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Fading Theory
• In many circumstances, it is too complicated to 

describe all reflection, diffraction, and 
scattering processes that determine the 
different Multi-path Components.
Rather, it is often preferable to describe the 
probability that a channel parameter attains a
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probability that a channel parameter attains a 
certain  value.

Deterministic vs. Stochastic
• Deterministic case : “x=y” means 2=2.
• Stochastic case : “x=y” means “p(x)=p(y)”.
• For example x = 1 x holds• For example,  x = 1-x  holds

when x is a uniform  distributed random variable in the interval 
[0,1]
z: zero-mean Complex Gaussian Noise
∴ “z=-z=z*=-z*”
Z:zero-mean Complex Gaussian Independent Vector
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p p
∴ “Z=UZ”  where U: Unitary matrix

Stochastic Signal Processing
• Realized value of random number is known →

MRCe.g. MRC
• Pdf of random number is known→ e.g. 

Wiener Filtering
• Moments of random number is known →

e g Decoupling Circuit Designe.g. Decoupling Circuit Design
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Stochastic Process in Wireless 
Communication

• Noise (white spectrum)
• Signal (modulated bandwidth)
• Channel (Doppler frequency)
• Noise > Signal > Channel

2010/04/23 Wireless Communication Engineering I 4



2

Contents
• Path Loss Formula
• Log-normal distribution
• Rayleigh/Rice distribution
• Envelope/Phase distribution
• Power Spectrum & Doppler effect
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• Fading Coefficient
• MAP Estimation of Fading Channel in PHS

Mobile Communication Channel
In addition to Direct wave, there are many Reflection, Refraction and Diffraction waves.
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- Received signal fluctuates dramatically

→ Fading (Long-range, Medium-range, Short-range)
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Hierarchical stochastic structure
• Path loss : The large-scale mean itself depends on the 

“distance” between transmitter and receiverdistance between transmitter and receiver.
• Log-normal : Mean power, averaged over about 10 

wavelengths, itself shows fluctuations due to 
“shadowing” by large objects.

• Rayleigh and Nakagami-Rice : On a very-short-
distance scale power fluctuates around a local mean
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distance scale, power fluctuates around a local mean 
value due to “interference” between different MPCs.
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Path loss and Power Control
• For 3G Wireless Communication System, i.e.

W-CDMA (Wideband Code Division Multiple 
Access) Power Control is used in order to 
alleviate “Near-Far Problem”.
Dynamic Range for Power Control is required 
more than 74dB
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more than 74dB.

Path Loss Formula
• Land mobile electromagnetic wave propagation                

Propagation characteristics are important in designing a cell p g p g g
size, a transmitter and a receiver.
– Long distance variation (Okumura curve): The CCIR adopted the basic 

formula for the median path loss, based on Okumura's measurements.

MHzin frequency :f

( ) ( ) ( )[ ] ( ) ( )mxbb HadHHfL +−+−+= loglog55.69.44log82.13log16.2655.69
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( ) factor Correction:
meterin height  antennastation  Mobile:

Kmin  Range:
meterin height  antennastation  Base:

mx

m

b

Ha
H

d
H

– Middle distance variation (Log-normal distribution: 
Shadowing)   Median over several ten or hundred 
wavelengths obeys a log-normal distribution.                           g y g

sr ETTTE ××××= L321

receiver at theStrength  Signal:Er
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sr ETTE loglogloglog 21 +++=∴ L

obstacleth - at the coefficenton Transmissi:
ertransmittat theStrength  Signal:
iT

E

i

s

Central Limit Theorem
– The sum of statistically independent and 

identically distributed random variables with finiteidentically distributed random variables with finite 
mean and variance approaches to a Gaussian 
distribution as the number of variables increases.

– Gaussian distribution is characterized only by 
mean and variance ( 2 parameters ).
An instantaneous complex amplitude of OFDM
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– An instantaneous complex amplitude of OFDM 
signal can be also approximated by Gaussian 
variable.
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Shadowing effect
• Typical shadowing range is around 4-10dB
• 3GPP Channel model:

Suburban Macro   8dB
Urban Macro        8dB
Urban Micro       10dB(NLOS)  4dB(LOS)
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Rayleigh Fading
– Short distance variation (Rayleigh Fading) There 

are so many reflection and diffraction waves toare so many reflection and diffraction waves to 
generate a complicate standing wave pattern.     
The mobile station moves through there.
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BER Performance in Rayleigh 
Fading Channel

• BER ( Bit Error Rate ) is proportional to an 
ti l f ti f SNR i f diexponential function of SNR in non-fading 

channel ( AWGN channel).
• BER is proportional to an inverse of SNR in 

fading channel.
• Because SNR in fading channel is a random
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Because SNR in fading channel is a random 
variable of which PDF ( probability density 
function ) is an exponential function.

- Fading significantly deteriorates QoS (i.e. bit error rate).
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BER in Rayleigh channel
• Instantaneous BER: 2/)exp( γ−≅Pe

• Averaged BER:

• Pdf of SNR:

)}1(2/{1)( +Γ=×=∫ γγ dPPePe

ΓΓ−= /)/exp()( γγP
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where Γ：average SNR
)p()( γγ

Interference between Multi-path 
Components

• Rayleigh Fading Model

( ) nn ten φ of anglean at    wavearriving elementaryth - The

( ) ( ) ( )[ ]( )[ ]tffjtzte nDcnn φπ cos2expRe +=

[ ]
( )n

f
tz

frequencyCarrier:
envelopeComplex :

numbercomplex part  Real:Re
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– Envelope and phase distribution
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00 ⎠⎝

where R : envelope
θ : phase

Rayleigh Distribution

⎞⎛ 2RR

A pdf of envelope R is a Rayleigh distribution
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Normalized Rayleigh Distribution
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Normalized Nakagami/Rice 
Distribution

2010/04/23 Wireless Communication Engineering I 25

Rician Distribution
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a: Rice factor
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• Power spectrum & Doppler effect

effect.Doppler   the todue 
 fromfrequency different  a has  angle arrival of  waveElementary
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Power Spectrum

Time derivative of random variables

dttdttRtdttdRdttdx /)())(sin()())(cos(/)(/)( θθθ ××−×=

dttdttRtdttdRdttdy /)())(cos()())(sin(/)(/)( θθθ ××+×=
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)/,/,,()/,/,,( dtddtdRRpdfdtdydtdxyxpdf θθ→

• Level crossing number & Fade duration
They are important parameters for mobile communication quality.
– Level crossing number 

envelopeofderivativetime: RR&
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( ) efbN D π=
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– Average fade duration time at the level τ,sR
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ms)2 km/h,50 GHz,5.1 down), (20dB 1.02 When (cf. 0 ==== τvfbR cs

• Random FM noise
( ) noise FM randomly  fluctuates θ t →

( )is , of pdfA θθ && p

( )
23

2

2

0

2

0 1
2
1

−

⎥
⎦

⎤
⎢
⎣

⎡
+= θθ &&

b
b

b
bp

2010/04/23 Wireless Communication Engineering I 35

Random FM noise is independent on average received 
power.
This determines a lower bound of bit error rate.

• Fading correlation
The correlation characteristics are necessary 
for the design of diversity system.g y y
– Time correlation

( ) ( ) ( )[ ]
( ) ( )[ ]
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( )τπ DfJ 20=

( ) kindfirst   theoffunction  Besselorder th -0:0J
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– Space correlation
τvd = distance Space

( ) ( )λπρ dJd 20=

( ) ncorrelatio no  2   spacingh  wavelengthalf Around →λ～d
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Space Correlation

MIMO Transmission and 
Antenna correlation

A l i d O h l• Antenna correlation decreases MIMO channel 
capacity if average SNR at RX antenna is 
equal to each other.
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– Frequency correlation
This is important parameter for Wide-band 
transmission. 

1( ) ( ) ( )cj
cj 02exp
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400kHz) isbandwidth coherent  m,200For  (cf. =lδ

A MAP Estimation ofA MAP Estimation of
Rayleigh Fading Channel

– A Filter Theory of Complex Gaussian Process –
and Its Application to PHS SDMA
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and Its Application to PHS SDMA
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Contents
• Background & Motivation

C l G i St h ti P• Complex Gaussian Stochastic Process
• Noisy Rayleigh Fading Channel
• MAP Estimation of Channel Transfer 

Coefficient
• Numerical Results
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• Conclusion
• Future Work

Background & Motivation
• Recursive Simulation Method for Rayleigh 

F di Ch lFading Channel.
– How to write a computer program ?

• Fading Channel Coefficients should be 
estimated in SDMA PHS Systems
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• Mobile Communication Channel with 
MIMO Systems
– Time Variant Linear Reciprocal System

1# 1#

N#

M M

Up

Down M#
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MS BS

For ( )MN + -port Circuit, a ( ) ( )MNMN ++ scattering matrix S is defined;

⎥
⎤

⎢
⎡ BMMM SS

tfS )(

←N→ ←M→ ↑
N
↓

⎥
⎦

⎢
⎣

=
BBMB SS

tfS ),( ↓
↑
M
↓

where
BMS : NM × Transfer Matrix of Up-Link from MS to BS

S : MN× Transfer Matrix ofDown Link from BS to MS
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MBS : MN× Transfer Matrix of Down-Link from BS to MS
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By the reciprocity,

( ) ( ) t

tSS =
( ) ( ) t

BMMB tfStfS ,=,∴

Thus, the Down-Link Transfer Characteristics
can be determined by the Up-Link one.
The above equality, however, holds only for the same frequency 
and time
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and time.

PHS system
• TDD ( Time Domain Duplex )
• TDMA ( Time Domain Multiple Access )• TDMA ( Time Domain Multiple Access )
• 4 Time Slot Segmentation
• Introduction of SDMA increases a channel capacity by 

3 times or more.
• At the PHS base station, 4 antennas are installed.
• At most 4 data streams can be transmitted

2010/04/23 Wireless Communication Engineering I 46

• At most 4 data streams can be transmitted 
simultaneously by pre-coding at BS for down link.

• The idea is used in “i-Burst” system (IEEE802.20)
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• Conventionally
– Linear Extrapolation for Channel coefficient is 

used.

U U D
t
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– Noise Filtering is not taken into account.

Up Up Down

Complex Gaussian Stochastic 
Process

1) Rayleigh (or Rice) Fading Coefficient  :      X( )t
2) Random White Gaussian Noise : ( )tY

↓

3) Rayleigh Fading Coefficient contaminated with Noise:
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( ) ( ) ( )tYtXtZ +=

Stationary Gaussian Process can be characterized only by
Autocorrelation Function

where
( ) ( )τπτ fAR 2J=

( ) ( ) ( )
( ) ( )ττ

ττ

YYXX

ZZ

RR
tZtZR
+=
+=
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( ) ( )τπτ DXX fAR 2J= 0
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( ) Level Fading Average := 2tXA  

( )Frequency Doppler  Maximum :
KindFirst  ofFunction  BesselOrder 0th  :J0

ff c
v

cD =

Light of velocity :
MS of velocity :

FrequencyCarrier  :

c
v
fc
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( ) Level Noise Average := 2tYN  

 

For MAP Estimation, Cross-correlation Function is
also needed
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( ) ( ) t.independenareand tYtXQ

• MAP (LS) Estimation and Optimal Noise Reduction
– Wiener-Hopf Equation

b:VectorEstimator n CombinatioLinear Optimal
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for EstimatorMAP ( )
ntX

( ) Zb †=
MAPntX

where

( ) ( )( ) DataNoisy Observed:,, 1-0
t

ntZtZ K=Z

2010/04/23 Wireless Communication Engineering I 56



15

Numerical Results

( )
( ) [ ]
( ) 321:DataofNo3

Hz40,10 :FrequencyDoppler  2
1,1.0,0 :             Level Noise 1

=
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n
fD

A
N
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( ) 3,2,1:             DataofNo.3 =n
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Conclusion
• Estimation of Fading Coefficient is useful for 

TDMA/ TDDTDMA/ TDD.
• Conventional Estimation is not satisfactory.
• Estimation Error can be greatly reduced by 

MAP Estimation.
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