Classification of Partial
Differential Equations.

B Parabolic Equation (Diffusion Eq.)

B Hyperbolic Equation (Advection Eq.)

M Elliptic Equation (Poisson Eq.)
[Multi-Grid Method]
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Partial Differential Equation

2nd Order Linear £
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Elliptic B?-4AC <0
Parabolic BZ—4AC =0

Hyperbolic  B?2-4AC >0

Characteristics of the partial differential equation
is determined by the highest order derivative
term.

Typical Equations

@ Elliptic Equation 2 o°f
Poisson Eq. >t —=2=P
(A=C=1,B=0) Z e

@ Parabolic Equation
Diffusion Eq. —=K
(A=K, B=C=0)

@ Hyperbolic Equation
Wave Eq. © =
(A=-c2, B=0, C=1)
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Partial Differential Equation »

In space }
GSIC

*Boundary Problems (Boundary Conditions)
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—::p:const (0<x<1)

1D Poisson Eq. X

Boundary Condition: f(0)=0, f(1)=0
2D Poisson Eq.

0% f N 0% f
ox: oy’

=p=const (xeS)

Boundary Conditions : f is given at the surface - S
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Differential Equation in time ;

In time and space

Partial Differential Equation g2

GSIC
Initial Condition - Initial Boundary Problem
Time goes in one way
One—dimensional diffusion equation:
d?r
Newton Eq. : =5 = F (to <t< tl) of 0° f
at , ; —=K— (0<x<1])
Initial Condition: F(ty) =1y,  F(ty) =1, ot OX
Initial Condition: f(X,0) = fy(x) (0<x<1)
dv dr
- —=F —=v (to StStl)
dt dt Boundary Condition: f (0, t) =0, f (Lt) =0
Initial Condition: I(t,) =1,, V(t,) =V,
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Discretization in time 2 »

and space (Notation) ‘
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Introduction to finite
Difference Method

Finite Difference Approximation

Differential operators are replaced by finite
difference expressions

Derivation of finite difference expressions

of fi+1 T fi
—_ 9 P L .
OX AX
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Forward Difference

Taylor Expansion Series

The accuracy of the finite difference is the first order of Ax .
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Backward Difference

Taylor Expansion Series

Central Difference

Subtracting (2) from (1),

The accuracy of the finite difference is the first order of Ax .

1

The accuracy of the finite difference is the second order of Ax .
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Accuracy of Finite Difference , Typical Finite Difference Expressions ‘
Expressions k for 1st-order derivative k’
— GSIC GSIC
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Finite Difference H Typical Finite Difference Expressions ‘
for 2nd-order derivative } for 2nd-order derivative
GSIC GSIC

By adding (1) to (2),

o’f f_,—-2f +f
2 4 _ _i+2 i-1 i
f(xi+Ax)+f(xi—Ax):2f(xi)+gx—I Ax2+1—12‘ZX—I AX* e ox2 AX? (AX)
o*f  f, —2f +f 2
) 4 = 1+ 1 1— AX
fi+l _z)tiz+ fi—l — aaxz +1_1266X_I AXZ + e 8X2 AXZ ( )
xx o’f —f.,,+16f, —30f +16f_ —f., (Ax“)
:Z)Z(_I +O(A) Ox* 12Ax?
X=X;

The accuracy of the finite difference is the second order of Ax .
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www.sim.gsic.titech.ac.jp/Lecture/CFD2008/program01.tgz

Game

Initial

17

Replacing
with the
average
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Game
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i - grid index in the x-direction

i-1, fi,j i+1,]

fi i j : grid index in the y-direction

This average process is
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Game

n : present value

n+1 : the value after average

By subtracting f; ; from both side

21

2-dimendional diffusion equation
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Parabolic Equation

o _ 0%
ot 8x

k : diffusion coefficient

ma% o'“ffuun e‘]atim: suao&; di®ribdlion &
Yidsssssns
B A CECSMENR Yy - -

Partlcle Collision Process from the mICl’OSCOPIC \new

‘ %erm% Conduc?on %le&! ron &Illsmn
VIS el;??eac? Ctlrg?ém%mng .

GSIC
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1-dimensional

Diffusion Equation
06 _ 0%
o ox°

Applying the forward finite difference to the time derivative term
and the center finite difference to the spatial difference,

(I)Tl " (I)r; ] (I)r}+1 - 2¢r} i ¢?—1

GSIC

x : diffusion coefficient

At AX®
We can reduce to ¢”+1 (I) + M(¢j+l — 2¢ + (I)J 1)
KAt

where p= F "
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Sample Program 1 k

GSIC

#include "xwin.h"
#define N 101

int main() {

double f[N], fn[N], x[N], mu =0.25;
int J, icnt=0;

while(icnt < 100) {
for(J=1; j < N-1, j++) {

fn[j] = f[j] + mu*(f[j+1] - 2.0*f[j] + f[j-1]);
for(j=0; j < N; j++) f[j] = fn[j]; /* updating */
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Stability Analysis (1/3)  JE

GSIC

von Neumann’s Method

Assuming the perturbation ¢ =5¢" "

Where the notation i is the imaginary, k is the wave
number, jis grid index, jAx is the grid position.

Substituting into ¢} =] + M(¢r}+1 —2¢7 + 4"}—1)

8¢n+1 eik~jAX — 6¢neik-jAX

i u(8¢neik-(j+l)Ax _ 26¢neik-ij i 6¢neik-(j—1)Ax)
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Stability Analysis (2/3)  JE

GSIC
8(|)T+1/8¢T _ 1+ M(e_ikAX . 2 + eikAX)
=1-2u(1-coskAx)

<1 : The amplitude of the perturbation
decrease in time.

= | he calculation is stable.

39" /5"
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N
Stability Analysis (3/3) I

GSIC
Amplitude ratio: 3¢ /3¢ =1-2p(1—coskAx)

pu< o : unstable,
O<p<1/2: stable
12<p: unstable depending on the value k

We consider only the case of 0 <k,

1
o

We have to choose At satisfying the condition, but At should
be decrease propotionally to Ax? with decrease of Ax.
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2-dimendional
Diffusion Equation

GSIC

Forward Difference in time ~ O(At)
Central Difference in space ~ O(AX?)
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