{\boldsymbol{F}}=\left(\overline{\boldsymbol{f}}_{1}\left|\overline{\boldsymbol{f}}_{2}\right| \cdots \mid \overline{\boldsymbol{f}}_{n}\right)
\end{aligned}
$$

Dual Formulation

(A) $\overline{\boldsymbol{C}} \psi=\lambda \psi$
$\overline{\boldsymbol{C}}=\overline{\boldsymbol{F}} \overline{\boldsymbol{F}}^{\top}$
(B) $\overline{\boldsymbol{K}} \boldsymbol{\alpha}=\lambda \boldsymbol{\alpha}$
$\overline{\boldsymbol{K}}=\overline{\boldsymbol{F}}^{\top} \overline{\boldsymbol{F}}$

- Solution of (A) can be obtained from (B).
- Proof: If $\boldsymbol{\alpha}$ is a solution of (B), it holds that

$$
\overline{\boldsymbol{C}} \overline{\boldsymbol{F}} \boldsymbol{\alpha}=\overline{\boldsymbol{F F}}^{\top} \overline{\boldsymbol{F}} \boldsymbol{\alpha}=\overline{\boldsymbol{F} \boldsymbol{K}} \boldsymbol{\alpha}=\lambda \overline{\boldsymbol{F}} \boldsymbol{\alpha}
$$

This implies that $\boldsymbol{\psi}=\overline{\boldsymbol{F}} \boldsymbol{\alpha}$ is a solution of (A).
\square Note: solution of (B) can also be obtained from (A).
\square Given $\overline{\boldsymbol{K}}$, solving (B) is faster than (A) when $\mu>n$ since

$$
\operatorname{rank}(\overline{\boldsymbol{C}})=n<\mu
$$

Primal and Dual Formulations ${ }^{97}$

Renormalization of Eigenvectors ${ }^{8}$

$$
\overline{\boldsymbol{K}} \boldsymbol{\alpha}=\lambda \boldsymbol{\alpha}
$$

\square Standard eigensolvers output an orthonormal eigenvectors.

$$
\left\langle\boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}_{j}\right\rangle=\delta_{i, j}
$$

■ However, PCA requires the primal eigenvectors $\left\{\boldsymbol{\psi}_{i}\right\}_{i=1}^{m}$ to be orthonormal.
\square Since $\left\langle\boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle=\left\langle\overline{\boldsymbol{K}} \boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}_{j}\right\rangle=\lambda_{i} \delta_{i, j}$, we need to renormalize $\left\{\boldsymbol{\psi}_{i}\right\}_{i=1}^{m}$ by

$$
\boldsymbol{\psi}_{i} \longleftarrow \frac{\boldsymbol{\psi}_{i}}{\left\|\boldsymbol{\psi}_{i}\right\|}=\frac{1}{\sqrt{\lambda_{i}}} \overline{\boldsymbol{F}} \boldsymbol{\alpha}_{i} \quad \begin{aligned}
\boldsymbol{\psi}_{i} & =\overline{\boldsymbol{F}} \boldsymbol{\alpha}_{i} \\
\overline{\boldsymbol{K}} \boldsymbol{\alpha}_{i} & =\lambda_{i} \boldsymbol{\alpha}_{i}
\end{aligned}
$$

PCA in Feature Space (Dual) ${ }^{99}$

\square PCA embedding of a sample \boldsymbol{f} :

$$
\overline{\boldsymbol{g}}=\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{A}^{\top} \boldsymbol{H}\left(\boldsymbol{k}-\frac{1}{n} \boldsymbol{K} \mathbf{1}_{n}\right) \text { (Homework) }
$$

- $\left\{\lambda_{i}, \boldsymbol{\alpha}_{i}\right\}_{i=1}^{m}$:Sorted eigenvalues and normalized eigenvectors of $\overline{\boldsymbol{K}} \boldsymbol{\alpha}=\lambda \boldsymbol{\alpha}$

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \quad\left\langle\boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}_{j}\right\rangle=\delta_{i, j}
$$

$\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$
$\boldsymbol{A}=\left(\boldsymbol{\alpha}_{1}\left|\boldsymbol{\alpha}_{2}\right| \cdots \mid \boldsymbol{\alpha}_{m}\right)$
$\overline{\boldsymbol{K}}=\boldsymbol{H} \boldsymbol{K} \boldsymbol{H} \quad \boldsymbol{K}=\boldsymbol{F}^{\top} \boldsymbol{F}$
$\boldsymbol{H}=\boldsymbol{I}_{n}-\frac{1}{n} \mathbf{1}_{n \times n} \boldsymbol{k}=\boldsymbol{F}^{\boldsymbol{\top}} \boldsymbol{f}$
$\boldsymbol{I}_{n}: n$-dimensional identity matrix
$\mathbf{1}_{n \times n}: n \times n$ matrix with all ones
$\mathbf{1}_{n}$: n-dimensional vector with all ones

PCA in Feature Space (Dual) ${ }^{100}$

$$
\mu=\operatorname{dim}(\mathcal{F})
$$

- In the dual formulation, the computational complexity depends not on μ but only on n, if K and k are given.
- However, the computation of K and k still depends on μ.

$$
\boldsymbol{K}=\boldsymbol{F}^{\top} \boldsymbol{F} \quad \boldsymbol{k}=\boldsymbol{f}^{\top} \boldsymbol{F}
$$

\square Note: \boldsymbol{K} and \boldsymbol{k} depend on μ only through the inner product between samples.

$$
\boldsymbol{K}_{i, j}=\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle \quad \boldsymbol{k}_{i}=\left\langle\boldsymbol{f}, \boldsymbol{f}_{i}\right\rangle
$$

Kernel Trick

- For some transformation $\phi(\boldsymbol{x})(=\boldsymbol{f})$, there exists a bivariate function $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ such that

$$
\boldsymbol{K}_{i, j}=\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

\square Such implicit mapping $\phi(x)$ exists if

- \boldsymbol{K} is symmetric: $\boldsymbol{K}^{\top}=\boldsymbol{K}$
- \boldsymbol{K} is positive semi-definite: $\forall \boldsymbol{y},\langle\boldsymbol{K} \boldsymbol{y}, \boldsymbol{y}\rangle \geq 0$
\square Such $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ is called the reproducing kernel.
\square Rather than directly defining $\phi(x)$, we implicitly specify $\phi(\boldsymbol{x})$ by a reproducing kernel.

Examples of Kernels

■ Polynomial kernel: $\mu=\operatorname{dim}(\mathcal{F})$

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\langle\boldsymbol{x}, \boldsymbol{x}^{\prime}\right\rangle^{c} \quad c \in \mathbb{N}
$$

- When $d=2$ and $c=2$,

$$
\begin{aligned}
& \text { Vhen } d=2 \text { and } c=2, \quad \boldsymbol{x}=\binom{s}{t} \\
& \begin{aligned}
\left\langle\boldsymbol{x}, \boldsymbol{x}^{\prime}\right\rangle^{2} & =\left(s s^{\prime}+t t^{\prime}\right)^{2} \\
& =s s s^{\prime} s^{\prime}+2 s s^{\prime} t t^{\prime}+t t t^{\prime} t^{\prime}
\end{aligned}
\end{aligned}
$$

$$
\boldsymbol{f}=\boldsymbol{\phi}(\boldsymbol{x})=\left(\begin{array}{c}
s^{2} \\
\sqrt{2} s t \\
t^{2}
\end{array}\right)
$$

$$
\mu=3
$$

- In general,

$$
\mu={ }_{c+d-1} C_{c}
$$

Examples of Kernels (cont.) ${ }^{103}$

■aussian kernel:

$$
\begin{array}{r}
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} / c^{2}\right) \\
c>0
\end{array}
$$

Note: $\mu=\infty$!

$$
\mu=\operatorname{dim}(\mathcal{F})
$$

Kernel PCA: Summary

- Kernel PCA embedding of a sample f is

$$
\overline{\boldsymbol{g}}=\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{A}^{\top} \boldsymbol{H}\left(\boldsymbol{k}-\frac{1}{n} \boldsymbol{K} \mathbf{1}_{n}\right)
$$

- $\left\{\lambda_{i}, \boldsymbol{\alpha}_{i}\right\}_{i=1}^{m}$:Sorted eigenvalues and normalized eigenvectors of $\boldsymbol{H K H} \boldsymbol{\alpha}=\lambda \boldsymbol{\alpha}$

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \quad\left\langle\boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}_{j}\right\rangle=\delta_{i, j}
$$

$$
\begin{aligned}
& \boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \\
& \boldsymbol{A}=\left(\boldsymbol{\alpha}_{1}\left|\boldsymbol{\alpha}_{2}\right| \cdots \mid \boldsymbol{\alpha}_{m}\right) \\
& \boldsymbol{H}=\boldsymbol{I}_{n}-\frac{1}{n} \mathbf{1}_{n \times n}
\end{aligned}
$$

\boldsymbol{I}_{n} : n-dimensional identity matrix
$\mathbf{1}_{n \times n}: n \times n$ matrix with all ones
$\boldsymbol{k}=\left(K\left(\boldsymbol{x}, \boldsymbol{x}_{1}\right), K\left(\boldsymbol{x}, \boldsymbol{x}_{2}\right), \ldots, K\left(\boldsymbol{x}, \boldsymbol{x}_{n}\right)\right)^{\top} \quad \boldsymbol{K}_{i, j}=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$

Examples

105

■ Wine data (UCI): 13-dim, 178 samples

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} / c^{2}\right)
$$

$$
c=3
$$

Linear PCA

Examples (cont.)

$$
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} / c^{2}\right)
$$

\square Choice of kernels (type and parameter) depends on the result.
\square Appropriately choosing kernels is not straightforward in practice.

Homework

1. Implement kernel PCA with Gaussian kernels and reproduce the embedding result of the Wine data set.
http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis
Test kernel PCA with your own (artificial or real) data and analyze the characteristics of kernel PCA.
2. Prove that kernel PCA embedding of a sample f is given by

$$
\overline{\boldsymbol{g}}=\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{A}^{\top} \boldsymbol{H}\left(\boldsymbol{k}-\frac{1}{n} \boldsymbol{K} \mathbf{1}_{n}\right)
$$

Suggestion

Read the following article for the next class:

- M. Belkin \& P. Niyogi: Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation, 15(6), 1373-1396, 2003.
http://neco.mitpress.org/cgi/reprint/15/6/1373.pdf

