Advanced Data Analysis: Projection Pursuit

Masashi Sugiyama (Computer Science)

W8E-505, sugi@cs.titech.ac.jp

http://sugiyama-www.cs.titech.ac.jp/~sugi

I.i.d. Samples

Independent and identically distributed (i.i.d.) samples

$$oldsymbol{x}_i \overset{i.i.d.}{\sim} P(oldsymbol{x})$$

 Independent: joint probability is a product of each probability

$$P(\boldsymbol{x}_i, \boldsymbol{x}_j) = P(\boldsymbol{x}_i)P(\boldsymbol{x}_j)$$

 Identically distributed: each variable follow the identical distribution:

$$\boldsymbol{x}_i \sim P(\boldsymbol{x})$$

Gaussian Distribution

Gaussian distribution: Probability density function is given by

$$\phi_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{\frac{d}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

 μ, Σ : Mean, covariance

$$\mathbb{E}[oldsymbol{x}] = oldsymbol{\mu}$$

$$\mathbb{E}[(x-\mu)(x-\mu)^{\top}] = \Sigma$$

When one-dimensional,

$$\phi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Interesting Directions for Data Visualization

- Which distribution is interesting to visualize?
- If data follows the Gaussian distribution, samples are spherically distributed.
- Visualizing spherically distributed samples is not so interesting.
- What about "non-Gaussian" data?

Non-Gaussian Distributed Datá⁹⁴

Non-Gaussian data look more interesting than Gaussian:

Projection Pursuit

- Idea: Find the most non-Gaussian direction in the data
- For this purpose, we need a criterion to measure non-Gaussianity of data as a function of the direction.

Kurtosis

Kurtosis for a one-dimensional random variable s:

$$\beta_4 = \frac{\mathbb{E}[(s - \mathbb{E}[s])^4]}{(\mathbb{E}[(s - \mathbb{E}[s])^2])^2} \quad (>0)$$

- Kurtosis measures the "sharpness" of the distributions.
- If tail of distribution is
 - Heavy β_4 is large
 - Light β_4 is small

Kurtosis (cont.)

- $\beta_4 = 3$: Gaussian distribution
- $\beta_4 < 3$: Sub-Gaussian distribution
- $\beta_4 > 3$: Super-Gaussian distribution

Kurtosis-Based Non-Gaussianity Measure

$$\beta_4 = \frac{\mathbb{E}[(s - \mathbb{E}[s])^4]}{(\mathbb{E}[(s - \mathbb{E}[s])^2])^2}$$

- Non-Gaussianity is strong if $(\beta_4 3)^2$ is large.
- Non-Gaussianity of the data for a direction b can be measured by letting $s = \langle b, x \rangle$ and ||b|| = 1.

PP Criterion

In practice, we use empirical approximation:

$$J_{PP}(\boldsymbol{b}) = \left(\frac{\frac{1}{n} \sum_{i=1}^{n} (s_i - \overline{s})^4}{(\frac{1}{n} \sum_{i=1}^{n} (s_i - \overline{s})^2)^2} - 3\right)^2$$

$$\overline{s}_i = \langle \boldsymbol{b}, \boldsymbol{x}_i \rangle$$

$$\overline{s} = \frac{1}{n} \sum_{i=1}^{n} s_i$$

$$s_i = \langle \boldsymbol{b}, \boldsymbol{x}_i \rangle$$

$$\overline{s} = \frac{1}{n} \sum_{i=1}^{n} s_i$$

PP criterion:

$$oldsymbol{\psi} = \operatorname*{argmax} J_{PP}(oldsymbol{b})$$

 $oldsymbol{b} \in \mathbb{R}^d$

subject to
$$||\boldsymbol{b}|| = 1$$

- There is no known method for analytically solving this optimization problem.
- We resort to numerical methods.

Gradient Ascent Approach

- Repeat until convergence:
 - Update b to increase J_{PP} :

$$\begin{array}{c} \boldsymbol{b} \longleftarrow \boldsymbol{b} + \varepsilon \frac{\partial J_{PP}}{\partial \boldsymbol{b}} \\ (\varepsilon > 0) \end{array}$$

• Modify \boldsymbol{b} to satisfy $\|\boldsymbol{b}\| = 1$:

$$oldsymbol{b} \longleftarrow oldsymbol{b} / \| oldsymbol{b} \|$$

Data Centering and Sphering²⁰¹

Centering:

$$\overline{\boldsymbol{x}}_i = \boldsymbol{x}_i - \frac{1}{n} \sum_{j=1}^n \boldsymbol{x}_j$$

Sphering (or pre-whitening):

$$\widetilde{\boldsymbol{x}}_i = \left(\frac{1}{n}\sum_{i=1}^n \overline{\boldsymbol{x}}_i \overline{\boldsymbol{x}}_i^{\mathsf{T}}\right)^{-\frac{1}{2}} \overline{\boldsymbol{x}}_i$$

In matrix,

$$\widetilde{\boldsymbol{X}} = (\frac{1}{n} \boldsymbol{X} \boldsymbol{H}^2 \boldsymbol{X}^{\top})^{-\frac{1}{2}} \boldsymbol{X} \boldsymbol{H}$$

$$oldsymbol{\widetilde{X}} = (\widetilde{oldsymbol{x}}_1 | \widetilde{oldsymbol{x}}_2 | \cdots | \widetilde{oldsymbol{x}}_n) \qquad oldsymbol{X} = (oldsymbol{x}_1 | oldsymbol{x}_2 | \cdots | oldsymbol{x}_n)$$

$$oldsymbol{X} = (oldsymbol{x}_1 | oldsymbol{x}_2 | \cdots | oldsymbol{x}_n]$$

$$oldsymbol{H} = oldsymbol{I}_n - rac{1}{n} oldsymbol{1}_{n imes n}$$

 I_n : n-dimensional identity matrix

 $\mathbf{1}_{n \times n}$: $n \times n$ matrix with all ones

Data Centering and Sphering²⁰²

By centering and sphering, covariance matrix becomes identity:

$$\frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_{i} \widetilde{\boldsymbol{x}}_{i}^{\top} = \boldsymbol{I}_{d}$$

Homework: Prove it!

Simplification for Sphered Data⁰³

For centered and sphered samples $\{\widetilde{\boldsymbol{x}}_i\}_{i=1}^n$,

$$J_{PP}(\boldsymbol{b}) = \left(\frac{1}{n} \sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3\right)^2$$

$$\frac{\partial J_{PP}}{\partial \boldsymbol{b}} = 2\left(\frac{1}{n}\sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3\right) \left(\frac{4}{n}\sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_i \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^3\right)$$

Gradient update rule is

$$\boldsymbol{b} \longleftarrow \boldsymbol{b} + \varepsilon \left(\frac{1}{n} \sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3 \right) \frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_i \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^3$$

- Don't forget normalization: $\boldsymbol{b} \longleftarrow \boldsymbol{b}/\|\boldsymbol{b}\|$
- Homework: Prove them!

Examples

$$d = 2, m = 1, n = 1000$$

$$\mathbf{x} = \begin{pmatrix} s \\ t \end{pmatrix}$$

- $s \sim N(0,1)$
- $\blacksquare \ t \sim U(-\sqrt{3}, \sqrt{3})$

Examples (cont.)

$$d = 2, m = 1, n = 1000$$

$$\mathbf{x} = \begin{pmatrix} s \\ t \end{pmatrix}$$

- $s \sim N(0,1)$
- $\blacksquare t \sim Lap(0,1)$

Notification of Final Assignment

Data Analysis: Apply dimensionality reduction or clustering techniques to your own data set and "mine" something interesting!

- Deadline: July 22nd (Fri) 17:00
 - Bring the printed report to W8E-505

Mini-Conference on Data Analysis

- On July 12th, we have a mini-conference on data analysis.
- Some of the students may present their data analysis results.
- Those who give a talk at the conference will have very good grades!

Schedule

- June 28th: Preparation for mini-conference (no class)
- July 5th: Preparation for mini-conference (no class)
- July 12th: Mini-conference on Data Analysis
- July 19th: Mini-conference on Data Analysis (reserve)

Mini-Conference on Data Analysis

- Application procedure: On June 21st, just say to me "I want to give a talk!".
- Presentation: approx. 10 min (?)
 - Description of your data
 - Methods to be used
 - Outcome
- Slides should be in English.
- Better to speak in English, but Japanese may also be allowed (perhaps your friends will provide simultaneous translation!).

If You Are ...

eager to do homework, try the following two problems.

Homework

1. Implement PP and reproduce the 2dimensional examples shown in the class.

http://sugiyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

You may create similar (and more interesting) data sets by yourself.

Homework (cont.)

- 2. Prove the following for centered and sphered samples $\{\widetilde{\boldsymbol{x}}_i\}_{i=1}^n$:
 - A) Covariance matrix is given by

$$rac{1}{n}\sum_{i=1}^n \widetilde{m{x}}_i\widetilde{m{x}}_i^ op = m{I}_d$$

B) J_{PP} under $||\boldsymbol{b}|| = 1$ is given by

$$J_{PP}(\boldsymbol{b}) = \left(\frac{1}{n} \sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3\right)^2$$

c) Gradient $\partial J_{PP}/\partial b$ is given by

$$\frac{\partial J_{PP}}{\partial \boldsymbol{b}} = 2\left(\frac{1}{n}\sum_{i=1}^{n} \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^4 - 3\right) \left(\frac{4}{n}\sum_{i=1}^{n} \widetilde{\boldsymbol{x}}_i \langle \boldsymbol{b}, \widetilde{\boldsymbol{x}}_i \rangle^3\right)$$