
Machine Learning
Chapter 3. Output

2

Output: Knowledge representation

 Decision tables
 Decision trees
 Decision rules
 Association rules
 Rules with exceptions
 Rules involving relations
 Linear regression
 Trees for numeric prediction
 Instance-based representation
 Clusters

3

3

Output: representing
structural patterns

 Many different ways of representing patterns
 Decision trees, rules, instance-based, …

 Also called “knowledge” representation
 Representation determines inference method
 Understanding the output is the key to

understanding the underlying learning
methods

 Different types of output for different
learning problems (e.g. classification,
regression, …)

4

Decision tables

Simplest way of representing output:
Use the same format as input!

Decision table for the weather problem:

Main problem: selecting the right attributes

Outlook Humidity Play

Sunny High No

Sunny Normal Yes

Overcast High Yes

Overcast Normal Yes

Rainy High No

Rainy Normal No

5

Decision trees

“Divide-and-conquer” approach produces tree
Nodes involve testing a particular attribute
Usually, attribute value is compared to

constant
Other possibilities:
Comparing values of two attributes
Using a function of one or more attributes

Leaves assign classification, set of
classifications, or probability distribution to
instances

Unknown instance is routed down the tree

6

Nominal and numeric
attributes

Nominal:
number of children usually equal to number values
⇒ attribute won’t get tested more than once
Other possibility: division into two subsets

Numeric:
test whether value is greater or less than constant
⇒ attribute may get tested several times
Other possibility: three-way split (or multi-way

split)
 Integer: less than, equal to, greater than
 Real: below, within, above

7

Missing values

 Does absence of value have some
significance?

 Yes ⇒ “missing” is a separate value
 No ⇒ “missing” must be treated in a

special way
 Solution A: assign instance to most popular

branch
 Solution B: split instance into pieces

 Pieces receive weight according to fraction of
training instances that go down each branch

 Classifications from leave nodes are combined using
the weights that have percolated to them

8

Classification rules

 Popular alternative to decision trees
 Antecedent (pre-condition): a series of tests

(just like the tests at the nodes of a decision
tree)

 Tests are usually logically ANDed together
(but may also be general logical expressions)

 Consequent (conclusion): classes, set of
classes, or probability distribution assigned
by rule

 Individual rules are often logically ORed
together
 Conflicts arise if different conclusions apply

9

From trees to rules

 Easy: converting a tree into a set of rules
 One rule for each leaf:

 Antecedent contains a condition for every node on
the path from the root to the leaf

 Consequent is class assigned by the leaf

 Produces rules that are unambiguous
 Doesn’t matter in which order they are

executed

 But: resulting rules are unnecessarily
complex
 Pruning to remove redundant tests/rules

10

From rules to trees

More difficult: transforming a rule set into a
tree
Tree cannot easily express disjunction between

rules

Example: rules which test different
attributes

Symmetry needs to be broken
Corresponding tree contains identical

subtrees (⇒ “replicated subtree problem”)

If a and b then x
If c and d then x

11

A tree for a simple
disjunction

12

The exclusive-or problem

If x = 1 and y = 0
then class = a

If x = 0 and y = 1
then class = a

If x = 0 and y = 0
then class = b

If x = 1 and y = 1
then class = b

13

A tree with a replicated
subtree

If x = 1 and y = 1
then class = a

If z = 1 and w = 1
then class = a

Otherwise class = b

14

“Nuggets” of knowledge

 Are rules independent pieces of
knowledge? (It seems easy to add a rule to
an existing rule base.)

 Problem: ignores how rules are executed
 Two ways of executing a rule set:

 Ordered set of rules (“decision list”)
 Order is important for interpretation

 Unordered set of rules
 Rules may overlap and lead to different conclusions

for the same instance

15

Interpreting rules

 What if two or more rules conflict?
 Give no conclusion at all?
 Go with rule that is most popular on training

data?
 …

 What if no rule applies to a test instance?
 Give no conclusion at all?
 Go with class that is most frequent in training

data?
 …

16

Special case: boolean
class

 Assumption: if instance does not belong to
class “yes”, it belongs to class “no”

 Trick: only learn rules for class “yes” and
use default rule for “no”

 Order of rules is not important. No
conflicts!

 Rule can be written in disjunctive normal
form

If x = 1 and y = 1 then class = a
If z = 1 and w = 1 then class = a
Otherwise class = b

17

Association rules

 Association rules…
 … can predict any attribute and combinations

of attributes
 … are not intended to be used together as a

set
 Problem: immense number of possible

associations
 Output needs to be restricted to show only the

most predictive associations => only those
with high support and high confidence

18

Support and confidence of a rule

 Support: number of instances predicted
correctly

 Confidence: number of correct predictions,
as proportion of all instances that rule
applies to

 Example: 4 cool days with normal humidity
if temperature = cool then humidity = normal

⇒Support = 4, confidence = 100%

 Normally: minimum support and confidence
pre-specified (e.g. 58 rules with support ≧
2 and confidence ≧ 95% for weather data)

19

Interpreting association rules

 Interpretation is not obvious:
if windy = false and play = no then outlook = sunny and

humidity = high

is not the same as
if windy = false and play = no then outlook = sunny
if windy = false and play = no then humidity = high

 However, it means that the following also
holds:

if humidity = high and windy = false and play = no
then outlook = sunny

20

Rules with exceptions

 Idea: allow rules to have exceptions
 Example: rule for iris data

if petal-length ≧2.45 and petal-length < 4.45
then Iris-versicolor

 New instance:

 Modified rule:
if petal-length ≧ 2.45 and petal-length < 4.45

then Iris-versicolor EXCEPT if petal-width < 1.0 then
Iris-setosa

21

A more complex example

 Exceptions to exceptions to
exceptions …

22

Advantages of using exceptions

 Rules can be updated incrementally
 Easy to incorporate new data
 Easy to incorporate domain knowledge

 People often think in terms of exceptions
 Each conclusion can be considered just in

the context of rules and exceptions that
lead to it
 Locality property is important for

understanding large rule sets
 “Normal” rule sets don’t offer this advantage

23

More on exceptions

 “Default … except if … then …”
is logically equivalent to
“if … then … else”
(where the else specifies what the default did)

 But: exceptions offer a psychological
advantage
 Assumption: defaults and tests early on apply

more widely than exceptions further down
 Exceptions reflect special cases

24

Rules involving relations

 So far: all rules involved comparing an
attribute-value to a constant (e.g.
temperature < 45)

 These rules are called “propositional”
because they have the same expressive
power as propositional logic

 What if problem involves relationships
between examples (e.g. family tree
problem from above)?
 Can’t be expressed with propositional rules
 More expressive representation required

25

The shapes problem

 Target concept: standing up
 Shaded: standing

Unshaded: lying

26

A propositional solution

Width Height Sides Class

2 4 4 Standing

3 6 4 Standing

4 3 4 Lying

7 8 3 Standing

7 6 3 Lying

2 9 4 Standing

9 1 4 Lying

10 2 3 Lying

If width ≥ 3.5 and height < 7.0
then lying

If height ≥ 3.5 then standing

27

A relational solution

Comparing attributes with each other

Generalizes better to new data
Standard relations: =, <, >
But: learning relational rules is costly
Simple solution: add extra attributes

(e.g. a binary attribute is width < height?)

If width > height then lying
If height > width then standing

28

Rules with variables
 Using variables and multiple relations:

 The top of a tower of blocks is standing:

 The whole tower is standing:

 Recursive definition!

If height_and_width_of(x,h,w) and h > w
then standing(x)

If is_top_of(x,z) and
height_and_width_of(z,h,w) and h > w
and is_rest_of(x,y)and standing(y)
then standing(x)

If empty(x) then standing(x)

If height_and_width_of(x,h,w) and h > w
and is_top_of(x,y)

then standing(x)

29

Inductive logic
programming

 Recursive definition can be seen as logic
program

 Techniques for learning logic programs
stem from the area of “inductive logic
programming” (ILP)

 But: recursive definitions are hard to learn
 Also: few practical problems require recursion
 Thus: many ILP techniques are restricted to

non-recursive definitions to make learning
easier

30

Trees for numeric prediction

 Regression: the process of computing an
expression that predicts a numeric quantity

 Regression tree: “decision tree” where each
leaf predicts a numeric quantity
 Predicted value is average value of training

instances that reach the leaf
 Model tree: “regression tree” with linear

regression models at the leaf nodes
 Linear patches approximate continuous

function

31

Linear regression for the
CPU data

PRP = - 56.1
+ 0.049 MYCT
+ 0.015 MMIN
+ 0.006 MMAX
+ 0.630 CACH
- 0.270 CHMIN
+ 1.46 CHMAX

32

Regression tree for the CPU
data



33

Model tree for the CPU data



34

Instance-based representation

 Simplest form of learning: rote learning
 Training instances are searched for instance

that most closely resembles new instance
 The instances themselves represent the

knowledge
 Also called instance-based learning

 Similarity function defines what’s “learned”
 Instance-based learning is lazy learning
 Methods: nearest-neighbor, k-nearest-

neighbor, …

35

The distance function

 Simplest case: one numeric attribute
 Distance is the difference between the two

attribute values involved (or a function
thereof)

 Several numeric attributes: normally,
Euclidean distance is used and attributes
are normalized

 Nominal attributes: distance is set to 1 if
values are different, 0 if they are equal

 Are all attributes equally important?
 Weighting the attributes might be necessary

36

Learning prototypes

 Only those instances involved in a decision
need to be stored

 Noisy instances should be filtered out
 Idea: only use prototypical examples

37

Rectangular generalizations

 Nearest-neighbor rules is used outside
rectangles

 Rectangles are rules! (But they can be
more conservative than “normal” rules.)

 Nested rectangles are rules with exceptions

38

Representing clusters I

Simple 2-D representation Venn diagram

39

Representing clusters II

Probabilistic assignment Dendrogram

NB: dendron is the Greek
word for tree

	Machine Learning�Chapter 3. Output
	スライド番号 2
	Output: representing structural patterns
	Decision tables
	Decision trees
	Nominal and numeric attributes
	Missing values
	Classification rules
	From trees to rules
	From rules to trees
	A tree for a simple disjunction
	The exclusive-or problem
	A tree with a replicated subtree
	“Nuggets” of knowledge
	Interpreting rules
	Special case: boolean class
	Association rules
	Support and confidence of a rule
	Interpreting association rules
	Rules with exceptions
	A more complex example
	Advantages of using exceptions
	More on exceptions
	Rules involving relations
	The shapes problem
	A propositional solution
	A relational solution
	Rules with variables
	Inductive logic programming
	Trees for numeric prediction
	Linear regression for the CPU data
	Regression tree for the CPU data
	Model tree for the CPU data
	Instance-based representation
	The distance function
	Learning prototypes
	Rectangular generalizations
	Representing clusters I
	Representing clusters II

