Homework

23

1. Implement PCA and reproduce the 2dimensional examples shown in the class.

- Data sets 1 and 2 are available from http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

- Test PCA with your own (artificial or real) data and analyze the characteristics of PCA.

Homework (cont.)

2. Let

- B : $m \times d,(1 \leq m \leq d)$
- $\boldsymbol{C}, \boldsymbol{D}: d \times d$, positive definite, symmetric
- $\left\{\lambda_{i}, \boldsymbol{\psi}_{i}\right\}_{i=1}^{m}$: Sorted generalized eigenvalues and normalized eigenvectors of $\boldsymbol{C} \boldsymbol{\psi}=\lambda \boldsymbol{D} \boldsymbol{\psi}$

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \quad\left\langle\boldsymbol{D} \boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right\rangle=\delta_{i, j}
$$

Prove that a solution of

$$
\boldsymbol{B}_{\min }=\underset{\boldsymbol{B} \in \mathbb{R}^{m \times d}}{\operatorname{argmin}}\left[\operatorname{tr}\left(\boldsymbol{B} \boldsymbol{C} \boldsymbol{B}^{\top}\right)\right]
$$

is given by

$$
\text { subject to } \boldsymbol{B} \boldsymbol{D} \boldsymbol{B}^{\top}=\boldsymbol{I}_{m}
$$

$$
\boldsymbol{B}_{\text {min }}=\left(\boldsymbol{\psi}_{d}\left|\boldsymbol{\psi}_{d-1}\right| \cdots \mid \boldsymbol{\psi}_{d-m+1}\right)^{\top}
$$

Homework (cont.)

3. Prove that PCA uncorrelates the samples; more specifically, prove that the covariance matrix of the PCA-embedded samples is the following diagonal matrix:

$$
\begin{aligned}
& \sum_{i=1}^{n} \overline{\boldsymbol{z}}_{i} \overline{\boldsymbol{z}}_{i}^{\top}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \\
& \overline{\boldsymbol{z}}_{i}=\boldsymbol{B}_{P C A} \overline{\boldsymbol{x}}_{i} \\
& \boldsymbol{B}_{P C A}=\left(\boldsymbol{\psi}_{1}\left|\boldsymbol{\psi}_{2}\right| \cdots \mid \boldsymbol{\psi}_{m}\right)^{\top}
\end{aligned}
$$

Suggestion

■ead the following article for upcoming classes:

- X. He \& P. Niyogi: Locality preserving projections, In Advances in Neural Information Processing Systems 16, MIT Press, Cambridge, MA, 2004.
http://books.nips.cc/papers/files/nips16/NIPS2003_AA20.pdf

