Advanced Data Analysis: Principal Component Analysis

Masashi Sugiyama (Computer Science)

W8E-505, <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi

Curse of Dimensionality

$\{oldsymbol{x}_i\}_{i=1}^n, \hspace{0.1cm} oldsymbol{x}_i \in \mathbb{R}^d, \hspace{0.1cm} d \gg 1$

If your data samples are high-dimensional, they are often too complex to directly analyze.

Usual geometric intuitions are often only applicable to low-dimensional spaces; such intuitions could be even misleading in high-dimensional spaces.

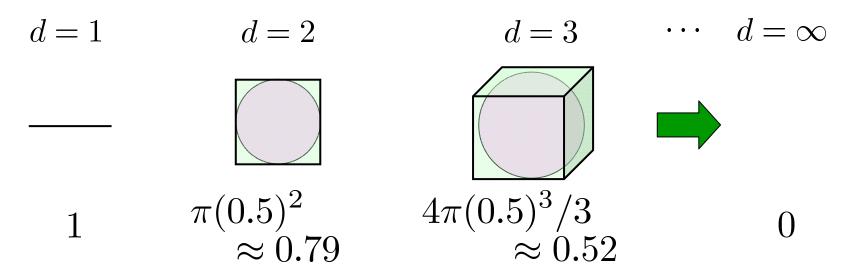
Curse of Dimensionality (cont.)⁴

When the dimensionality increases,

- Volume of unit hyper-cube V_c is always 1.
- Volume of inscribed hyper-sphere V_s goes to 0.

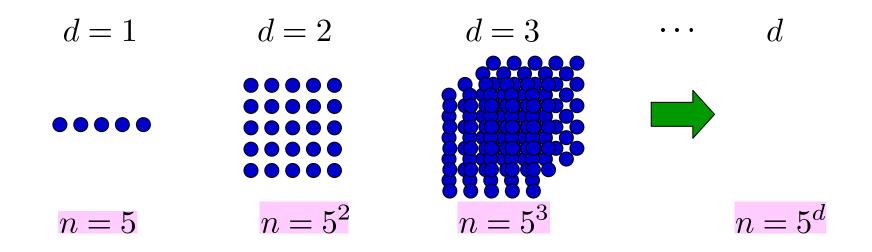
Relative size of hyper-sphere gets small!

$$\frac{V_s}{V_c} \to 0$$



Curse of Dimensionality (cont.) ⁵

Grid sampling requires an exponentially large number.



Unless you have an exponentially large number of samples, your high-dimensional samples are never dense.

Dimensionality Reduction

- We want to reduce the dimensionality of the data while preserving the intrinsic "information" in the data.
- Dimensionality reduction is also called embedding; if the dimension is reduced up to 3, it is also called data visualization.
- Basic assumption (or belief) behind dimensionality reduction: your highdimensional data is redundant in some sense.

Notation: Linear Embedding⁷

Data samples:

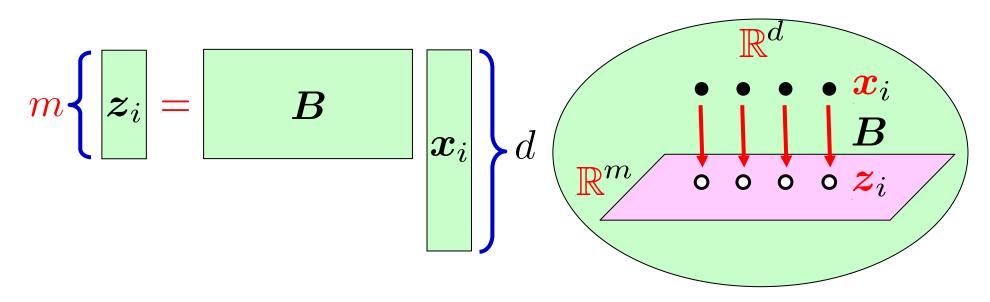
$$\{\boldsymbol{x}_i\}_{i=1}^n, \ \boldsymbol{x}_i \in \mathbb{R}^d, \ d \gg 1$$

Embedding matrix:

$$\mathbf{B} \in \mathbb{R}^{m \times d}, \ 1 \le m \ll d$$

Embedded data samples:

$$\{oldsymbol{z}_i\}_{i=1}^n, \hspace{0.2cm} oldsymbol{z}_i = oldsymbol{B}oldsymbol{x}_i \in \mathbb{R}^m$$

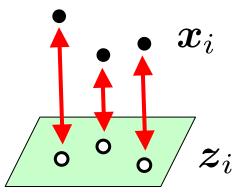


Principal Component Analysis (PCÅ)

Idea: We want to get rid of a redundant dimension of the data samples

$$\begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 2\\ 0.1 \end{pmatrix}, \begin{pmatrix} 3\\ -0.1 \end{pmatrix}$$

This could be achieved by minimizing the distance between embedded samples and original samples.



Data Centering

We center the data samples by

$$\overline{x}_i = x_i - \frac{1}{n} \sum_{j=1}^n x_j$$

$$\frac{1}{n}\sum_{i=1}^{n}\overline{x}_{i}=0$$

In matrix,

 $\overline{X} = XH$

$$egin{aligned} \overline{oldsymbol{X}} &= (\overline{oldsymbol{x}}_1 | \overline{oldsymbol{x}}_2 | \cdots | \overline{oldsymbol{x}}_n) \ oldsymbol{X} &= (oldsymbol{x}_1 | oldsymbol{x}_2 | \cdots | oldsymbol{x}_n) \ oldsymbol{H} &= oldsymbol{I}_n - rac{1}{n} oldsymbol{1}_{n imes n} \end{aligned}$$

 I_n : *n*-dimensional identity matrix

 $\mathbf{1}_{n \times n}$: $n \times n$ matrix with all ones

Orthogonal Projection

■ $\{b_i (\in \mathbb{R}^d)\}_{i=1}^m$: Orthonormal basis in *m*-dimensional embedding subspace

$$\langle \boldsymbol{b}_i, \boldsymbol{b}_j \rangle = \delta_{i,j} = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$$

In matrix,
$$BB^{\top} = I_m$$

 $B = (b_1 | b_2 | \cdots | b_m)^{\top}$

Orthogonal projection of \overline{x}_i is expressed by

$$\sum_{j=1}^m \langle oldsymbol{b}_j, \overline{oldsymbol{x}}_i
angle oldsymbol{b}_j ~~ \left(=oldsymbol{B}^ opoldsymbol{B} \overline{oldsymbol{x}}_i
ight)$$

PCA Criterion

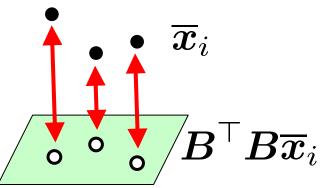
Minimize the sum of squared distances.

$$\sum_{i=1}^{n} \| \boldsymbol{B}^{\top} \boldsymbol{B} \overline{\boldsymbol{x}}_{i} - \overline{\boldsymbol{x}}_{i} \|^{2} \left(= -\operatorname{tr}(\boldsymbol{B} \overline{\boldsymbol{C}} \boldsymbol{B}^{\top}) + \operatorname{tr}(\overline{\boldsymbol{C}}) \right)$$

$$\overline{oldsymbol{C}} = \sum_{i=1}^n \overline{oldsymbol{x}}_i \overline{oldsymbol{x}}_i^ op = \overline{oldsymbol{X}} \ \overline{oldsymbol{X}}^ op$$

PCA criterion:

 $B_{PCA} = \operatorname*{argmax}_{B \in \mathbb{R}^{m \times d}} \operatorname{tr}(B\overline{C}B^{\top})$ subject to $BB^{\top} = I_m$



11

PCA: Summary

A PCA solution:

$$\boldsymbol{B}_{PCA} = (\boldsymbol{\psi}_1 | \boldsymbol{\psi}_2 | \cdots | \boldsymbol{\psi}_m)^{\top}$$

 $\{\lambda_i, \psi_i\}_{i=1}^m$:Sorted eigenvalues and normalized eigenvectors of $\overline{C}\psi = \lambda\psi$

 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d$

$$\langle oldsymbol{\psi}_i, oldsymbol{\psi}_j
angle = \delta_{i,j}$$

PCA embedding of a sample x:

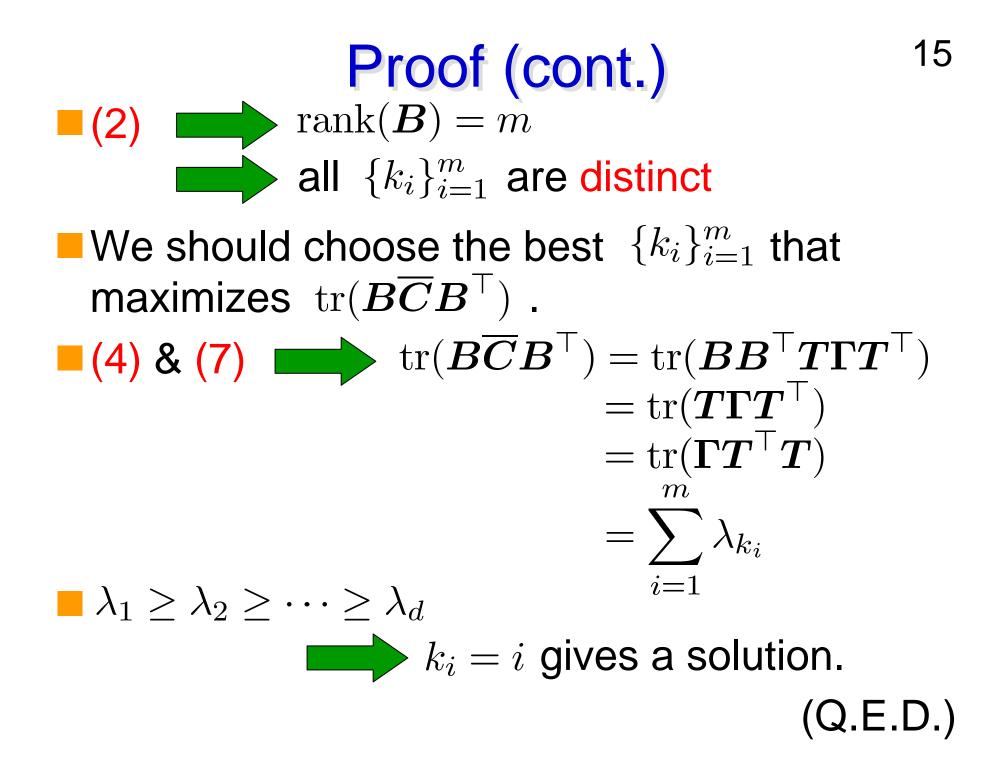
$$\overline{\boldsymbol{z}} = \boldsymbol{B}_{PCA}(\boldsymbol{x} - \frac{1}{n}\boldsymbol{X}\boldsymbol{1}_n)$$

 $\mathbf{1}_n$: *n*-dimensional vector with all ones

13 Proof Lagrangian: $L(\boldsymbol{B}, \boldsymbol{\Delta}) = \operatorname{tr}(\boldsymbol{B}\overline{\boldsymbol{C}}\boldsymbol{B}^{\top}) - \operatorname{tr}((\boldsymbol{B}\boldsymbol{B}^{\top} - \boldsymbol{I}_m)\boldsymbol{\Delta})$ Δ :Lagrange multipliers (symmetric) Stationary point (necessary condition): • $\frac{\partial L}{\partial \mathbf{R}} = 2\mathbf{B}\overline{\mathbf{C}} - 2\mathbf{\Delta}\mathbf{B} = 0$ $\overline{C}B^{\top} = B^{\top}\Delta (1)$ • $\frac{\partial L}{\partial \mathbf{A}} = \mathbf{B}\mathbf{B}^{\top} - \mathbf{I}_m = 0$ $\blacksquare BB^{\top} = I_m (2)$ Eigendecomposition: T : orthogonal matrix $\Delta = T\Gamma T^{\top}$ (3) Γ : diagonal matrix $oldsymbol{T}^{-1} = oldsymbol{T}^ op$

Proof (cont.)
14
(1) & (3)
$$\overrightarrow{C}B^{\top} = B^{\top}T\Gamma T^{\top}(4)$$

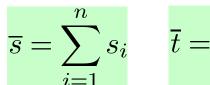
 $\overrightarrow{C}B^{\top}T = B^{\top}T\Gamma$
 $\overrightarrow{C}F = F\Gamma$ (5) $F = B^{\top}T$
(5) is an eigensystem
 $\mathcal{R}(F) = \operatorname{span}(\{\psi_{k_i}\}_{i=1}^m)$ (6)
 $\Gamma = \operatorname{diag}(\lambda_{k_1}, \lambda_{k_2}, \dots, \lambda_{k_m})$ (7)
 $k_i \in \{1, 2, \dots, d\}$
 $\mathcal{R}(F) = \mathcal{R}(B^{\top}T) = \mathcal{R}(B^{\top})$ (8)
(6) & (8) $\mathcal{R}(B^{\top}) = \operatorname{span}(\{\psi_{k_i}\}_{i=1}^m)$
A solution is expressed as
 $B = (\psi_{k_1} | \psi_{k_2} | \cdots | \psi_{k_m})^{\top}$

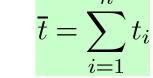


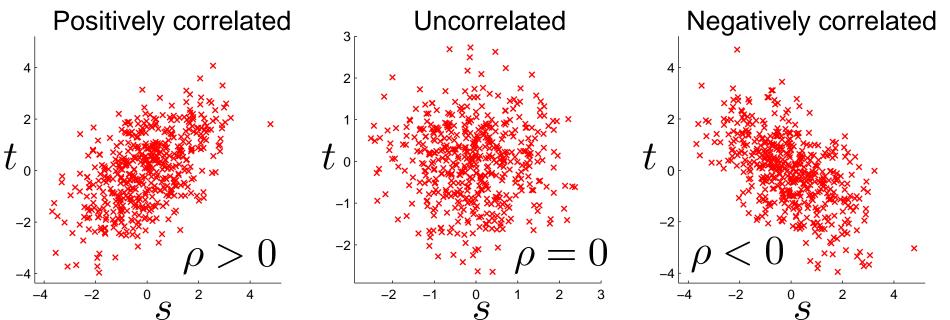
Correlation

Correlation coefficient for $\{s_i, t_i\}_{i=1}^n$:

$$\rho = \frac{\sum_{i=1}^{n} (s_i - \overline{s})(t_i - \overline{t})}{\sqrt{\left(\sum_{i=1}^{n} (s_i - \overline{s})^2\right) \left(\sum_{i=1}^{n} (t_i - \overline{t})^2\right)}}$$







PCA Uncorrelates Data

$$\boldsymbol{B}_{PCA} = (\boldsymbol{\psi}_1 | \boldsymbol{\psi}_2 | \cdots | \boldsymbol{\psi}_m)^{\top}$$

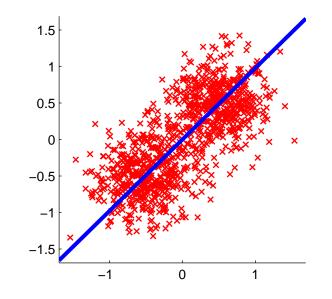
Covariance matrix of the PCAembedded samples is diagonal.

$$\frac{1}{n}\sum_{i=1}^{n} \overline{\boldsymbol{z}}_{i} \overline{\boldsymbol{z}}_{i}^{\top} = \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \dots, \lambda_{m}\right)$$

(Homework)

17

Each element in \overline{z} is uncorrelated!



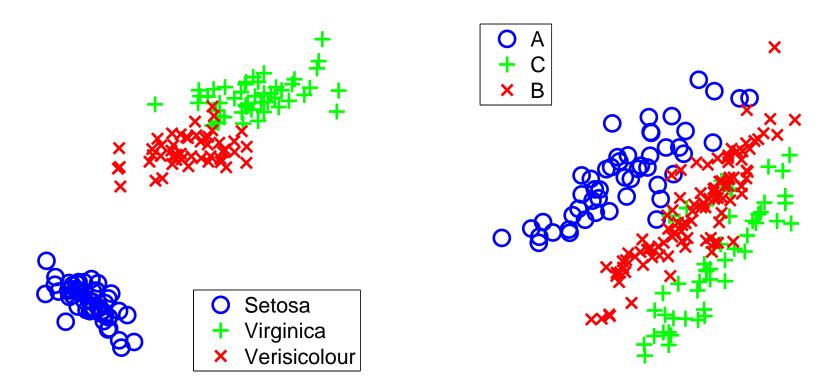
Data is well described

PCA is intuitive, easy to implement, analytic solution available, and fast.

Examples (cont.)

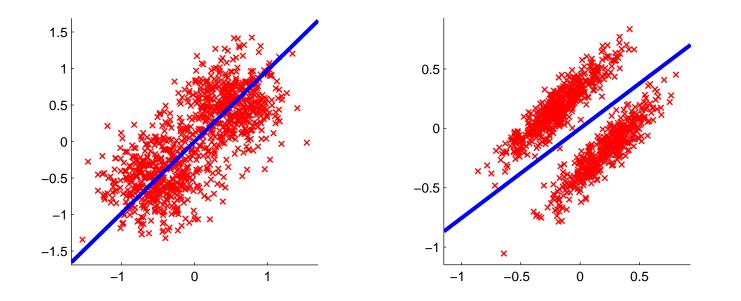
19

Iris data (4d->2d) Letter data (16d->2d)



Embedded samples seem informative.

Examples (cont.)



However, PCA does not necessarily preserve interesting information such as clusters.

Important Notice

- There will be no class on May 3rd.
- Instead, you are expected to do some exercise (at home).
- Information will be put on the web.
 - See http://www.ocw.titech.ac.jp/ for details.