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Focus of This Course

There are 3 topics Iin learning research.
e Understanding human brains

e Developing learning machines

e Mathematically clarifying mechanism of learning

There are 3 types of learning.
e Supervised learning

e Unsupervised learning

e Reinforcement learning

Topics of supervised learning:
e Active learning

e Model selection
e Learning methods




Supervised Learning
As Function Approximation

Answer
(Output) _
4 f (x): Target function

Y Y

f(x) e M Learned function

{x,,y,}l, : Training examples
M :Model

» Question
Xn (Input)

Using training examples { Xir Yi }inzl )
find a function f (X) from a model M
that well approximates the target function f(x).




Formal Notation and Assumptions

D c R*: Input domain

f(x) :Learning target function (D — R)

x; € D :Training input point

y; = f(x;) + € :Training output value

€; .mean zero, independent and identically
distributed (“i.1.d.”) 22 (i = )

x;,Y;i) }i—1 :Training examples

f(x) :Learned function
M :Model

U@



Generalization Error

We want to obtain f(z) such that output
values at unlearned test input points ¢
can be accurately estimated.

Suppose t follows a probabllity distribution
with density q(z) .

Expected test error (generalization error):
n 2
6= [ (F&)-1®) awyie
D

Goal: Obtain f(x) such that G is minimized.




Formal Description of Problems °

G = /D (7))~ 1(®)) a(t)at

Active learning: min G

{wi}?zl

Model selection: Hjl\ill’lG

Learning methods: min G
fem



Today’s Plan

Models

e Linear models
e Kernel models

Learning methods
e | east-squares learning



Linear/Non-Linear Models

Model is a set of functions from which learning
result functions are searched.

We use a family of functions f(x)
parameterized by

o — (al,ag,...,ab)T

A

Linear model: f(x) is linear with respect to «
(Note: not necessarily linear with respect to )
Non-linear model: Otherwise



Linear Models
f(fl?) — Z 047;907;(33)

{vi(x)})_, :Linearly independent functions

For example, when d =1
e Polynomial

1, z,2°,... ,xb_l
e Trigonometric polynomial

l,sinx,cosx,...,sinkx, cos kx

b=2k+1



Multi-Dimensional Linear Models’

For multidimensional input (d > 1),
a product model could be used.

fa) =3 33
11=119=1 1q=1

iy ia,...,0q0Pia <x(1))gp’62 (x(Q) C Pig (aj

(d))

= (zV, 23, . g@)T

The number of parameters is b = ¢¢
which increases exponentially w.r.t. d .

Infeasible for large d !



Additive Models H

For large d, we have to reduce the number
of parameters.

Additive model:
d C
f@)=> > ajpizD)
j=11i=1
The number of parameters is only b = cd.

However, additive model is too simple so its
representation capability may not be rich
enough in some application.




Kernel Models
Linear model:

{pi(x)}—1 do not depend on {(x:,yi) i,

Kernel model: A

E o; K (x, x;)

K(x,z") :Kernel functlon

e Suppose kernel is symmetric:
K(xz,z') = K(x', x)
e e.g., Gaussian kernel

/]2
et oy o —a|
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Kernel Models (cont.) -3

Put kernel functions at training input points.




Kernel Models (cont.) o

E o, K(x,x;)

The number of parameters IS n, which is
Independent of the input dimensionality d .

Although kernel model is linear w.r.t. o,
the number of parameters grows as the
number of training samples increases.

Mathematical treatment could be different
from ordinary linear models (called “non-
parametric models” in statistics).



Summary of Linear Models

_Inear model (product):

High flexibility, high complexity
_Inear model (additive):.

_ow flexibility, low complexity

Kernel model:
Moderate flexibility, moderate complexity

Good model depends on applications.

Later in model selection, we discuss how
to choose appropriate models.
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Learning Methods

Linear learning methods:

Parameter vector a = (a1, as, ..., qp
IS estimated linearly w.r.t.

)T
)T

Yy = (ylay27"°7yn

Non-linear learning methods: Otherwise
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Linear Learning for L

Linear Models / Kernel Models
f(fU) — Z@z’%’(m)

In linear learning methods, a learned
parameter vector Is given by

& = Ly L :Learning matrix



Least-Squares Learning  *®

Learn « such that the squared error at
training input points is minimized:

ars = argmin Jy g ()
acRP

n

A 2
Jrs(a) =) (f(wi) — yz>
1=1
= | Xa -yl
X, ; = p;(z;) :Design matrix (n x b)

In the following, we assume rank (X) =b



How to Obtain Solutions

Extreme-value condition:
Virs(ars) =2X"(Xéars —y) =0
) 6s=(X'X)'X'y
Therefore, LS Is linear learning.
ars = Lisy

L;s=(X"X)"1x'

If you are not familiar with vector-derivatives, see e.g,
“Matrix Cookbook” (http://matrixcookbook.com)
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Example of LS
f(fl?) — Zai%(w)

Trigonometric polynomial model

1,sinz,cosx,...,sin15x,cos 15x (b= 31)

%
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Homework

Zaz w w,,,
Prove that the LS solution in kernel
models Is given by
ars = Lisy
Lis=K'
K; ;= K(zi x;)
(Kernel matrix)
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Homework (cont.)

For your own toy 1-dimensional data,
perform simulations using

e Gaussian kernel models
e |Least-squares learning
and analyze the results when, e.qg.,
e Target functions
e Number of samples
e Noise level
e Width of Gaussian kernel

are changed.
Deadline: May 11%
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Coming Classes... °3

April 27%: No class
May 11%: Guest lecture by Dr. Hirotaka Hachiya
e Machine learning and robotics

May 18%": Guest lecture by Dr. Makoto Yamada
e Machine learning and speech processing

May 25%: Regular lecture



