Classification of Partial Differential Equations.

- Parabolic Equation (Diffusion Eq.)
- Hyperbolic Equation (Advection Eq.)
- Elliptic Equation (Poisson Eq.) [Multi-Grid Method]

2nd Order Linear **Partial Differential Equation**

$$A\frac{\partial^2 f}{\partial x^2} + B\frac{\partial^2 f}{\partial x \partial y} + C\frac{\partial^2 f}{\partial y^2} + D\frac{\partial f}{\partial x} + E\frac{\partial f}{\partial y} + Ff + G = 0$$

Elliptic

$$B^2 - 4AC < 0$$

Parabolic

$$B^2 - 4AC = 0$$

Hyperbolic
$$B^2 - 4AC > 0$$

Characteristics of the partial differential equation is determined by the highest order derivative term.

2

Typical Equations

Elliptic Equation

Poisson Ea. (A = C = 1, B = 0)

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \rho$$

Parabolic Equation

Diffusion Eq.

 $(A=\kappa, B=C=0)$

Hyperbolic Equation

Wave Eq.

$$(A = -c^2, B = 0, C = 1)$$

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \rho$$

$$\frac{\partial f}{\partial t} = \kappa \frac{\partial^2 f}{\partial x^2}$$

$$\frac{\partial^2 f}{\partial t^2} - c^2 \frac{\partial^2 f}{\partial x^2} = 0$$

Partial Differential Equation in space

Boundary Problems (Boundary Conditions)

1D Poisson Eq.
$$\frac{d^2 f}{dx^2} = \rho = const$$
 $(0 \le x \le 1)$

Boundary Condition: f(0) = 0, f(1) = 0

2D Poisson Eq.

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \rho = const \quad (x \in S)$$

Boundary Conditions: f is given at the surface - S

Differential Equation in time

Initial Condition

Time goes in one way

Newton Eq. :
$$\frac{d^2 \pmb{r}}{dt^2} = \pmb{F}$$
 $(t_0 \le t \le t_1)$ Initial Condition: $\pmb{r}(t_0) = \pmb{r_0}$, $\dot{\pmb{r}}(t_0) = \dot{\pmb{r_0}}$

$$\frac{d\mathbf{v}}{dt} = \mathbf{F}, \quad \frac{d\mathbf{r}}{dt} = \mathbf{v} \qquad (t_0 \le t \le t_1)$$
Initial Condition: $\mathbf{r}(t_0) = \mathbf{r}_{\theta}, \quad \mathbf{v}(t_0) = \mathbf{v}_{\theta}$

Partial Differential Equation in time and space

Initial Boundary Problem

One-dimensional diffusion equation:

$$\frac{\partial f}{\partial t} = \kappa \frac{\partial^2 f}{\partial x^2} \qquad (0 \le x \le 1)$$

Initial Condition: $f(x,0) = f_0(x)$ $(0 \le x \le 1)$

Boundary Condition: f(0,t) = 0, f(1,t) = 0

Discretization in time and space (Notation)

5

$$f(x_i, t^n) = f_i^n$$
 $f(x_i + \Delta x, t^n + \Delta t) = f_{i+1}^{n+1}$

Time and Space Cone for Information travel

Introduction to finite Difference Method

Finite Difference Approximation

Differential operators are replaced by finite difference expressions

Derivation of finite difference expressions

$$\frac{\partial f}{\partial x} \to \frac{f_{i+1} - f_i}{\Delta x}$$

9

Forward Difference

Taylor Expansion Series

$$f(x_{i} + \Delta x) = f(x_{i}) + \frac{\partial f}{\partial x}\Big|_{x=x_{i}} \Delta x + \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\Big|_{x=x_{i}} \Delta x^{2} + \frac{1}{6} \frac{\partial^{3} f}{\partial x^{3}}\Big|_{x=x_{i}} \Delta x^{3} + \cdots$$

$$\frac{f_{i+1} - f_{i}}{\Delta x} = \frac{\partial f}{\partial x}\Big|_{x=x_{i}} + \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\Big|_{x=x_{i}} \Delta x + \frac{1}{6} \frac{\partial^{3} f}{\partial x^{3}}\Big|_{x=x_{i}} \Delta x^{2} + \cdots$$

$$= \frac{\partial f}{\partial x}\Big|_{x=x_{i}} + O(\Delta x) \tag{1}$$

The accuracy of the finite difference is the first order of Δx .

10

Backward Difference

Taylor Expansion Series

$$f(x_{i} - \Delta x) = f(x_{i}) - \frac{\partial f}{\partial x} \Big|_{x=x_{i}} \Delta x + \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} \Big|_{x=x_{i}} \Delta x^{2} - \frac{1}{6} \frac{\partial^{3} f}{\partial x^{3}} \Big|_{x=x_{i}} \Delta x^{3} + \cdots$$

$$\frac{f_{i} - f_{i-1}}{\Delta x} = \frac{\partial f}{\partial x} \Big|_{x=x_{i}} - \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} \Big|_{x=x_{i}} \Delta x + \frac{1}{6} \frac{\partial^{3} f}{\partial x^{3}} \Big|_{x=x_{i}} \Delta x^{2} + \cdots$$

$$= \frac{\partial f}{\partial x} \Big|_{x=x_{i}} + O(\Delta x)$$
(2)

The accuracy of the finite difference is the first order of Δx .

Central Difference

Subtracting (2) from (1),

$$f(x_{i} + \Delta x) = f(x_{i} - \Delta x) + 2 \frac{\partial f}{\partial x} \Big|_{x=x_{i}} \Delta x + \frac{1}{3} \frac{\partial^{3} f}{\partial x^{3}} \Big|_{x=x_{i}} \Delta x^{3} + \cdots$$

$$\frac{f_{i+1} - f_{i-1}}{2\Delta x} = \frac{\partial f}{\partial x} \Big|_{x=x_{i}} + \frac{1}{6} \frac{\partial^{3} f}{\partial x^{3}} \Big|_{x=x_{i}} \Delta x^{2} + \cdots$$

$$= \frac{\partial f}{\partial x} \Big|_{x=x_{i}} + O(\Delta x^{2})$$

The accuracy of the finite difference is the second order of Δx .

Accuracy of Finite Difference Expressions

Typical Finite Difference Expressions for 1st-order derivative

Finite Difference for 2nd-order derivative

By adding (1) to (2),

$$f(x_{i} + \Delta x) + f(x_{i} - \Delta x) = 2f(x_{i}) + \frac{\partial^{2} f}{\partial x^{2}} \Big|_{x=x_{i}} \Delta x^{2} + \frac{1}{12} \frac{\partial^{4} f}{\partial x^{4}} \Big|_{x=x_{i}} \Delta x^{4} + \cdots$$

$$\frac{f_{i+1} - 2f_{i} + f_{i-1}}{\Delta x^{2}} = \frac{\partial^{2} f}{\partial x^{2}} \Big|_{x=x_{i}} + \frac{1}{12} \frac{\partial^{4} f}{\partial x^{4}} \Big|_{x=x_{i}} \Delta x^{2} + \cdots$$

$$= \frac{\partial^{2} f}{\partial x^{2}} \Big|_{x=x_{i}} + O(\Delta x^{2})$$

The accuracy of the finite difference is the second order of Δx .

Typical Finite Difference Expressions for 2nd-order derivative

14

16

GSIC

$$\frac{\partial^2 f}{\partial x^2} = \frac{f_{i+2} - 2f_{i-1} + f_i}{\Delta x^2} \tag{\Delta x}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{f_{i+1} - 2f_i + f_{i-1}}{\Delta x^2} \tag{\Delta x^2}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{-f_{i+2} + 16f_{i+1} - 30f_i + 16f_{i-1} - f_{i-2}}{12\Delta x^2} \left(\Delta x^4 \right)$$

Game

Rule: get a new value by replacing the average about surroundings

Game

Rule: get a new value by replacing the average about surroundings

Replacing with the average

18

Game

Rule: get a new value by replacing the average about surroundings

17

Game

	$f_{i,j+1}$	
$f_{i-1,j}$	$f_{i,j}$	$f_{i+1,j}$
	$f_{i,j-1}$	

i: grid index in the x-direction

j: grid index in the y-direction

This average process is

$$f_{i,j}^* = \frac{f_{i,j} + f_{i+1,j} + f_{i-1,j} + f_{i,j+1} + f_{i,j-1}}{5}$$

Game

$$f_{i,j}^{n+1} = \frac{f_{i,j}^{n} + f_{i+1,j}^{n} + f_{i-1,j}^{n} + f_{i,j+1}^{n} + f_{i,j-1}^{n}}{5}$$

n: present value

n+1: the value after average

By subtracting $f_{i,j}$ from both side

$$f_{i,j}^{n+1} - f_{i,j}^{n} = \frac{f_{i+1,j}^{n} - 2f_{i,j}^{n} + f_{i-1,j}^{n} + f_{i,j+1}^{n} - 2f_{i,j}^{n} + f_{i,j-1}^{n}}{5}$$

Game

When we regard $\Delta t = 1.0$, $\Delta x = \Delta y = 1.0$, $\kappa = 1/5$,

$$\frac{f_{i,j}^{n+1} - f_{i,j}^{n}}{\Delta t} = \kappa \frac{f_{i+1,j}^{n} - 2f_{i,j}^{n} + f_{i-1,j}^{n}}{\Delta x^{2}} + \kappa \frac{f_{i,j+1}^{n} - 2f_{i,j}^{n} + f_{i,j-1}^{n}}{\Delta y^{2}}$$

2-dimendional diffusion equation

$$\frac{\partial f}{\partial t} = \kappa \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right)$$

21

Parabolic Equation

23

1-dimeisional diffusion eq.
$$\frac{\partial \phi}{\partial t} = \kappa \frac{\partial^2 \phi}{\partial x^2}$$
 κ : diffusion coefficient

Image of diffusion equation: spreading distribution with fading out.

Increasing entropy

Particle Collision Process from the microscopic view

Thermal Conduction: Electron Collision Viscousity: Ion Collision **Neutron Collision** Nuclear Reactor:

1-dimensional

Diffusion Equation

$$\frac{\partial \Phi}{\partial t} = \kappa \frac{\partial^2 \Phi}{\partial x^2}$$

 κ : diffusion coefficient

Applying the forward finite difference to the time derivative term and the center finite difference to the spatial difference.

$$\frac{\phi_j^{n+1} - \phi_j^n}{\Delta t} = \kappa \frac{\phi_{j+1}^n - 2\phi_j^n + \phi_{j-1}^n}{\Delta x^2}$$

We can reduce to
$$\phi_j^{n+1} = \phi_j^n + \mu \Big(\phi_{j+1}^n - 2 \phi_j^n + \phi_{j-1}^n \Big)$$
 where
$$\mu = \frac{\kappa \Delta t}{\Delta x^2}$$

Sample Program 1


```
#include "xwin.h"
#define N 101
int main() {
    double f[N], fn[N], x[N], mu = 0.25;
    int j, icnt = 0;
    while(icnt < 100) {
        for(j=1; j < N-1; j++) {
            fn[j] = f[j] + mu*(f[j+1] - 2.0*f[j] + f[j-1]);
        }
        for(j=0; j < N; j++) f[j] = fn[j]; /* updating */
    }
}</pre>
Source Code
```

Stability Analysis (1/3)

von Neumann's Method

Assuming the perturbation $\phi_i^n = \delta \phi^n e^{ik \cdot j\Delta x}$

Where the notation i is the imaginary, k is the wave number, j is grid index, $j\Delta x$ is the grid position.

Substituting into $\phi_j^{n+1} = \phi_j^n + \mu \left(\phi_{j+1}^n - 2\phi_j^n + \phi_{j-1}^n \right)$

$$\delta \phi^{n+1} e^{ik \cdot j\Delta x} = \delta \phi^n e^{ik \cdot j\Delta x}$$

$$+ \mu \left(\delta \phi^n e^{ik \cdot (j+1)\Delta x} - 2\delta \phi^n e^{ik \cdot j\Delta x} + \delta \phi^n e^{ik \cdot (j-1)\Delta x} \right)$$

26

Stability Analysis (2/3)

27

n+1 step n step : amplitude ratio

$$\delta \phi_j^{n+1} / \delta \phi_j^n = 1 + \mu \left(e^{-ik\Delta x} - 2 + e^{ik\Delta x} \right)$$
$$= 1 - 2\mu (1 - \cos k\Delta x)$$

 $\cos k\Delta x = \frac{e^{ik\Delta x} + e^{-ik\Delta x}}{2}$

 $\left|\delta \varphi^{n+1} \middle/ \delta \varphi^n \right| < 1 \qquad \text{: The amplitude of the perturbation decrease in time.}$

The calculation is stable.

Stability Analysis (3/3)

Amplitude ratio: $\delta \phi_j^{n+1} / \delta \phi_j^n = 1 - 2\mu (1 - \cos k \Delta x)$

 μ < 0 : unstable, $0 < \mu < 1/2$: stable

 $1/2 < \mu$: unstable depending on the value k

We consider only the case of $0 < \kappa$,

$$u < \frac{1}{2}$$

We have to choose Δt satisfying the condition, but Δt should be decrease proportionally to Δx^2 with decrease of Δx .

2-dimendional Diffusion Equation

$$\frac{\partial f}{\partial t} = \kappa \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right)$$

Forward Difference in time $O(\Delta t)$

Central Difference in space $O(\Delta x^2)$

$$\frac{f_{i,j}^{n+1} - f_{i,j}^{n}}{\Delta t} = \kappa \frac{f_{i+1,j}^{n} - 2f_{i,j}^{n} + f_{i-1,j}^{n}}{\Delta x^{2}} + \kappa \frac{f_{i,j+1}^{n} - 2f_{i,j}^{n} + f_{i,j-1}^{n}}{\Delta y^{2}}$$

Source Code

