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Basics of Structural Dynamics

Kazuhiko Kawashima
Tokyo Institute of Technology

Preliminary Overview of Structural Dynamics

® What is the natural period?

bood What is the definition of natural
oooo ;

0ooon period?

EEEE ® What is the damping ratio?
oooo What is the definition of damping

ratio?

®How long natural period does a
structure have?

®How large damping ratio does
a structure have?

Single-degree-of-freedom Idealization (SDOF)

1EHER
Idealization of a structure in terms of a
SDOF system
ooo
el mass
oooo
oooo
0ooo Spring \ Dash pot
k C

Viscous coefficient

Equation of Motion of a SDOF System

Displacement «

From the Newton’s Law, the
Force F (1) equilibrium of the system
subjected to an external force
F(t) becomes as

mass

Spring Dash pot
k (&

mii = F(t)—ku—cu

mii+ cui + ku = F(t)

S AT YRR (R Dividing the equation by , we obtain
+—u+—u=——
m m m
Defining @, and h as Free Oscillation of no damped, critically damped and
k Undamped angular frequency over-damped SDOF system

@n =T, EFEMAE S IREHK

2he, =< h=-———="" Damping ratiofZE %
U 2\mk ¢, ping =

¢, Critical damping coefficient

RS R =R

The equation of motion can be written as

ii+2haw,u+ wnzu _F®
m
The solution of the above equation can be obtained as a sum
of the general solution (u,) and a particular solution (up)

ERE, BRI RVBHZR OB BIRE (— A2

a) Free Oscillation of no damped system3EiRi = B B 1R E)

5 2
i+, u=0
: r,=22
. u, =U, cos(w,t— @) o,
where Natural period (s)

— EEEE
Uc= u02+ Z)i()] f :i
n nor
U

(p:tan*l[ fo ] Natural frequency (Hz)
(2l EAIREH
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b) Free Oscillation of damped systemgi% B Bk &)

If 0<h<l
ii+ 2h @i+ @, u =0 -
! T;=—
e =Ue "' cos(@yt - ;) @ .
where ?se)lmped natural period
. 2 o -
UL.:\/MOZJ{MO +Mj Jﬁﬁllﬁl?ﬁla%ﬁ
&g Wy fi==

_ —1f g + ho, upy
¢, = tan [7@1 Mon j Damped natural
frequency (Hz)

PN REEH R

c) Critically damped free oscillation B&RiFzx= HHIRE

h=1

d) Over damped free oscillation #;5%= H ik E)

h>1

Logarithmic damping ratio

Free oscillation of a damped SDOF system is

up =Upe Mt cos(ayt - )

The amplitude at the m-th and (m+1)th oscillations is

—hayt,

Ugy =Uce " cos(Wyty, —P)

—hayt,
Ue(m+1) =Uce et CoS(Dygty41 = P)

Forced Oscillation of SDOF System (Particular solution)

. c. k _F@)
ii+—u+—u=—=
m m m
up:Asinwt+Bcoswt

one can obtain up as
Fy 1

) ey

u, =

sin(a)t—(op)

3 where
Uem _ oy _ 270 /N1=h -1l 2h(w/ w,)
gp=tan | — =
Uem+1 1- (0! w,)
7] 27th
A=log, "\ =———=27h
¢ [ | I

Solution of SDOF system subjected to an external
force F(t)

Exercise 1 Compute and plot response u under the
following conditions

i +5u _ 46 Transient response
m m m uy=1m
Steady state response g =0
u=U.e "% cos(ayt— @) T,=05s and T,=10s
R 1 sin(ar—p) h=001 > h=0.05 and ~=0.10
k 2)2 2 T =03s
-2+ 2
o, ’ Fylk=0.5m
where u
2 (g hou 2 r\ \ AN\ L N\
U. = |uy* +| 20 + 2%nt0 \ WA VAN
c 0 ( oy j ‘ V \/ Time(s)
—t 1 ug + ha)nuo 0, = tan_l 2h(w/ (0")
@ = tan P 2
W ug 1-(w/w,)
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Dynamic Amplification Factor

Because the transient response soon decays, the SDOF
system continues to oscillate with an amplitude of AD

F
AD:*O' L

) ey

The dynamic amplification factor M can be written as

_Ap _ 1

RO

M

Because Fo/k represents the static displacement, § at v
denoting Fo/k as As, %ﬂ 2 <
1 =
Ap = Ag - > ez 120,707 \
2 2 heyeee 3
1—[2] } +{2h£} . ‘
)y, )y, 0 0.5
From . .
w @ 3 L w ®This means that a peak value of M does not exist and
am _4(;n)+4(;n) +8h (7) Mmax becomes 1.0 at @/ @, =0 if h>1/~/2
d(@,) = 2= 0 ®Mmax becomes infinitively large at @/, =1.0if h=0
" _2{1_2(2)24_(2)4 +4h2(£)2} ®lf /1 <1/~/2, Mmax becomes
a)n wn wn

Mmax is developed at

@ _ 2

Dy Qe h> 1

2

Consequently, Mmax becomes as
1 B e 12
M. . =12W1-h
max 1
floacssaoacesasaacon h>
2

1 1

Mo =
" omi—n? 2k

Therefore, the maximum amplitude ADmax becomes

Ag

A =5
D max 2

Consequently, if h=0.05, Mmax=1/(2x0.05)=10,
and ADmax=10AS.

Exercise 2 Compute the dynamic amplification factor M
for various damping ratio h

h= 0
| 0.02
\ 0.05
\ 0.1
\ 0.5
L 0.707

- 1.0

Equivalent Damping Ratio

® Energy dissipated by a .
damper per cycle Wd can mass|  Displacement #
be written as
Force F(1)

Dash pot
@

ci-du= cu—udt
Spring
Wd ngﬂ/wcll'lldf k
_Conimw, 242 2
_;J‘O @A~ cos” (ax —)d(ax) u = Asin(at — @)
= c(dAzﬂ'
If we can evaluate the energy dissipation per cycle Wd
based on an experiment, and if the same amount of
energy is dissipated by a damper, the viscous damping
coefficient ceq should be as
Cog = 7Wd
“ 7wA?
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® ceq is called as the equivalent damping coefficient
®The damping ratio corresponding to ceq (equivalent
damping ratio) is

C,
hy, =5 :&2/2 e F Force
Cor  TWA
A
L b
27 1A2 placement
Because \‘
I, .2
W, =—kA
=3 i kA
represents the elastic energy, Force |
W A
“4rw,

\displacement
\

SDOF System subjected to Earthquake Ground Motion

“r, u, :relative displacement (=
displacement of a SDOF system
relative to the ground)

ug : ground displacement due
to earthquake

From the Newton’s law, the equilibrium of the SDOF system
subjected to ground motion u is

m(iy +iig ) = —ku, —ci,

mii, +ci, +ku, = —miiy

How can we compute response of structures
subjected to an earthquake ground motion?

®The seismic response of a structure subjected to a
combination of sinusoidal motion can be solved by
evaluating a general solution and a particular solution.

®The seismic response of a structure under an
earthquake ground acceleration can be solved by one of
the two methods

v'Mode superposition method (only for linear elastic
structures)

v'Direct integration method (for both linear and
nonlinear method)

Nonlinear Dynamic Response Analysis

Equations of motion in the incremental form

MAii(t)+ Cydu(t)+ K, Au(t) = AR(t) + MBAu'g(t)
(2.47)
Aii(t) = ii(t + At) —ii(t)
Au(t) =u(t + At)—u(t)
Au(t)=u(t+ At)—u(t)
AR(t) = R(T + At) — R(t)
Aiig(t)=iig(t+ At)—iig(t)

Nonlinear Dynamic Response Analysis
(continued)
Newmark’s generalized acceleration method

i(t HAt) u(t H At) u(t +HAt)
(e z u(t) 7| u@) z
i t+AT I t+Ar t t+ At

i(7) = [§ii(v)dr+ Cy

— ([T i, =u(0)=Cy
u(t) =[foi(r)d7 + Ci7+ Co
iy pr = (AN = [ ii(2)d T +C|
u; =u(0)=Cy
Uryar = u(An) = [ [ ii(2)d T+ ClAL+Cy

Newmark’s generalized acceleration method (continued)

Constant Acceleration Method

ii(t HAt) u(t HAt) u(t H At)
ut) |z u(t) u(®) g
t [+A I t+A! t t+ At
i(7) = i (t)+ii(t + Ar)

. Y . . A

w(7) =1, + > (i +ii o) Upppar =0+ ey (g +ig 1 Ar)
. 72 . .

M(f)zut+u[T+Z(u[+ut+At) ’

. At

o UppAr = Up U AL e (i +iip 1 Ap
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Newmark’s generalized acceleration method (continued)

Linear Acceleration Method

ii(t 4 At) 1t 4 AY) u(t 4 Ar)
it u(t) | u@ T
: [+Ar I t+ A t t+ At

ii(7) = i, +é(ﬁ’+‘é’ —ii,)

M(f) = L'tt aF Ij[T‘i‘ m(ﬁ[_‘_A[ - Ij[) Atz
"l p =l +utA,+7(ﬁHAt —ii,) u(t + At) = u(t)+ii(t)At +[(1/2 — 0)ii(t) + oii(t + At)]
), 3 1 1 ]
u(T) = uy +1i, T+ Mz; +% Gy Ay —iiy) . . S= 3 o= 4 constant acceleration method
U Ar = Uy AL+ M;ét + ATt Gy pp —iiy) 5= % o= % linear acceleration method

Newmark’s generalized acceleration method (continued)

it HAr) u(t 4 Ar) u(t HAr)
gi(t u(t) u(?)
¢ +Af I t+At o+ A

u(t+ At) = 1(t)+ [(1-0)ii(t)+ dii(t + At)] (2.50)

Newmark’s generalized acceleration method (continued)

Aii(t) = CyAu(t)— Cxu(t) — Caii(t)
Aii(t) = CyAu(t)— Cift)— Csii(t)

(2.51)

constant acceleration linear acceleration

method method
Cp =4/At* €y =6/A?
Cr=2/At Cy=3/At
C3 =4/At C3=6/Al‘
Cp=2 Cy=3
Cs=0 Cs=At/2

Newmark’s generalized acceleration method (continued)

MAii(t)+ C, Au(t)+ K, Au(t)= AR(t)+ MBAii o 1) (2.47)
ii(t) = CyAu(t)— Cxu(t) — Caii(t)

Aii(t) = Cy Au(t)— Cyii(t) - Csii(?) @51
K, Au(t)= AR(t) (2.52)
where,
K =M + GG, + K, (2.53)
AR(t)= AR(t)+ MBAiio(t) +{C3M + C4C, Yi(1)
+{C4M + C5C, Jii(1) (2.54)

Earthquake Response Spectrum

® Compute maximum response
acceleration |ii, +ﬂg‘max for a given
natural period Tn and a damping ratio
h under a ground motion

®Response acceleration response
spectrum is defined as

SA(T.h)=lii, +u'g\max

Natural Period Tn (sec)

How does response acceleration vary depending on
damping ratio?

: A most simple evaluation for the effect of enhancing
the energy dissipation capability for reducing
structural response

A modification factor of response acceleration spectrum
depending on damping ratio

SA(T,h)
T,h)y=—-2"—""""—
Esa(T,h) SA(T005)

Response spectrum shape (Ratio of response acceleration
and the peak ground acceleration, or response
acceleration ratio)

p.p=4T0

Amax
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How does response acceleration vary How does response acceleration vary
depending on damping ratio? depending on damping ratio?
A ground motion recorded at Itajima Bridge site A ground motion recorded at Kaihoku Bridge site
T T T T TT T | F 5
g |mo3 r
5 e | ol
5 L= NENT!, MIYAGI- KEN-CKI
é ; - EARTHOLAKE
§ 2 E = 3
& ] & or =}
E ur z o5 -
.3 L =
f o e N
oIS P
[+1] oz 03 asar 1 - 1 h=Ci4
NATURAL PERIOD T [SEC) oC!.I I D:2 o3 0..5‘(1‘.’“\. 2 3

How does &4 (T,h) vary in accordance with response
. . . . spectrum shape?
How does &sa(T.h) vary in accordance with damping ratio? P P
4 LR, PR R P ) 4 T T i V;v : - - . -
TRIABOCE G BN | (FAWOKD BROGE. TR, “ 3 eed [T T[]
MIYEGI-KEN-CK_EARTHOUAKE = A =:
3 % ===z e .
T7o.4 655] L R T R E e Y
= ——-—- T202 SEC | ACCCLLRATION SPECTRAL RETIO S (T,003)
= 4 ] {¢) h=0.1
- —-— T:1 0SEC oL LI — L
- —_— T‘ZO SEC| , 002 003 005 ar 0z 03 05 1 2 3 5 ¥
i = ACCELERATION SPECTRAL RATIO B(T,0.05) =T ] IHH |l T
1 (a) h=0.0
i
L i £
R T R L B 02 03 04 E; I“NI‘ T e
DAMPING. RATIO b CAMPING FATID h s | § b
Prmeron o —os or a5 rl— [T
ACCELERATION SPECTREL RATIO RB(T,008) 002 003 005 ol 02.03 05 ' - LY
- ACCELERATICN SPZCTRAL RATID B(T.005)
(k) h=0.02 G

How does &g, (T,h) vary in accordance with response

spectrum shape? Damping Ratio Dependence of a(h) and b(h)

log Ega (T, h) =log a(h) +b(h)log £(h,0.05)
2.0 p—r—rrr=r — T
. 7 . (L [aeROxaTION bF ain] AND Gih), WHICH ARE | ]
T
208 Ty s = oo | — _ DEFINED AS laggs,1T,h) = log ath)+b(hl log BIT,0.05) | |
Z [e-o0] S e £ 2 nem me - = i
g 28 2 o Orf | mouean 1.2
3 ot ey % = Bl =TT ]
= oz % 1 [ Te; Gz o T
T ; T —Tasc . LI ]
¥ o fads | LEh G oo sdemon = s Z g4 e
2 s AEIRESSION BY AL OATA | O 3 3Y ALL DAA TaisEC B o T i
ER [T T T T I ; 2
GD2003005 ©O1  ©2 03 05 | 2 3 & ACCELERATION SPECTRAL FATIO BIT,208) “ / @(h) APPROXIMATED BY |
ACCELERATION SPECTRAL RATIO B(r.C0S5) 'i |g‘i.| +0.58 4
(c) h = 0.1 w0
(a) h - 0.C & E 1
2
sl G0 i) arproxMATED BY | NS~
- 7o) 277 ~obin 1
z T "' BrAL tam -08 Toraz ~ 0.8 i |
Eul g, [h-002 k9 - SO |
i T s o CeeET Y IR AR N T FRET T I ERREET
e e = 3 g 02} nom mer o as 01 02 Ps f Z 5 10 20 50 100
9 7__—:;;;;;"’%’2_?}& g8 Ly )
S, fresresson avaut o ) i L DEMPING RATIO b
Cu20csToe 7 01 0203 908, Ty Y T
ACCELERATION SPECTRAL RATIO 8 (7,005 ACCELEFATION SPECTRAL RATID A (T,005)

(b) h = 0.02 () h=0.4
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If we are interested in structural response under damping
ratio less than 0.4, a(h) and b(h) may be approximated as

log Egu (T, h) =log a(h) +b(h)log (h,0.05)

a(h) b(h)
A 3
m LEGENT i asf | T —

—— alh] DETERMINED EY | | wk | — bih} DETERMINED BY | |
Bl L REGRESSICN ANLYSIS k REGRESSION ANALYSIS
S 14 e . = a2k PV
° =405 | £ ¢ bihl=gphrg ~08h
SRR e .
w08t . frs
Sosh e —— E
o3 ]
oz} 4
R T (o & iy Pty i
b i oz o5 oe R T VR

DAMPING RATIU h DAMFING RATID &

Least square fitting for a(h) and b(h)

a(h)= 15 +0.5
40h+1
1
b(h) = —0.8h
300 +6

Therefore, &s4 (T, h)may be evaluated as,

( ! —O.Shj
Equ (T h) = a(h)x BT ,0.05)\3004+6

Practical Evaluation of Damping Ratio Dependence
of Acceleration Response Spectra S,(T,h)

SA(T,h)

Ssa) = L(T,0.05)

( ! —0.8h]
= a(h)x B(T,0.05)\3001+6

1.5
40h+1

+0.5

This equation is widely used to estimate the response
acceleration with an arbitrary damping ratio based on the
response acceleration with 5% damping ratio

1.5
40h+1

SA(T.h)=( +0.5)% 5 4(T,0.05)

Exercise 3 Evaluate how much can we reduce response
acceleration spectrum by increasing damping ratio?

® From h=0.02 to h=0.05
® From h=0.04 to h=0.12




