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Output: Knowledge representation

 Decision tables
 Decision trees
 Decision rules
 Association rules
 Rules with exceptions
 Rules involving relations
 Linear regression
 Trees for numeric prediction
 Instance-based representation
 Clusters
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Output: representing 
structural patterns

 Many different ways of representing patterns
 Decision trees, rules, instance-based, …

 Also called “knowledge” representation
 Representation determines inference method
 Understanding the output is the key to 

understanding the underlying learning 
methods

 Different types of output for different 
learning problems (e.g. classification, 
regression, …)
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Decision tables

Simplest way of representing output:
Use the same format as input!

Decision table for the weather problem:

Main problem: selecting the right attributes

Outlook Humidity Play

Sunny High No

Sunny Normal Yes

Overcast High Yes

Overcast Normal Yes

Rainy High No

Rainy Normal No
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Decision trees

“Divide-and-conquer” approach produces tree
Nodes involve testing a particular attribute
Usually, attribute value is compared to 

constant
Other possibilities: 
Comparing values of two attributes
Using a function of one or more attributes

Leaves assign classification, set of 
classifications, or probability distribution to 
instances

Unknown instance is routed down the tree 
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Nominal and numeric 
attributes

Nominal:
number of children usually equal to number values
⇒ attribute won’t get tested more than once
Other possibility: division into two subsets

Numeric:
test whether value is greater or less than constant
⇒ attribute may get tested several times
Other possibility: three-way split (or multi-way 

split)
 Integer: less than, equal to, greater than
 Real: below, within, above
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Missing values

 Does absence of value have some 
significance?

 Yes ⇒ “missing” is a separate value
 No ⇒ “missing” must be treated in a 

special way
 Solution A: assign instance to most popular 

branch
 Solution B: split instance into pieces

 Pieces receive weight according to fraction of 
training instances that go down each branch

 Classifications from leave nodes are combined using 
the weights that have percolated to them
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Classification rules

 Popular alternative to decision trees
 Antecedent (pre-condition): a series of tests 

(just like the tests at the nodes of a decision 
tree)

 Tests are usually logically ANDed together 
(but may also be general logical expressions)

 Consequent (conclusion): classes, set of 
classes, or probability distribution assigned 
by rule

 Individual rules are often logically ORed 
together
 Conflicts arise if different conclusions apply 
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From trees to rules

 Easy: converting a tree into a set of rules
 One rule for each leaf:

 Antecedent contains a condition for every node on 
the path from the root to the leaf

 Consequent is class assigned by the leaf

 Produces rules that are unambiguous
 Doesn’t matter in which order they are 

executed

 But: resulting rules are unnecessarily 
complex
 Pruning to remove redundant tests/rules 
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From rules to trees

More difficult: transforming a rule set into a 
tree
Tree cannot easily express disjunction between 

rules

Example: rules which test different 
attributes

Symmetry needs to be broken
Corresponding tree contains identical 

subtrees (⇒ “replicated subtree problem”)

If a and b then x
If c and d then x
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A tree for a simple 
disjunction
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The exclusive-or problem

If x = 1 and y = 0
then class = a

If x = 0 and y = 1
then class = a

If x = 0 and y = 0
then class = b

If x = 1 and y = 1
then class = b
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A tree with a replicated 
subtree

If x = 1 and y = 1
then class = a

If z = 1 and w = 1
then class = a

Otherwise class = b
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“Nuggets” of knowledge

 Are rules independent pieces of 
knowledge? (It seems easy to add a rule to 
an existing rule base.)

 Problem: ignores how rules are executed
 Two ways of executing a rule set:

 Ordered set of rules (“decision list”)
 Order is important for interpretation

 Unordered set of rules
 Rules may overlap and lead to different conclusions 

for the same instance
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Interpreting rules

 What if two or more rules conflict?
 Give no conclusion at all?
 Go with rule that is most popular on training 

data?
 …

 What if no rule applies to a test instance?
 Give no conclusion at all?
 Go with class that is most frequent in training 

data?
 …
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Special case: boolean 
class

 Assumption: if instance does not belong to 
class “yes”, it belongs to class “no”

 Trick: only learn rules for class “yes” and 
use default rule for “no”

 Order of rules is not important. No 
conflicts!

 Rule can be written in disjunctive normal 
form

If x = 1 and y = 1 then class = a
If z = 1 and w = 1 then class = a
Otherwise class = b
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Association rules

 Association rules…
 … can predict any attribute and combinations 

of attributes
 … are not intended to be used together as a 

set
 Problem: immense number of possible 

associations
 Output needs to be restricted to show only the 

most predictive associations => only those 
with high support and high confidence
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Support and confidence of a rule

 Support: number of instances predicted 
correctly

 Confidence: number of correct predictions, 
as proportion of all instances that rule 
applies to

 Example: 4 cool days with normal humidity
if temperature = cool then humidity = normal

⇒Support = 4, confidence = 100%

 Normally: minimum support and confidence 
pre-specified (e.g. 58 rules with support ≧
2 and confidence ≧ 95% for weather data)
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Interpreting association rules

 Interpretation is not obvious:
if windy = false and play = no then outlook = sunny and 

humidity = high

is not the same as
if windy = false and play = no then outlook = sunny
if windy = false and play = no then humidity = high

 However, it means that the following also 
holds:

if humidity = high and windy = false and play = no 
then outlook = sunny
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Rules with exceptions

 Idea: allow rules to have exceptions
 Example: rule for iris data

if petal-length ≧2.45 and petal-length < 4.45 
then Iris-versicolor

 New instance:

 Modified rule:
if petal-length ≧ 2.45 and petal-length < 4.45 

then Iris-versicolor EXCEPT if petal-width < 1.0 then 
Iris-setosa
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A more complex example

 Exceptions to exceptions to 
exceptions …
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Advantages of using exceptions

 Rules can be updated incrementally
 Easy to incorporate new data
 Easy to incorporate domain knowledge

 People often think in terms of exceptions
 Each conclusion can be considered just in 

the context of rules and exceptions that 
lead to it
 Locality property is important for 

understanding large rule sets
 “Normal” rule sets don’t offer this advantage
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More on exceptions

 “Default … except if … then …”
is logically  equivalent to 
“if … then … else”
(where the else specifies what the default did)

 But: exceptions offer a psychological 
advantage
 Assumption: defaults and tests early on apply 

more widely than exceptions further down
 Exceptions reflect special cases
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Rules involving relations

 So far: all rules involved comparing an 
attribute-value to a constant (e.g. 
temperature < 45)

 These rules are called “propositional” 
because they have the same expressive 
power as propositional logic

 What if problem involves relationships 
between examples (e.g. family tree 
problem from above)?
 Can’t be expressed with propositional rules
 More expressive representation required
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The shapes problem

 Target concept: standing up
 Shaded: standing

Unshaded: lying
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A propositional solution

Width Height Sides Class

2 4 4 Standing

3 6 4 Standing

4 3 4 Lying

7 8 3 Standing

7 6 3 Lying

2 9 4 Standing

9 1 4 Lying

10 2 3 Lying

If width ≥ 3.5 and height < 7.0
then lying

If height ≥ 3.5 then standing
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A relational solution

Comparing attributes with each other

Generalizes better to new data
Standard relations: =, <, >
But: learning relational rules is costly
Simple solution: add extra attributes

(e.g. a binary attribute is width < height?)

If width > height then lying
If height > width then standing



28

Rules with variables
 Using variables and multiple relations:

 The top of a tower of blocks is standing:

 The whole tower is standing:

 Recursive definition!

If height_and_width_of(x,h,w) and h > w
then standing(x)

If is_top_of(x,z) and 
height_and_width_of(z,h,w) and h > w
and is_rest_of(x,y)and standing(y)
then standing(x)

If empty(x) then standing(x)

If height_and_width_of(x,h,w) and h > w
and is_top_of(x,y)

then standing(x)
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Inductive logic 
programming

 Recursive definition can be seen as logic 
program

 Techniques for learning logic programs 
stem from the area of “inductive logic 
programming” (ILP)

 But: recursive definitions are hard to learn
 Also: few practical problems require recursion
 Thus: many ILP techniques are restricted to 

non-recursive definitions to make learning 
easier



30

Trees for numeric prediction

 Regression: the process of computing an 
expression that predicts a numeric quantity

 Regression tree: “decision tree” where each 
leaf predicts a numeric quantity
 Predicted value is average value of training 

instances that reach the leaf
 Model tree: “regression tree” with linear 

regression models at the leaf nodes
 Linear patches approximate continuous 

function
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Linear regression for the 
CPU data

PRP = - 56.1
+ 0.049 MYCT
+ 0.015 MMIN
+ 0.006 MMAX
+ 0.630 CACH
- 0.270 CHMIN
+ 1.46 CHMAX   
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Regression tree for the CPU 
data


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Model tree for the CPU data


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Instance-based representation

 Simplest form of learning: rote learning
 Training instances are searched for instance 

that most closely resembles new instance
 The instances themselves represent the 

knowledge
 Also called instance-based learning

 Similarity function defines what’s “learned”
 Instance-based learning is lazy learning
 Methods: nearest-neighbor, k-nearest-

neighbor, …
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The distance function

 Simplest case: one numeric attribute
 Distance is the difference between the two 

attribute values involved (or a function 
thereof)

 Several numeric attributes: normally, 
Euclidean distance is used and attributes 
are normalized

 Nominal attributes: distance is set to 1 if 
values are different, 0 if they are equal

 Are all attributes equally important?
 Weighting the attributes might be necessary
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Learning prototypes

 Only those instances involved in a decision 
need to be stored

 Noisy instances should be filtered out
 Idea: only use prototypical examples
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Rectangular generalizations

 Nearest-neighbor rules is used outside 
rectangles

 Rectangles are rules! (But they can be 
more conservative than “normal” rules.)

 Nested rectangles are rules with exceptions
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Representing clusters I

Simple 2-D representation Venn diagram
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Representing clusters II

Probabilistic assignment Dendrogram

NB: dendron is the Greek
word for tree
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