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Filtering: Signal Conditioning
and Processing

Agenda
• Review of Filter & Signal Processing
• Linear & Non-linear Signal Processing
• Filter Design & Synthesis 
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• Gaussian Filter
• Nyquist Filter 
• Partial Response Filter 

Review of Filter & Signal Processing

1) Filter = Hardware and/or Algorithm

2) Stochastic vs. Deterministic
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• Deterministic: 

How to realize a filter circuit which has a desired 
frequency characteristics
– Linear Signal Processing

• Noise & Interference Suppression

• Inter-Symbol Interference Problem
↓
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↓
(Negative) Remove → Nyquist Filter (1920's)

Nyquist Criteria
(Positive) Utilize → Partial Response Filter (1960's)

Spectrum Shaping

– Non-Linear Signal Processing
• Envelope Detection (Diode + LPF) : No phase 

Information
• PLL (Phase Comparator + LPF + VCO) : 

Frequency Synthesizer
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Frequency Synthesizer
• Pre-emphasis in FM System

• Reference Frequency by Stable Crystal Oscillator 
• Pre-scaler 
• VCO ( Voltage Controlled Oscillator )

PLL (Phase Lock Loop) Principle
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VCO ( Vo tage Co t o ed Osc ato )
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• Digital Loop Filter 
• Digital Controlled Oscillator 
• TDC ( Time-to-Digital Converter )

Principle of ADPLL ( All- Digital PLL)
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TDC ( Time to Digital Converter )
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Design Theory: Butterworth (1930's) 
Chebyshev (1950's), 
Elliptic (1960's)

History of Filter Design
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Elliptic (1960 s)

Hardware: LCR, Active, Digital, Ceramic, 
SAW, SC, Waveguide

Dual-mode Filter
In-Line （Longitudinal) Type
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(a) Filter Structure (b) Equivalent Circuit
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Multiplexer/Demultiplexer
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(a) Multiplexer（TE111) (b) Demultiplexer（TE113)
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Design Procedure
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Ideal low-pass prototype response
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Low-pass prototype specification
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Pass-band Stop-band

Butterworth Flat Flat

Chebyshev Equal-Ripple Flat
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Inv. 
Chebyshev

Flat Equal-Ripple

Elliptic Equal-Ripple Equal-Ripple

• Maximally Flat (Butterworth)
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• Equal Ripple (Chebyshev)
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Maximally flat response
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Chebyshev Polynomial
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Chebyshev response
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Inverse Chebyshev response

• Sharp Transition 
• Equal-Ripple Characteristics both in PB 

and SB

Elliptic Filter
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• Elliptic function is used for the design of 
Filter Transfer Function

Equal Ripple Rational Function
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Design Example
• LA=50dB, LR=20dB, ωs/ωp=２：

Elliptic Filter             n=5
Chebyshev Filter       n=7
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Maximally Flat Filter n=12

Filter Synthesis
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[ Factorization Technique]

All poles of S11(x) exist in left half plane
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Continued Faction Technique
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e.g.
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LC-Ladder Circuit with n-elements
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Parallel to Serial Transform by 
using Impedance Inverters

Y.. II .. II
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YZZ 2
0=



6

Impedance Inverters
• Transmission Lines (Passive)
• Operational Amplifiers (Active)
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Frequency Transformation
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• Stochastics: 
How to select signal and noise
Estimation and Prediction Theory
– Gauss (1795): 

Least Square Mean Concept 
Astronomy (Prediction of Satellite Orbit), 
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y ( ),
→ Gauss Distribution

– Wiener and Kolmogorov (1940's): 

Linear Prediction for Stationary Stochastic
Process using 2-nd order statistics (Correlation 
Matrix)

Generalized Harmonic Analysis 
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y
(Stochastic Theory + Fourier Analysis)

Wiener-Hopf Integral Equation 
(Semi-infinite Singular Boundary Value Problem)
Communication + Control ⇒ Cybernetics
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Wiener Filter based on Correlation Function 

2010/06/18 Wireless Communication Engineering I 36

( ) ( ) ⎥⎦⎢⎣

( ) ( )[ ] ( ) ( )τττττττ ssnnss RdhRR =′′′−+′−∫
∞

0

→ Wiener-Hopf Equation ( )τhfor 

nCorrelatioAutoNoiseR
nCorrelatioAutoSignalR

nn

ss

−−=
−−=

– Kalman (1960's): 

Non-stationary Process Prediction by using Kalman 
algorithm

State Space Approach, Linear System Theory, 
C t l Th C t l bilit Ob bilit

2010/06/18 Wireless Communication Engineering I 37

Control Theory, Controlability, Observability, 
Optimum Regulator, Optimum Filter, Stability, etc.

– Godard (1974): 

Learning Theory, Adaptive Equalizer for Wired 
Transmission 
Unknown state variables = Transmission 
Characteristics
RLS (R i LSM) (1990')
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– RLS (Recursive LSM) (1990'): 

→ Inter-symbol Interefence Canceller, Multi-user 
Detection for Wireless Communication

Frequency Characterstics and 
Impulse Response

• Transfer Function of Linear Filter: 

[Li it + Ti I i ]
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[Linearity + Time-Invariance]

→ Impulse response function h(t) is 
enough for system description.

Output signal y(t) is given by a convolution
of Input signal x(t) and Impulse response
function h(t)
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∫ ∞−

Linear System
• Linear Time-Invariant ： Impulse Function

(filter)
• Linear Periodic-variant ：Multi-rate System
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(mixer)
• Application ：Band aggregation, 

Rate Conversion
Frequency Conversion
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→ Exponential time function 
exp(at) =  eigen-function

→ Fourier Analysis

( ) ( ) ( )fHfXfY =
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( ) ( ) ( )fHfXfY =

→ Transfer Function H(f)
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f
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• Ideal Filter and Physical Realizability: 
Causality
– Ideal Low Pass Filter: Flat Amplitude, Sharp 

Cutoff,  Linear Phase
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W: Bandwidth τ : delay time

– Impulse Response ： sinc function, equal-distance 
zero-crossing
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( ) ( )τπ −tW2

⇒ Non-causal !

– Uncertainty Principle: 

Impulse function                has flat spectrum 
Sinusoidal function                  is widely 

spread 
(cf. In Quantum Physics,                        , E: Energy, 

π41≥⋅ tf △△

)0( →t△

)( ∞→f△ )0( →f△
)( ∞→t△

π4htE ≥⋅△△
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h: Planck constant)
Gaussian function is optimum with respect to the 
product of time spread and frequency 
spread;             .ft △△ ⋅

– Finiteness of system:
→ Transfer function is a Rational function of  f

– Causality ⇔ h(t) = 0 for t < 0
⇔ Wiener-Palay Condition
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→ Real part, R(f)
← Hilbert Transform → Imaginary Part, X(f)
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– For Minimum Phase System: 

Amplitude Characteristics            determines Phase 
Characteristics 
But when delayed waves are larger than the first 
arriving wave in the multi-path environment, 
it becomes Non-minimum Phase

)( fH
)( fH∠

2010/06/18 Wireless Communication Engineering I 49

it becomes Non-minimum Phase.

Gaussian Filter
• Transfer Function: 
• Impulse Response: 
• Step Response:

h

))(exp()( 2
0fffH −=

))(exp()( 2
00 tffth ππ −=

)(erfc1)( 02
1 tfts π−=

∫
∞

d)()(f 22

2010/06/18 Wireless Communication Engineering I 50

where                                             : 
complementary error function

• Mono pulse (T) response:
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• Eye pattern is determined by f0T
f0T → large, Good eye pattern

• For Random pulse sequence {an},
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• Bessel Filter of 5-th order    Gaussian Filter
(Maximally Flat in delay characteristics)

≈

Nyquist Filter
• No interference condition at sampling time
• Roll-off Filter
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• Roll-off Response
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Frequency response
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Time response

Partial Response Filter
Controlled Inter-symbol Interference

• Class of Partial Response Filter
Partial Response Filter: Binary sequence → 
Multi valued sequence → Spectrum Shaping
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Multi-valued sequence → Spectrum Shaping
Partial Response Filter: 
FIR Filter with Integer coefficient

• Similar concept: Thomlinson-Harashima 
Precoding in Dirty-paper Coding
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Duo-binary signaling scheme
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Impulse response of the duo-binary conversion filter

• Error Propagation and Pre-coder
Full response system    : No error propagation
Partial response system: Error propagation
Pre-coder is necessary for prevention of error
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Pre coder is necessary for prevention of error 
propagation
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Pre-coder in TX
Source information {an} → 
Pre-coded information {sn}
Digital calculation (Logical calculation)
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Pre-coded information {sn} → 
Partial response information {gn}
Analog calculation (Physical calculation)

Decoding in RX
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Apparently, error propagation is eliminated.

Decoding in RX

( )2modnn ga =
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PR-VA (Partial Response & Viterbi Algorithm) is 
a most powerful recording method in magnetic 
recording.
Convolutional Code also utilizes a partial 
response  in the codeword
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code 2,
2
1for  diagramn  transitioState == mR
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