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Identification Schemes

Secret Sharing Schemes
Pseudo-random Number Generation

Power Analysis
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Cryptosystem

A cryptosystem is a five-tuple (P, C, K, E, D), where
the following conditions are satisfied:

1. P is a finite set of possible plaintexts
2. C is a finite set of possible cipher-texts
3. K, the , 1s a finite set of possible keys
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4. Foreach K € K, there is an encryption rule e, € £
and a corresponding decryption rule d, € D.
Each ey: P — C and dy: C — P are functions such
that d, (e, (X)) = X for every plaintext X € P.
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Oscar

Alice » encrypter » decrypter »  Bob

A

» secure channel

K

key source

The Communication Channel
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Let P=C=K =7Z,,. For 0< K <25 define

e (X)= x+ K mod 26
and

d(y)=y—Kmod26

(X, ye Zzs)-

Shift Cipher
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Let P=C=Z,,. K consists of all possible permutations of the
26 symbols 0,1,...,25. For each permutation 7 e K, define

e.(x)=x),

and define

d.(y)=7"(y),

where 77! is the inverse permutation to 7.

Substitution Cipher
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Shannon's Theory
» Computational Security (RSA, etc.)

Suppose X and Y are random variables. We denote
the probability that X takes on the value X by p(X),

and the probability that Y takes on the value y by p(y).

The joint probability p(X, Y) is the probability that X
takes on the value X and Y takes on the value y.
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The conditional probability p(x|y) denotes the
probability that X takes on the value X given that Y
takes on the value y. The random variables X and Y
are said to be independent if p(X, Y) = p(X) p(y) for
all possible values x of X and y of Y.
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can be related to conditional
probability by the formula

p(x, y)= p(xy)p(y).

Interchanging X and y, we have that

p(x, y)= p(y|x)p(x).
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From these two expressions, we immediately obtain
the following result, which is known as Bayes'
Theorem.

Bayes' Theorem
If p(y)>0, then
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Spurious Keys and Unicity Distance
Let (P, C, K, E, D) be a cryptosystem. Then

H(K|C)=H(K)+H(P)-H(C).

First, observe that H(K, P, C) = H(C|K, P) + H(K, P).

Now, the key and plaintext determine the ciphertext uniquely,
since Y = ex(X).

This implies that H(C|K, P) = 0. Hence,

H(K, P, C) =H(K, P). But K and P are independent, so
H(K, P) = H(K) + H(P). Hence,

H(K,P,C)=H(K,P)=H(K)+H(P).
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Entropy of a natural language

Suppose L is a .
The entropy of L is defined to be the quantity

HL:Iim—H(Pn)
n—oo n

and the redundancy of L is defined to be

HL
logz‘P‘

R =1-
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H, measures the entropy per letter of the language L.
A random language would have entropy log,|P|.

So the quantity R, measures the fraction of "“excess
characters," which we think of as redundancy.
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Unicity distance

The unicity distance of a cryptosystem is defined to
be the value of n, denoted by n,, at which the
expected number of spurious keys becomes zero;
1.e., the average amount of ciphertext required for an
opponent to be able to uniquely compute the key,
given enough computing time.

. log2|K|
° RL10g2|P|
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DES

1. Given a plaintext X, a bit-string X, is constructed by
permuting the bits of X according to a (fixed) initial
permutation IP. We write x, = IP(x) = L R,, where L,
comprises the first 32 bits of X, and R, the last 32 bits.

2. 16 iterations of a certain function are then computed. We
compute L;R;, 1<i <16, according to the following rule:

Li = Ri—l
R=L,® f(Ri—P Ki)
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where @ denotes the exclusive-or of two bit-strings.
f is a function that we will describe later, and K, K,,
..., K¢ are each bit-strings of length 48 computed as
a function of the key K. (Actually, each K; is a
permuted selection of bits from K.) K, K,, ..., K4
comprises the key schedule.

One round of encryption is depicted in Figure 3.1

. Apply the inverse permutation IP™ to the bit-string

R,¢ L;s Obtaining the cipher-text y.
That is, y = IP"'(R, L) . Note the inverted order of
L,c and Ry.
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L R;

One round of DES encryption
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Public-key Cryptography
RSA: Difficulty of factoring large integers
Knapsack: Difficulty of the subset sum problem
McEliece: Difficulty of decoding a linear code

ElGamal: Difficulty of the discrete logarithm
problem for finite fields

Elliptic Curve: Work in the domain of elliptic curves
rather than finite fields
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l.z=1
2. for i=¢s-1 downtoOdo
3. 2=/ modn

4. ifb;=1 then
Z=zxXmodn

The square-and-multiply algorithm to compute x° mod n
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Let n = pq, where p and q are primes. Let P=C=7Z_, and define
K ={(n, p,a,a,b):n = pg, p,q prime, ab = 1(mod ¢(n))}
For K=(n, p, g, a, b), define
e (x)=x"modn
and
dy (y)=y*modn

(X, y € Z,) The values n and b are public, and the values p, g, a are

secret.

RSA Cryptosystem
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1. Bob generates two large primes, p and q

2. Bob computes n =pg and ¢(n)=(p-1)(q-1)

3. Bob chooses a random b(1 < b < ¢(n)) such that
ged (b, g(n)) =1

4. Bob computes a =b™" mod ¢(n)using the Euclidean
algorithm

5. Bob publishes n and b in a directory as his public key.

Setting up RSA

2010/07/23 Wireless Communication Engineering I

ElGamal Cryptosystem and
Discrete Logs

Problem Instance
| =(p, a, B), where p is prime, & € Z,, is a primitive element,
and f e Zp*.

Objective
Find the unique integer a, 0 < a < p—2 such that

a* = f(mod p)
We will denote this integer a by log,, B.
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Let p be a prime such that the discrete log problem in Z, is
intractable, and let ¢ e Zp* be a primitive element.
Let P = Zp*, C= Zp* X Zp*, and define

K ={(p.a.2. p): f=a*(mod p))

The values p, gand fare public, and )
For K =(p, a, a, f), and for a (secret) random number
keZ ,define

p-1

eK(X’ k):(Yv Y2)

2010/07/23 Wireless Communication Engineering I

where

Yy, = a*mod p
and

y, = X" mod p
Fory,vy, e Zp*, define

de (¥, ¥2)=,(,* ] mod p
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Let G be a generating matrix for an [n, k, d] Goppa code C,
wheren=2" d=2t+1and K=n-mt. LetS be a matrix that
is invertible over Z,, let P be nxn an permutation matrix, and
let G’ =SGP. Let P =(Z,) C=(Z,)", and let

K ={G,s,P,G')}

where G, S, P, and G' are constructed as described above.
G' is public, and
ForK=(G, S, P, G'), define e, (x,e)=xG' +e

McEliece Cryptosystem
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where e e (Z,)" is a random vector of weight t.
Bob decrypts a ciphertext y € (Z,)" by means of the following
operations:

1. Computey, =yP""

2. Decode Yy, obtaining y, = X, + €, where x, € C.
3. Compute X, € (Z,)" such that X,G = X,.

4. Compute X =X,S™".
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Signature Schemes
A signature scheme is a five-tuple (P, A, K, S, V),
where the following conditions are satisfied:
1. Pis a finite set of possible messages
2. Ais a finite set of possible signatures
3. K, the key-space, is a finite set of possible keys
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4. For each K e K, there is a signing algorithm
sig, €S and
ver, € V. Eachsigs: P — A and
ver, : P x A — {true, false}are functions such that

xe P ye A
ver(x, y) = true !f y= s!g(x)
false if y=sig(x)
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Let n = pq, where p and ¢ are primes. Let P = A = Z,, and define
K = {(n,p,q,a,b) : n = pq, p,q prime,ab = 1 (mod ¢(n))}.

The values n and b are public, and the values p, ¢, a are secret.

For K = (n,p,q,a,b), define
sig g (z) = 2% mod n

and
verk (z,y) = true © = = y® (mod n)

(may € E“l)'

RSA Signature Scheme
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Let p be a prime such that the discrete log problem in Z, is intractable,
and let @ € Z," be a primitive element. Let P = Z,%, A = Z," x Zp_,,
and define

K={(p,a,a,0): 8 =a" (mod p)}.
The values p, « and 3 are public, and a is secret.

For K = (p,a,a,3), and for a (secret) random number k € Z,_,",

define
sigg(z, k) = (7v,9),
where
v =a* mod p
and

§=(z—ay)k™! mod (p-1).

Forz,vy € Zp" and § € EZp_,, define

verg(z,v,d) = true & B74* = o® (mod p).

ElGamal Signature Scheme
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Let p be a 512-bit prime such that the discrete log problem in Ey is in-
tractible, and let g be a 160-bit prime that divides p — 1. Let a € E," be
a gth root of 1 modulo p. Let P = £,%, A = &4 x Z;, and define

K={pgaa f):F=a (modp)}.
The values p, g, « and & are public, and a is secret.

For K = (p, g, a,a, 3), and for a (secret) random number &, 1 < & <
g — 1, define
sig pe(x, k) = (. 8),
where
v = [&* mod p) mod g
and
& = (z + avik ! mod q.

Forx € Z," and +,d € E,, verification is done by performing the fol-
lowing computations:

e; = =6~ mod gq
ea = vd ' mod aq
ver gz, v, d) = true < (' 3 mod p) mod g = -y.

DSS (Digital Signature Standard)
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Let p = 2g + 1 be a prime such that g is prime and the discrete log
problem in £, is intractible. Let a € Z," be an element of order g. Let
1 < a < g—1 and define & = a® mod p. Let G denote the multiplicative
subgroup of £," of order g (& consists of the quadratic residues modulo
). Let P = 4 = (&, and define

K= {{p,a,a,3) : 3 =a* (mod p)}.
The values p, o and & are public, and a is secret.
For K = (p,«,a, ) and = € G, define

¥ = sigglxr) = =z mod p.

For x,y € &, verification is done by executing the following protocol:
1. Alice chooses e;, ez at tandom, e3, ez € Eg "
2. Alice computes ¢ = »®* 7°* mod p and sends it to Bob.
3. Bob computes d = ¢® ™99 mod pand sends it to Alice.
4. Alice accepts y as a valid signature if and only if

d = x*'a®* (mod p).

Undeniable Signature Scheme
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Hash Functions
message X arbitrary length
message digest ~ z =h(x) 160 bits
signature y =sig, (z) 320 bits

Signing a message digest
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Suppose pis a large prime and ¢ = (p — 1)/2 is also prime. Let o and 3
be two primitive elements of Z,. The value log,, A is not public, and we
assume that it is computationally infeasible to compute its value.

The hash function

hif0,,0 =1} x{0,...,0 = 1} = Z,\{0}

is defined as follows:

h(zy,z,) = a® ** mod p.

Chaum-van Heijst-Pfitzmann Hash Function
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1. A = 67452301 (hex)
B = e fcdab89 (hex)
O = A8badc fe (hex)
D = 10325476 (hex)
= fordi = 0 to Wy/16 — 1 do
3. for 7 = 0 to 15 do
X [§) = ML [16d + 7]
EN AA=.A
BB =8B
CC =C
Do =
5. Roundl
6. Round2
7. Round3
B A=A+ A4
B =8+ BF
O =C 4+ CC
D= D+ DDy
The MD4 Hash Function
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1. A=(A+g(B,C, D)+ X[0] + 5A827999) <= 3
2. D= (D +g(A, B, C)+ X[4] + 5A827999) < 5
3. C = (C +g(ir, A, B) + X[8] + 5A827999) << 9
4. B = (B + g(C,D,A) + X[12] + 5A827999) <& 13
3. A=A+ g(B,C, D)+ X[1] + 5A827999) <& 3
6. D = (D + g(A, B,C) + X[5] + 54827999) < 5
T C = (C + g(D, A, B) + X[9] + 5.4827999) <« 9
8. B = (B +g(C,D,A) + X[13] + 5A827999) <& 13
o, A=A+ g(B,C, D)+ X[2] + 54A82T7T999) < 3
10, D= (D 4+ g(A, B, C)+ X[6] + 5A827999) < 5
11. O = (C+g(D, A, B)+ X[10] + 5A827999) << 9
12. B =(8B+g(C,D,A) + X[14] + 5A827999) < 13
13. A=(A+ g(B,C, D)+ X[3] + 5A827909) < 3
4. D = (D + g(A, B,C) + X[7] + 54827999} << 5
15. C = (C + g(D, A, B)+ X[11] + 5A4A827999) << 9
16. B =(8B +g(C, D, A) + X[15] + 5A4A827999) <z 13

2010/07/23

Round 2
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1. A=A+ f(B,C, D)+ X[0]) <« 3
2. D=(D+ f(A, B,C)+ X[1]) =< T
3. C={(C+ f{D, A B)+ X[2]) < 11
4. B = (B + f(C,D,A) + X[3]) < 19
5. A=A+ fAB,C, D)+ X[4]) << 3
6. D=(D+ flA,B,C)+ X[5]) < T
T. C=(C+ fID, A, B)+ X[6]) << 11
8. B =(B+ f(C,D,A) + X[7]) <= 19
9. A=A+ F(B,C,D)+ X[8]) << 3
10. DD=(D+ flAB,C)+ X[9]) << 7
11. € = (C + f(D,A,B)+ X[10]) == 11
12. B =(B+ f{C,D, A) 4+ X[11]) < 19
13. A (A + flB,C, D)+ X[12]) <= 3
14. D= (D + f(A, B,C) + X[13]) <= T
I15. C = (C + (D, A, B) + X[14]) =< 11
16. B = (8B + f(C,D,A) + X[15]) <= 19
Round 1
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1. A=A+ h(B,C, D)+ X[0]+6EDIEBAL) < 3
2. D=(D+hR{A, B, C)+ X[B] +B6EDIEBAL) < 9
3. C=(C+ h(D, A, B)+ X[4] + 6EDOEPB A1) < 11
4. B =(B+ h{C,D,A)+ X[12] + 6ED9OEBAL) < 15
5 A=((A+h(B,C,D)+ X[2]+6EDIEBAL) << 3
6. D= (D+hiA B, C)+ X[10]+6EDIERAL) <€ 9
7. C=(C+h(D, A, B)+ X[6]+ 6EDIERAL) <= 11
8. B=(B+h(C,D,A)+ X[14] + 6 ED9EBALl) <« 15
9 A=A+ h(B,C,D)+ X[1]+6ED9EBRBAL) < 3
10, D= (D + h({A, B,C)+ X[9) +6FEDIEBRAL) <= 9
11. O

= (C + h(D, A, B) + X[5] + 6EDVEBAL) < 11

12. B = (B + h{C, D, A) + X[13] + 6EDIEBAL) << 15
13. A= (A+ h(B,C, D)+ X[3] + 6EDIEBAL) << 3
14. D= (D + h{A, B,C) + X[11] + 6 EDIEB A1) <= 9
15. € = (C + h(D, A, B) + X[7] + 6EDIEBAL) << 11
16. B = (B + h(C, D, A) + X[15] + 6EDIERAL) <= 15
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Round 3
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Time-stamping

1. Bob computes z = h(x)

2. Bob computes z' = h(ZH pub)

3. Bob computes y = sig, (z)

4. Bob publishes (z, pub, y) in the next day's
newspaper.

Key Pre-distribution

1. A prime p and a primitive element & € Z," are made public.
2.V computes

Ky v =a®* mod p = by®¥ mod p,

using the public value by from U's certificate, together with his own
secret value ay.

3. U computes
Kyyv =a®* mod p = by"Y mod p,

using the public value by from V's certificate, together with her own
secret value ay.
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Identification Schemes

Bob chooses a challenge, x, which is a random 64-bit string. Bob
sends = to Alice.
2. Alice computes
y = ex(z)
and sends it to Bob.
3. Bob computes
y' = ek(z)
and verifies that ' = y.
Challenge-and-response protocol
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Authentication Codes

An authentication code is a four-tuple (S, A, K, E),
where the following conditions are satisfied:

S is a finite set of possible source states
A is a finite set of possible authentication tags
K, the keyspace, is a finite set of possible keys

For each K € K, there is
ex: S— A
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Secret Sharing Schemes

Let t, w be positive integers,t <w.

A (t, w)-threshold scheme is a method of sharing a
key K among a set of W participants (denoted by P),
in such a way that any t participants can compute
the value of K, but no group of t—1 participants

can do so.
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Initialization Phase

1. D chooses w distinct, non-zero elements of Z,, denoted z;, 1 < i <
w (this is where we require p > w + 1). For 1 < i < w, D gives the
value z; to F;. The values x; are public.

Share Distribution

2. Suppose D wants to share akey K € Z,. D secretly chooses (inde-
pendently at random) t — 1 elements of Z,, a1,...,a:—1.

3. Forl < i< w,Dcomputes y; = alx;), where

t—1
a(z) = K + Z ajxj mod p.
i=1

4. Forl < i < w, D gives the share y; to F;.

Shamir (t, w)-threshold scheme
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Pseudo-random Number Generation

Let k, ¢ be positive integers such that ¢ >k +1 (where ¢
is a specified polynomial function of k).

(k, 1 )- pseudo - random (more briefly, a
(k, #)-PRBG) is a function f: (Z,)¢ —(Z,)" that can be
computed in polynomial time (as a function of k). The
input S, € (Z,)" is called the seed, and the output
f(s,) €(Z,)" is called a pseudo-random bit-string.
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Let M > 2 be an integer, and let 1<a,b< M —1. Define
k=|_10g2|\/|—‘andlet k+1</<M —1.
For a seed s, where 0 <s, <M —1,define

s, =(as,_, +b)mod M

2010/07/23 Wireless Communication Engineering I
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for 1<i </, and then define

£(s0)=(2 ... 2)).

where

Z, =S, mod2.

1<i<v¢ Thenfisa (k, ¢)-Linear Congruential Generator.

Linear Congruential Generator
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Zero-knowledge Proofs

o Completeness
Ifxisa of the decision problem, then
Vic will Peggy's proof.

» Soundness
If X 1s a no-instance of, then the probability that Vic
accepts the proof is very small.
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Input: an integer n with unknown factorization n = pq,
where p and g are prime, and x € QR(n)

1. Repeat the following steps log, n times:

2. Peggy chooses a random v € Z "“and computes

y =V’ modn.

Peggy sends y to Vic.
3. Vic chooses a random integer i = 0 or 1 and sends it to
Peggy.
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4. Peggy computes
z=u'vmodn,

where U is a square root of X, and sends z to Vic.
5. Vic checks to see if

2> =x'y(modn).

6. Vic accepts Peggy's proof if the computation of step 5 is
verified in each of the log, n rounds.

A perfect zero-knowledge interactive proof system for
Quadratic Residues
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Magnetic stripe card vs Smart Card

* Magnetic stripe card : significant information can be read from the

surface of the stripe

information is recorded |:> Easy to forge

on the surface

» Smart card: significant information is stored in the IC chip

Smartcard is hl‘gh securl&y token
ication Engineerin

Wireless Comm

2010/07/23
with encryption communication

Attacks against smart card

Tamper-proof
technology

‘ Non-invasive attack ‘

Side-channel attack (SCA)

2010/ Protection-againstiSb Ads-required

An example of the power consumption
of smart card

4 56 7 8 9 10 1112131415 16

WWWMWA%

ii mm

Power consumption of 16 rounds DES on a smartcard
Paul Kocher, Joshua Jaffe, and Benjamin Jun "Differential Power Analysis", Advances in Cryptography:

CRYPTO’99”, pp.388-397.

“Power analysis” is a powerful attack against smart card

2010/07/23 Wireless Communication Engineering I

Power analysis
SPA(Simple Power Analysis): Observe the internal operation processing

— Reveal the key from single power trace

— Correlation between the key and operationis msert
input: cipher text c,
private key d=d[n-1]]..]|d[0]

I Square Multiply |Square! Square Multiply |
; : Sl =1
— : > | for i=n-1 down to 0
d= 1 0 1 T=T2 (mod N) /* Square */
if d[i]=1 T=T X ¢ (mod N) /* Multiply */

return T= c? (mod N)

5%
[UW\J\N | U g

Gues@ykey is wrong

« DPA(Differential Power Analysis): Observe the internal data
— Reveal the key from the differentia%
1 AN Acban 1o .
— Correlation betw! key and Sifterential
i Ir~>==y
Guessed key i@rrect

i —

<L reveal L
_

1

Input Message
(1000~
100001&)

<
Smart card

ion-Engi

Wireless Ci icati g

2010/07/2.

Protection must be secure against SPA and DPA in both
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Protection against power analysis

* Protect SPA: Perform the constant operation pattern

dnmmv
i Square Multiply

Square Multiply

Multlp x

i Square

|

Processing time increased +33% for dummy operation

Protect DPA: Randomize the internal data to hide the correlation
Without protection With protection: randomize the data

[randomizej«

Processing time increase
for randomization and
normallzatlon

2OHOHOHI3

Problem: processing time overhead is 1ncreased ‘with protection

Data hamming weight and

power consumption
M Set up HResult

Measuring Power Consumption

Hamming Weight or H ing Distance Leakag

scope

Resistos

Time

Power consumption grows in proportion with
the hamming weight of the data (for certain IC chips)

PYetYthe paper of T.S.M@ggﬁFg@gnieﬁ}{%‘?/%%%rcigﬁ){csl.uiuc.edu/conf/ceps/ZOOO/messerges.pdf

Protection against DPA

* Reduce the signal
— Represent the data without hamming weight difference
e.g. 001, 1—-1
— Circuit size is increased
* Increase the noise
— Add the noise generator circuit.
— Protection is deactivated by increasing the number of the power consumption data
* Duplicate the data
— Duplicate the intermediate data M into two random data M, and M,
satisfying M=M,®&M,
— Processing time/circuit size is increased
« Update date the cryptographic key with certain period
— Ifthe key before is updated enough number of the power consumption data is

collected, the attack is avoided.
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Power analysis

Res'w

Smart card
Oscilloscope key

» Reveal the cryptographic key stored in the smart card by observing the
power consumption(Kocher, 1998)

» Power consumption shows internal operation and data value in the smart
card, which are related with the key

* Simple and powerful attack
— Just add a resistor to Vcc of IC chip
— Instrument is low-cost (Digital oscilloscope)

This attack is possible even when the implemented cryptographic

algorithm is mathematically secure
10/07/23 Wireless Communication Eni3 eering |

> Extra'security protection mechanism must be implemented
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