International Development Project

Risk Management
of
Technological Change

Y. Yamaguchi & J. Takada November 17, 2009 Tokyo Institute of Technology

Technological Advance Benefits & Risks

- Hidden costs of technology:
 - Mad cow diseases: cost cutting techniques
 - Nuclear power: e.g. Three Mile Island, Chernobyl
 - Thalidomide medicine: birth defect
 - CFCs (Chlorofluorocarbons)
 - Ethical issues: possibility of human cloning
 - Information and communication technologies (ICT): international crime & drug trade networks, child pornography etc.

Why Adopt New Technologies?

- Possibilities for promoting human development
- New technologies often improves on the ones they replace: more convenient, more livable, etc.
- Many potential risks can be managed
- Technological change becomes a positive force for development

however

Trade-offs of technological change vary from country to country

Technologies & Developing Countries

- Disadvantages:
 - Lack in regulatory institutions needed to manage the risks
- Advantages:
 - Followers do not incur the first-mover risks
 - Can observe how those risks play out in other countries
 - Can learn from others in designing regulations and institutions
 - May be able to establish low-cost regulatory systems

Risks of Technological Changes

- 1. Human behavior and social organization
 - Biotechnology for weapons
 - ICT for money laundering and illegal trades
- 2. Technology
 - Gene flow from genetically modified organisms to non-target organisms
 - Mobile phone and brain cancer

Technological Changes & Potential Harms

1. Possible harms to human health

- Environmental harms: polluted air and water, power plants producing sulphur dioxide,
- Medical substances: thalidmide
- Biotechnology applications in health care: side effect of vaccines and diagnostics

2. Possible harms to the environment

 Genetically modified organisms: destabilization of ecosystem and reduction of biodiversity

Opponents & Proponents of New Technologies

- 1. Opponents of new technologies
 - Often ignore the harms of the status quo
 - E.g. pest-resistant corn pollen vs. reduction of pesticides
- 2. Proponents of new technologies
 - Often fail to consider alternatives
 - E.g. nuclear power vs. solar power and hydrogen fuel cells
- Different societies/communities may have different decisions
 - E.g. Side effect/benefit of genetically modified food
 - Health effect (Europe) vs. higher yield (developing countries)

Driving the Debate

- Public trust in regulators
 - Failure in Europe: BSE in UK, HIV in France
- Claims from competing interests
 - Strong influence by interest groups
 - Media hype
 - Lobbying

Global Debate?

"Views that dominate the global debate can lead to decisions not in the best interest of local communities"

- ◆ Debates on technologies tend to mirror the concerns of rich countries
 - ◆E.g. malaria and DDT: UNEP banned use of DDT in 2001 (donor agencies do not fund its use)
 - ◆ Possible harms to health vs. effective tool against disease
- Developing countries can come under pressure from donor agencies and multinational companies
 - ◆May fall in line behind European countries and US

Precautionary Principles

A much-discussed decision-making tool

- 1. Consideration of benefit and risks in current technology
 - Soft formulations: weight potential benefit & risks
 - Strong formulations: examine only direct risks
- 2. Cost-effectiveness of prevention
 - Soft formulations: need to balance the costs (e.g. preventing potential environmental harms)
 - Strong formulations: do not weight costs of prevention
- 3. Certainty of harm or certainty of safety
 - Soft formulations: absence of certainty of harm doe not prevent regulatory action
 - Strong formulations: require certainty of safety to avoid regulatory action

Precautionary Principles

- 4. Burden of proof
 - Soft formulations: on those who claims that harm will occur
 - Strong formulations: on producers to prove
- Optional or obligatory action
 - Soft formulations: permit regulators to take action
 - Strong formulations: require action
- 6. Locus of decision-making
 - Soft formulations: place authority in regulators
 - Strong formulations: place power in political leaders

Building Capacity to Manage Risks

- Using scientific information: turning uncertainty into risk
- Ensuring public participation through risk communication
- 3. Creating flexible institutions and diverse technologies
- E.g. Miracle Seeds
 - Health risks: allergies, toxicity, pleiotropic effects, antibiotic resistance,
 - Environmental risks: unintended effect on non-target species, effects of gene flow to close relatives, increased weediness, development of pest resistance to pest-protected plants, concerns about virus-resistant crops, threats to biodiversity

Challenges Facing Developing Countries

1. Shortage of skilled personnel

- Professional researchers, trained technicians are essential for adapting technologies for local use
- 2. Inadequate resources
 - Cost of maintaining a regulatory framework
 - Risky dependence on donor
- 3. Weak communication strategies
 - Often no official communications strategy for informing the public in developing countries
- 4. Inadequate feedback mechanism
 - Providing information and gathering feedback are typically weaker in developing countries

Example in ICT

- Broadband power line communications (BPL/PLC)
 - Strong alternative to DSL
 - Strong interference to short wave radio
 - Not extensively used in developed countries
 - Fully utilized in developing countries
 - Deployment of BPL in developing countries
 - Dependence on developing countries
 - Lack of human resources for reguratory issues

Advantage of developing countries

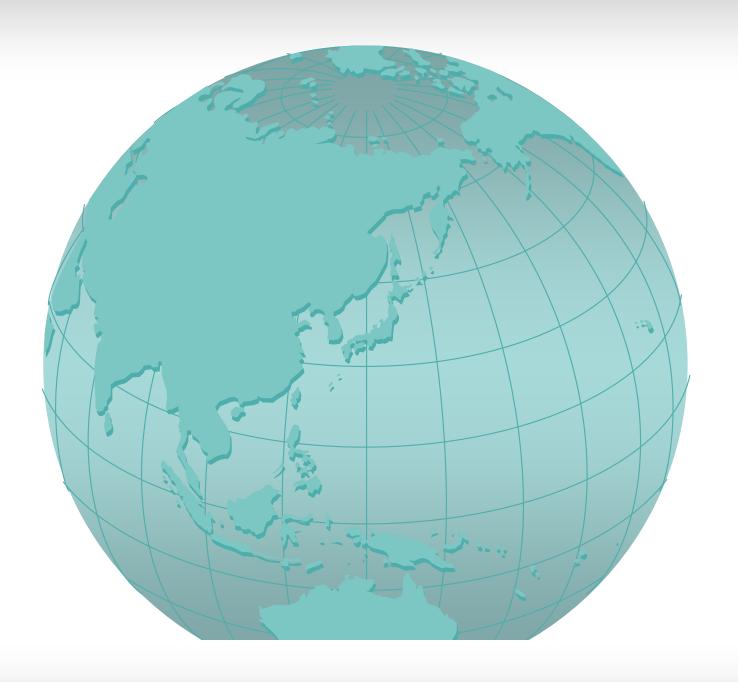
1. Learn from technology leaders

- Take advantage of followers
- Can establish low-cost regulatory systems
- Avoid redundant testing

2. Harmonize standards through regional collaboration

- Develop health and environmental standards
- Share knowledge, best practices, research findings, biosafety expertise and regulatory approval etc in region

Example in ICT


- Spread of cell phone
 - Skip of fixed line phone
 - Infrastructure: line to point

Advantage of developing countries

- 3. Develop national scientific and extension capacities
 - adaptive research in more relevant in poor countries: how to borrow and adapt technologies
- 4. Strengthen regulatory institutions
 - Requires human and institutional capacity at the national level
- 5. Mobilize local voices
 - Programs aimed at involving the public in assessing technology
 - Farmers and consumers from developing countries, experts from universities, farmers unions, NGOs, national government etc.

Global collaboration for managing risks

- **◆** Conduct longer-term research
- **♦** Restore public trust in science
- **◆** Expand donor assistance for building capacity

