Response Modification of Urban Infrastructure 都市施設の免震設計

- (6)第5章 長周期化とエネルギー吸収性能の 増大に基づく免震設計(1)
 - (6) Chapter 5 Seismic Isolation of Bridges (1)

東京工業大学 川島一彦 Kazuhiko Kawashima Tokyo Institute of Technology

5.1 Basic Principle of Seismic Isolation (1) Reduction of response displacement and acceleration due to period shift and increasing damping ratio

(2) Why is the Energy Dissipation Required?

(3) Why is the Increase of Natural Period (Period Shift) Required?

JMA Kobe Ground Motion

JR Takatori Ground Motion

Natural Period of a Bridge Depends on Various Factors

5.2 How can we dissipate energy? どうすればエネルギー吸収ができるのか?

1) Various principles

 Energy dissipation due to plastic deformation of steel devices

Torsion

Bending

Mild steel, lead, etc.

Viscous fluid

•.....

2) Steel dampers

Fatigue due to repeated plastic deformation?

3) Implementation of Steel Plate Isolators to Buildings

New Zealand

4) Implementation of Torsion Dampers to a Bridge

Stepping structure using steel torsion energy

dissipators

South Rangitikei Bridge, New Zealand 1972

Stepping Piers

Skinner, Robinson & McVerry (1993)

Mechanical Torsion Damper

Torsion Plate Damper

5) Implementation of Lead Extrusion Dampers 鉛押し出し式ダンパー

Aurora Terrace Bridge

Lead Extrusion Damper

Lead-Extrusion Damper

Lateral Force vs. Lateral Displacement Hysteresis of a Lead Extrusion Damper

6) Why is lead appropriate to dampers?

Re-crystallization of Lead after Plastic Deformation

鉛の再結晶

Why is lead appropriate for an energy dissipator?

Re-crystallization of lead 鉛の再結晶

Re-crystallization temperature 再結晶温度

= Temperature which is required for re-crystallization of 50% the lead in an hour

Material	Re-crystallization temperature
Lead	Lower than 20 C
Aluminum	150 degree C
Copper	200 degree C
Steel	450 degree C

7) Implementation of Steel Bar Flexure Energy Dissipators

Cromwell Bridge

Deformed Mild Steel Flexural Damper

8) Elastomeric bearings 積層ゴム支承

9) Lead Rubber Bearings (LRB) 鉛プラグ入り積層ゴム支承

Lead Rubber Bearings 鉛プラグ入り積層ゴム

Generally, a lead plug is set at middle of an isolator, however several plugs are set as the size of an isolator increases

Hysteretic Energy Dissipation (履歴吸収エネルギー)

$$\Delta W = \int_{-u_{\min}}^{u_{\max}} R_l(u) du + \int_{u_{\max}}^{-u_{\min}} R_{ul}(u) du$$

$$= \int_{-u_{\min}}^{u_{\max}} R_l(u) du - \int_{-u_{\min}}^{u_{\max}} R_{ul}(u) du$$

$$= \int_{-u_{\min}}^{u_{\max}} R(u) du$$
where
$$R(u) = R_l(u) - R_{ul}(u)$$

Lateral Force vs. Lateral Displacement Hysteresis of a Lead Rubber Bearing 水平力~水平変位の履歴曲線

10) High Damping Rubber Bearings (HDR) 高減衰積層ゴム支承

- Use special rubber which dissipates energy when it is subjected to deformation
- High damping rubber layers are laminated with steel plates (elastomeric bearings)
- •Because "lead" is hazardous material, HDR bearings are preferred in the implementation in seismic isolation in recent years (Lead confined inside rubber cover is not hazardous)

HDR for Bridges **橋梁用**HDR

$$G = 1.2MPa$$

RB and HDR for Buildings 建築用LRBとHDR

G = 0.4MPa

