Advanced Data Analysis: Projection Pursuit

Masashi Sugiyama (Computer Science)

W8E-505, sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/~sugi

I.i.d. Samples

■ Independent and identically distributed
(i.i.d.) samples

$$
\boldsymbol{x}_{i} \stackrel{i . i . d .}{\sim} P(\boldsymbol{x})
$$

- Independent: joint probability is a product of each probability

$$
P\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=P\left(\boldsymbol{x}_{i}\right) P\left(\boldsymbol{x}_{j}\right)
$$

- Identically distributed: each variable follow the identical distribution:

$$
\boldsymbol{x}_{i} \sim P(\boldsymbol{x})
$$

Gaussian Distribution
 192

■ Gaussian distribution: Probability density function is given by

$$
\phi_{\boldsymbol{\mu}, \boldsymbol{\Sigma}}(\boldsymbol{x})=\frac{1}{(2 \pi)^{\frac{d}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

$\square \mu, \Sigma$:Mean, covariance

$$
\begin{aligned}
& \mathbb{E}[\boldsymbol{x}]=\boldsymbol{\mu} \\
& \mathbb{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right]=\boldsymbol{\Sigma}
\end{aligned}
$$

\square When one-dimensional,

$$
\phi_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Interesting Directions 193 for Data Visualization

\square Which distribution is interesting to visualize?

- If data follows the Gaussian distribution, samples are spherically distributed.
- Visualizing spherically distributed samples is not so interesting.
What about "non-
Gaussian" data?

Non-Gaussian Distributed Datà ${ }^{94}$

Non-Gaussian data look more interesting than Gaussian:

Uniform
(sharp edge)

Gaussian mixture
(cluster structure)

Laplacian (existence of outliers)

Projection Pursuit 195

■Idea: Find the most non-Gaussian direction in the data
\square For this purpose, we need a criterion to measure non-Gaussianity of data as a function of the direction.

Kurtosis

Kurtosis for a one-dimensional random variable s :

$$
\beta_{4}=\frac{\mathbb{E}\left[(s-\mathbb{E}[s])^{4}\right]}{\left(\mathbb{E}\left[(s-\mathbb{E}[s])^{2}\right]\right)^{2}}(>0)
$$

Kurtosis measures the "sharpness" of the distributions.
\square If tail of distribution is

- Heavy

β_{4} is large
- Light
β_{4} is small

Kurtosis (cont.)

$\square \beta_{4}=3:$ Gaussian distribution
 $\square \beta_{4}<3$: Sub-Gaussian distribution
 $\square \beta_{4}>3$: Super-Gaussian distribution

Kurtosis-Based

Non-Gaussianity Measure

$$
\beta_{4}=\frac{\mathbb{E}\left[(s-\mathbb{E}[s])^{4}\right]}{\left(\mathbb{E}\left[\left(s-\mathbb{E}[s)^{2}\right]\right)^{2}\right.}
$$

\square Non-Gaussianity is strong if $\left(\beta_{4}-3\right)^{2}$ is large.

- Non-Gaussianity of the data for a direction b can be measured by letting $s=\langle\boldsymbol{b}, \boldsymbol{x}\rangle$ and $\|\boldsymbol{b}\|=1$.

PP Criterion

- In practice, we use empirical approximation:

$$
J_{P P}(\boldsymbol{b})=\left(\frac{\frac{1}{n} \sum_{i=1}^{n}\left(s_{i}-\bar{s}\right)^{4}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left(s_{i}-\bar{s}\right)^{2}\right)^{2}}-3\right)^{2}
$$

$$
\begin{aligned}
& s_{i}=\left\langle\boldsymbol{b}, \boldsymbol{x}_{i}\right\rangle \\
& \bar{s}=\frac{1}{n} \sum_{i=1}^{n} s_{i}
\end{aligned}
$$

- PP criterion:

$$
\begin{aligned}
\psi=\underset{\boldsymbol{b} \in \mathbb{R}^{d}}{\operatorname{argmax}} & J_{P P}(\boldsymbol{b}) \\
& \text { subject to }\|\boldsymbol{b}\|=1
\end{aligned}
$$

\square There is no known method for analytically solving this optimization problem.
\square We resort to numerical methods.

Gradient Ascent Approach ${ }^{200}$

Repeat until convergence:

- Update b to increase $J_{P P}$:

$$
\boldsymbol{b} \longleftarrow \boldsymbol{b}+\varepsilon \frac{\partial J_{P P}}{\partial \boldsymbol{b}}
$$

- Modify b to satisfy $\|\boldsymbol{b}\|=1$:

$$
b \longleftarrow b /\|b\|
$$

Data Centering and Sphering ${ }^{201}$

\square Centering:

$$
\overline{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{x}_{j}
$$

\square Sphering (or pre-whitening):

$$
\widetilde{\boldsymbol{x}}_{i}=\left(\frac{1}{n} \sum_{i=1}^{n} \overline{\boldsymbol{x}}_{i} \overline{\boldsymbol{x}}_{i}^{\top}\right)^{-\frac{1}{2}} \overline{\boldsymbol{x}}_{i}
$$

- In matrix,

$$
\widetilde{\boldsymbol{X}}=\left(\frac{1}{n} \boldsymbol{X} \boldsymbol{H}^{2} \boldsymbol{X}^{\top}\right)^{-\frac{1}{2}} \boldsymbol{X} \boldsymbol{H}
$$

$$
\begin{array}{ll}
\widetilde{\boldsymbol{X}}=\left(\widetilde{\boldsymbol{x}}_{1}\left|\widetilde{\boldsymbol{x}}_{2}\right| \cdots \mid \widetilde{\boldsymbol{x}}_{n}\right) & \boldsymbol{X}=\left(\boldsymbol{x}_{1}\left|\boldsymbol{x}_{2}\right| \cdots \mid \boldsymbol{x}_{n}\right) \\
\boldsymbol{H}=\boldsymbol{I}_{n}-\frac{1}{n} \mathbf{1}_{n \times n} & \boldsymbol{I}_{n}: n \text {-dimensional identity matrix } \\
\mathbf{1}_{n \times n}: n \times n \text { matrix with all ones }
\end{array}
$$

Data Centering and Sphering ${ }^{202}$

By centering and sphering, covariance matrix becomes identity:

$$
\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top}=\boldsymbol{I}_{d}
$$

Homework: Prove it!

Simplification for Sphered Datã ${ }^{33}$

For centered and sphered samples $\left\{\widetilde{\boldsymbol{x}}_{i}\right\}_{i=1}^{n}$,

$$
\begin{aligned}
& J_{P P}(\boldsymbol{b})=\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right)^{2} \\
& \frac{\partial J_{P P}}{\partial \boldsymbol{b}}=2\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right)\left(\frac{4}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}\right)
\end{aligned}
$$

- Gradient update rule is

$$
\boldsymbol{b} \longleftarrow \boldsymbol{b}+\varepsilon\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right) \frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}
$$

■ Don't forget normalization: $b \longleftarrow \boldsymbol{b} /\|\boldsymbol{b}\|$
■ Homework: Prove them!

Examples

204
$\square d=2, \quad m=1, \quad n=1000$
$\square x=\binom{s}{t}$
$\square \sim N(0,1)$
$\square \sim U(-\sqrt{3}, \sqrt{3})$

Examples (cont.)

$\square d=2, \quad m=1, \quad n=1000$

$$
\square=\binom{s}{t}
$$

$\square s \sim N(0,1)$
$\square t \sim \operatorname{Lap}(0,1)$

Notification of Final Assignment

■ Data Analysis: Apply dimensionality reduction or clustering techniques to your own data set and "mine" something interesting!

Deadline: July $22^{\text {nd }}$ (Fri) 17:00

- Bring the printed report to W8E-505

Mini-Conference on Data Analysis

\square On July $12^{\text {th }}$, we have a mini-conference on data analysis.

- Some of the students may present their data analysis results.
- Those who give a talk at the conference will have very good grades!

Schedule

■ June 28 ${ }^{\text {th }}$: Preparation for mini-conference (no class)

- July $5^{\text {th }}$: Preparation for mini-conference (no class)
- July 12 ${ }^{\text {th: }}$: Mini-conference on Data Analysis

■ July 19 ${ }^{\text {th }}$: Mini-conference on Data Analysis (reserve)

Mini-Conference on Data Analysis

- Application procedure: On June $21^{\text {st }}$, just say to me "I want to give a talk!".
- Presentation: approx. 10 min (?)
- Description of your data
- Methods to be used
- Outcome

Slides should be in English.
Better to speak in English, but Japanese may also be allowed (perhaps your friends will provide simultaneous translation!).

If You Are ...

210
\square eager to do homework, try the following two problems.

Homework

1. Implement PP and reproduce the 2dimensional examples shown in the class.
http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

You may create similar (and more interesting) data sets by yourself.

Homework (cont.)

2. Prove the following for centered and sphered samples $\left\{\widetilde{\boldsymbol{x}}_{i}\right\}_{i=1}^{n}$:
A) Covariance matrix is given by

$$
\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top}=\boldsymbol{I}_{d}
$$

B) $J_{P P}$ under $\|\boldsymbol{b}\|=1$ is given by

$$
J_{P P}(\boldsymbol{b})=\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right)^{2}
$$

C) Gradient $\partial J_{P P} / \partial \boldsymbol{b}$ is given by

$$
\frac{\partial J_{P P}}{\partial \boldsymbol{b}}=2\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{4}-3\right)\left(\frac{4}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i}\left\langle\boldsymbol{b}, \widetilde{\boldsymbol{x}}_{i}\right\rangle^{3}\right)
$$

