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ASR by statistical pattern recognition

 True joint distribution of a word sequence, IV, and its
corresponding acoustic vector sequence, X, is assumed to
be modeled by a true parametric pdf:

PI.X) = P(X) BOW) )

 The optimal decoder which achieves the expected
minimum word error rate becomes

VAV= argmax P(VHX) = argmax PA(X‘W) PF(W) (2)

e Since we do not know the true parametric form of P(WV,X)
nor true parameter values, they need to be estimated from
a large set of labeled speech and text training data.
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Speech has a large number of sources of
variations.

Mismatch between training and testing
“There is no data like more data.”

We always have a data sparseness problem.

Generalization
— Model training
— Model adaptation



Main causes of acoustic variation in speech

Microphone
e Distortion
¢ Electrical noise

e Directional characteristics Distortion
Noise
Noise Echoes
» Other speakers Dropouts
e Background noise
e Reverberations
v Speech
# Channel # recognition
system

Speaker Task/Context

* Voice quality « Man-machine dialogue
e Pitch e Dictation

e Gender * Free conversation

e Dialect e Interview

Speaking style Phonetic/Prosodic context
e Stress/Emotion

e Speaking rate

e Lombard effect




WORD ERROR RATE

History of DAR

PA

speech recognition
hm

hane Aarl toctc
NCIIVITITIIAQT N LUOLO
100%
Read  opeech e foreign
Speech
WSJ
"""""""""" Broadcast
P Spontaneous 20k Varied SF{E'eCh
Speech Microphone “...foreign
(0]
ATIS T NAB
10% S |
Noisy
. 1k n
= v
o
Resource
Management
Courtesy NIST 1999 DARPA
HUB-4 Report, Pallett et al.
1%

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003




Word error rate (WER) as a function of the size of
acoustic model training data (8/8 = 510 hours)
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Salmon/sea bass classification using complex models
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Salmon/sea bass classification using a simple curve
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Mismatch between training and testing

Signal space Feature space Model space

Training <

Feature Modeling
extraction

Testing <

13
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e Supervised adaptation
 Unsupervised adaptation

— Recognition hypotheses are used as supervision
information

— On-line/off-line adaptation
— Instantaneous/batch adaptation

— Iterative adaptation: recognition errors are
reinforced during the iteration

e ML, MAP or discriminative estimation



Discriminative training

Maximum mutual information (MMI) (Normandin,
1996)

— The mutual information between data and their
corresponding labels/symbols is maximized

Minimum classification error (MCE) (Juang & Katagiri,
1992)

— The recognition error rate of the classifier is embedded in
a smooth function form, and the expected loss of the

PIQCCI'FIQY' 1C m nlm GA
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Minimum phone/word error (MPE/MWE) (Povey,
2003)

— Performance is optimized at the substring pattern level

Discriminative training techniques are more heavily
biased towards the supervision hypothesis
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Generalization nmhlpm
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e How to reduce the effect of hypothesis bias and
allow robust estimates using a limited amount of
data (no theoretical solution)

e By controlling the degree of freedom of the
model/smoothing (Occam’s razor)

— Trade-off between a complicated model and a constrained
model is optimized

— With/without using a priori knowledge

— A priori knowledge is obtained from our speech knowledge
or from training data

By maximizing “margins” between training samples
and decision boundaries



Margin maximization

Support vectors

Decision boundary

“Margin” is defined as the perpendicular distance between the decision boundary
and the closest data points. Maximizing the margin leads to a particular choice
of decision boundary determined by a subset of the data points, “support
vectors”.
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Interspeech speech sessions
(AM: acoustic model training and adaptation)
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Constraining the degree of freedom with/without using
a priori knowledge

Using a priori knowledge HHEELE U &) plralt
Knowledge

Transformation

. VIN | M,:AP;IID\I/IJI;LR } i
Correlation | CMN, SBR, CMLLR
MAP and Bayesian :
estimation }-—->[ MAP+VES Inter\p;(F)gatlon }
EMAP, QB \>[ SMAP
( : ) Structural h
Jacobian SMAPLR ructural approac ]
( Eigen-voice MLLR+eigen-voice Ensemble methods
\ CV, aggregated
adaptation

-
Multiple modeling } MAP+MCE
cl [
) - Iscriminative training
CAT

DBN MCE
(( Factorization MMI/MPE h

[ Large-margin training
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4. Constraining the degree of freedom by using a
priori knowledge



Constraining the degree of freedom by
using a priori knowledge

Vocal tract length normalization (VTN)
Correlation

MAP and Bayesian estimation

EMAP and quasi-Bayes (QB) methods
Jacobian approach

Eigen-voice

Multiple modeling (multi-style training)

— Cluster-based model selection
Cluster adaptive training (CAT)
Bayesian networks
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e Simple constrained models

* Piecewise linear or bilinear warping in the
frequency domain (Wakita, 1977)

e Speaker-specific Bark/Mel scale warping (Lee
& Rose, 1996)



Correlation

Estimation of model parameters for units, including those not included in
the adaptation data, based on pair-wise unit correlation (Furui, 1980)

U, = (r/z a)]] o,V + 1-r)U,
J J

— /
Ui — (uiI’ Uiy, Uy )
Model vector of phoneme i obtained by the whole vocabulary

V. :(v

/
j jl’vJ'Z""’vjN)
Model vector of phoneme ;j obtained by a fraction of the vocabulary

. N x N matrix estimated by multiple regression analysis using training data
@.. . Weighting coefficient based on multiple correlation coefficient

vV C0<r<li

Extended to the Quasi-Bayes technique (Huo and Lee, 1998)



@Y

ION

\ 7 @Y

D"\ f\f‘:"\ 7~
vdytoidll To

a'a

N i -
iHlid

AD
IVIAT

A
U

~ + +
all L L

Maximum a posteriori (MAP) estimation (Gauvain
and Lee, 1994)
A, = argmax P(A‘X,W) = argmax P(X‘A,W) P(A)

Bayesian estimation
P(Alx.w) = Px|Aw)P(A)/[P(X|AW)P(A)dA

Mean values are equivalent, but variances are
different

Bayesian estimation is more robust and more
effective when the adaptation data is limited

Bayesian estimation is computationally expensive



me + L

CNA ND ~
L WD I1TITLIHTV

AD anAd
IVIAT U

Ac
dll as
Extension of MAP approach for incremental adaptive
learning of HMM parameters

Using the correlation between the mean values of
different speech units

EMAP (extended MAP) (Zavaliagkos et al., 1995)

— Fxnllrl’rlv introducing correlations

‘O ¥

QB (quasi-Bayes) (Huo and Lee, 1998)

— Based on the assumption that all mean vectors have a joint
prior distribution
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Jacobi
 An analytic approach to adapting models
under an initial condition to a target condition
(Sagayama et al., 1997, 2001), assuming that

— the variation can be analytically modeled, and

— the difference between the two conditions is
relatively small.

 Changes are related by Jacobian matrices and
the adaptation is performed by simple matrix
arithmetic.
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e Speaker-dependent models from many
speakers are created, and PCA is carried out
for model parameters for all the speakers.

* The lower order eigen-vectors are selected as
eigen-voices.

 For a new speaker, weights for each eigen-
voice are estimated in a maximum likelihood

estimation to be used for model adaptation
(Kuhn et al., 1998, Nguyen et al., 2002)



Multiple modeling
(multi-style training)

 Ensemble of condition-specific models
(gender, age, speaking rate, spontaneity, etc.)
are trained and used within a selection,
competition or combination framework
(Nanjo & Kawahara, 2002).

 Dynamic Bayesian networks (DBN) handles
model dependencies with respect to auxiliary
variables or hidden factors.

e Cluster-based model selection
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 Multiple models are prepared using a
clustering technique.

e The optimum model for input speech is
selected to maximize likelihood (Kosaka et al.,
1994; Padmanabhan et al., 1998).

e Clustering training data at the utterance level
provides better performance than that at the
lecture level (Shinozaki & Furui, 2004).
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A linear interpolation of all the clusters is used
(Gales, 1998).

HMM component weights and variances are tied
over all the speaker clusters, and a set of
interpolation values, the weight vector, is estimated.

An explicit set of means or cluster dependent MLLR
transforms of some canonical model are used.

CAT and eigen-voice methods are mathematically
similar: linear combinations of some basis vectors
representing “prototypical” speakers.



Cluster adaptive training

mean 1

mean 2 Weight

____________



A Bayesian network with five variables

JAX

/ P(cla)

/ \ Hidden
B varlables

P(8l4)
/

B
< P(E[c)

) \ W Observation
\/ / \\variables
L 4 E -
N4

Joint distribution:  P(A,B,C, D, E)= P(A)P(B|A)P(C|A)P(D|B,C)P(E[C)

Variables with known values are shaded. Conditional probability functions
(indicated by boxes) are associated with each variable and used to return

numerical values for conditional probabilities.
34



Bayesian network representation of HMM
Incorporating speaking rate variations

Phone

Speaking rate
mode

/

Phone state

Speaking rate Mixture
observation
l Transition
Acoustic
observation

(Shinozaki & Furui, 2003)

35
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5. Constraining the degree of freedom without using a
priori knowledge



Constraining the degree of freedom
without using a priori knowledge

Structural approach

Transformation-based approaches
— Cepstral mean normalization (CMN)
— MLLR
— Signal bias removal (SBR)

— CMLLR

Interpolation
Vector field smoothing (VFS)

Ensemble methods
— Cross validation adaptation
— aggregated adaptation
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Structural approach
Hierarchical codebook adaptation algorithm (Shiraki
& Honda, 1987; Furui, 1989): a set of spectra in
adaptation speech and the reference codebook

elements are clustered hierarchically by increasing
the number of clusters.

Adaptation is performed hierarchically from the
global variation characteristics down to the local
ones.

The method was extended to continuous HMMs
(Matsui & Furui, 1998; Shinoda & Watanabe, 1995).

Also applied to SMAP and SMAPLR methods.



Hierarchical codebook adaptation algorithm maintaining
continuity between adjacent clusters
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Cepstral distortion between input speech and reference
templates resulted from hierarchical code-word adaptation
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e The number of free parameters is limited by
tying the HMM parameters or by applying
some constraints on the parameters.

— Cepstral mean normalization (CMN)

— Maximum likelihood linear regression (MLLR)
— Signal bias removal (SBR)

— Constrained MLLR (CMLLR)

— Interpolation

— Vector field smoothing (VFS)
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Most widely used transformation-based approach

Originally the mean vectors in HMMs were modeled
using an affine transformation (Leggetter &
Woodland, 1995).

Extended to update variances (Gales & Woodland,
1996).

Gaussian distributions in HMM are clustered into
phone classes, and transformation is shared.

Regression class trees for robust clustering

Signal bias removal (SBR) (Rahim and Juang, 1996)
corresponds to a special case of MLLR.



MLLR (maximum likelihood linear regression) for
adaptation of continuous density HMMs

N
n=IC
C=lo, puy,... uy]'s (n +1)-dimensional extended mean vector

u . n-dimensional mean vector

o : offset term

o =1 :include an offset in the regression
o = 0 : ignore offsets

L : adapted mean vector

[':n X(n +1) transformation matrix maximizing the
likelihood of the adaptation data
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e The same transformation matrix is used for the
covariance matrices and the mean vectors of HMMs

(Digalakis et al., 1995; Gales, 1998).

 This method can be used not only for model

adaptation but also as a feature adaptation
technique.

 Usually implemented for diagonal covariance,
continuous density HMMs, due to computational
reasons.



INT erpo ation and VFS
 The bias of a parameter having no adaptation data
was estimated by interpolating the biases of nearby

parameters (Shinoda et al., 1991)

e Vector field smoothing (VFS): Correspondence of
feature vectors between different speakers are
viewed as a smooth vector field (Ohkura et al., 1992).

— Interpolation and smoothing of the
correspondence are introduced into the
adaptation process to reduce “observation errors”.



Vector Field Smoothing (VFS)

HMM adapted by
MLLR and MAP

Moving
vector

Final HMM

S| HMM

S| HMM

(Ohkura e

tal., 1992)




Cross validation (CV) and
aggregated adaptation methods

* In both methods, adaptation utterances are split into
K exclusive subsets, each with roughly the same size,
to suppress the negative effects of recognition errors
(Shinozaki et al., 2009).

e CV adaptation: Adaptation utterances used in the
decoding step and those used in the model updating
step are separated based on the K-fold CV
technique.

 Aggregated adaptation: Each adaptation utterance
set is decoded N times using separate models, based
on the idea of the bagging approach.



Unsupervised cross-validation (CV) adaptation

Initial model

Copy
- :
M(1) M(2) | ——-- | M(K)
lterate i i i
D(1) D(2) D(K) | Evaluation speech data

l Speech recognition

Recognition
resuits

Recognition
hypothesis

Model update

® Reducing the influence of recognition errors by separating the data used for
the decoding step and the model update step
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e ML-based combinations
— MAP + MLLR (MAPLR, etc)
— MAP + structural method (SMAP)
— MAP + VFES

— MAP + affine transform + structural method
(SMAPLR)

— MLLR + eigen-voice method
e Discriminative approach based combinations

— MAP + MCE
— MAP + MMI/MPE
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Combination of MAP estimation and the flexible
parameter tying strategy (Shinoda & Lee, 2001).

A hierarchical structure in the model space is made.

Priors corresponding to child nodes in the tree are
derived from the parent node.

e All the priors for all the HMM parameters are

specified to perform efficient and effective
adaptation.



Tree structure for Gaussian pdfs in continuous density
HMMs used in the SMAP method

Layer 1 =—=-- < >fxn1
(root) R

A2

(The case when the dimension is
zum one (scalar) is shown for simplicity)
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To reduce the effects of recognition errors in
the hypothesis

N-best list based instantaneous unsupervised
adaptation using MAP method (Matsui &
Furui, 1998)

Smooth estimation and utterance verification
are combined

N-best list based Bayesian framework for
MLLR (Yu & Gales, 2008)



Discriminative approach based
combination and extension

MAP+MCE (Matsui & Furui, 1995)

Bayesian discriminative unsupervised
adaptation (Discriminative MAP estimation)
(Raut & Gales, 2009)

l-smoothing (Interpolation between MLE and
a discriminative objective function (MMl))
(Povey & Woodland, 2002)

Large-margin discriminative training:
equivalent to Support Vector Machines (SVM)



Bayesian discriminative adaptation
(Discriminative MAP estimation)

MAP Bayesian approach for discriminative
unsupervised adaptation (Raut & Gales, 2009)

Bayesian framework reduces the hypothesis
bias and makes the discriminative adaptation
less sensitive to hypothesis errors.

Allows robust estimation of discriminative
transformes.



Large-margin discriminative training

e Margin: distance between the well-classified
samples and the decision boundary
— Margin is directly maximized, or
— Some form of combined scores of the margin and

the empirical error rate is optimized.

e Sigmoid bias in the MCE training is interpreted
as a soft margin and optimized (Yu et al.,
2008).

e Standard MPE and MMI training has been

extended to large-margin based methods
(Heigold et al., 2008; Saon et al., 2008).



Constraining the degree of freedom with/without using
a priori knowledge

Using a priori knowledge HHEELE U &) plralt
Knowledge

Transformation
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CMs are widely used in unsupervised adaptation to select
more reliable speech segments (words or utterances).

Posterior probability in the standard MAP decision rule is
widely used.

It is hard to precisely estimate the normalization term in the
denominator.

CM problem is sometimes formulated as a statistical
hypothesis testing problem (likelihood ratio testing (LRT)) :
utterance verification framework.

Major difficulty with LRT is how to model the alternative
hypothesis (general background model, hypothesis-specific
anti-model, a set of competing models, etc.)
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8. Special training methods for the models used for
adaptation



Special training methods for
adaptation

 To make the adaptation process more effective or to
keep the consistency between training and testing,
special training methods have been investigated.

e Speaker adaptive training (SAT) (Anastasakos et al.,
1996; Pye and Woodland, 1997)

1.

2.
3.

Mapping from each individual model to initial model is
estimated.

The mapping is applied to the data for each speaker.

Mapped data is used to train the speaker-dependent
model.

This process is iterated until convergence.

Canonical models represent only variability from
individual speakers.
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Explicitly model all the factors affecting the acoustic
signal (Rosti and Gales, 2002).

The trained model set is expected to be used more
flexibly than in standard SAT.

It is possible to factor-in only those factors
appropriate to a particular target domain.

The target domain specific factors are simply
estimated from limited target specific data.

MLLR as the speaker transform and CAT as the noise
(acoustic condition) transform (Gales, 2001).



DBN representing a factor analyzed HMM

1+1
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Discrete
variables
O Continuous
variables

x, : state vector, O, : observation vector, g, : HMM state,

@;", w? : mixture indicator



DBN for acoustic factorization
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Conclusion and future works

Human subjects produce one to two orders of
magnitude fewer errors than machines.

Human subjects are far more flexible and adaptive
than machines against various variations of speech.

How to train and adapt AMs using limited amounts
of data: generalization problem.

— Controlling the degree of freedom with/without using a
priori knowledge

— Maximizing “margins”
There is no universal method.

We need to know more about human speech
processing and natural speech variation.

Future systems need to have an efficient way of
representing, storing, and retrieving various
knowledge resources.



