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Basics of Structural Dynamics

Kazuhiko Kawashima
Tokyo Institute of Technology

Preliminary Overview of Structural Dynamics

� What is the natural period? 
What is the definition of natural 
period?

� What is the damping ratio? 
What is the definition of damping 
ratio?

�How long natural period does a 
structure have?

�How large damping ratio does 
a structure have?

Single-degree-of-freedom Idealization (SDOF)
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Equation of Motion of a SDOF System
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From the Newton’s Law, the 
equilibrium of the system 
subjected to an external force 
F(t) becomes as
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The equation of motion can be written as

ccr: Critical damping coefficient臨界減衰係数
The solution of the above equation can be obtained as a sum 
of the general solution (uc) and a particular solution (up)

Free Oscillation of no damped, critically damped and 
over-damped SDOF system非減衰，臨界減衰及び過減衰時の自由振動（一般解）
a) Free Oscillation of no damped system非減衰自由振動
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b) Free Oscillation of damped system減衰自由振動
If 10 << h
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c) Critically damped free oscillation 臨界減衰自由振動
d) Over damped free oscillation 過減衰自由振動1=h
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Logarithmic damping ratio
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Free oscillation of a damped SDOF system is 
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Forced Oscillation of SDOF System (Particular solution)
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one can obtain up as 
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Solution of SDOF system subjected to an external 
force F(t)
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Steady state response

Transient response

Exercise 1 Compute and plot response u under the 
following conditions

mu 10 =

00 =u&

sTn 5.0= and sTn 0.1=
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Dynamic Amplification Factor

Because the transient response soon decays, the SDOF 
system continues to oscillate with an amplitude of  AD
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Because F0/k represents the static displacement, 
denoting F0/k as As,
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The dynamic amplification factor M can be written as
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Mmax is developed at 
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�This means that a peak value of M does not exist and 
Mmax becomes 1.0 at                   if                  
�Mmax becomes infinitively large at                   if  h=0
�If               , Mmax becomes
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Consequently, if h=0.05, Mmax=1/(2x0.05)=10, 
and ADmax=10AS.

Exercise 2 Compute the dynamic amplification factor M 
for various damping ratio h
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Equivalent Damping Ratio
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� Energy dissipated by a 
damper per cycle   Wd can 
be written as
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If we can evaluate the energy dissipation per cycle Wd

based on an experiment, and if the same amount of 
energy is dissipated by a damper, the viscous damping 
coefficient ceq should be as
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� ceq is called as the equivalent damping coefficient
�The damping ratio corresponding to ceq (equivalent 
damping ratio) is 
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SDOF System subjected to Earthquake Ground Motion

rugu
ru : relative displacement (= 

displacement of a SDOF system 
relative to the ground)

gu : ground displacement due 
to earthquake

From the Newton’s law, the equilibrium of the SDOF system 
subjected to ground motion        is gu
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How can we compute response of structures 
subjected to an earthquake ground motion?

�The seismic response of a structure subjected to a 
combination of sinusoidal motion can be solved by 
evaluating a general solution and a particular solution.

�The seismic response of a structure under an 
earthquake ground acceleration can be solved by one of 
the two methods

�Mode superposition method (only for linear elastic 
structures)

�Direct integration method (for both linear and 
nonlinear method) 

Nonlinear Dynamic Response Analysis

Equations of motion in the incremental form
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Nonlinear Dynamic Response Analysis

(continued)
Newmark’s generalized acceleration method
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Newmark’s generalized acceleration method (continued)

Constant Acceleration Method
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Newmark’s generalized acceleration method (continued)

Linear Acceleration Method
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Newmark’s generalized acceleration method (continued)
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linear acceleration method
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Newmark’s generalized acceleration method (continued)

constant acceleration 

method

linear acceleration

method
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Newmark’s generalized acceleration method (continued)
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Earthquake Response Spectrum

rugu

� Compute maximum response 
acceleration                      for a given 
natural period Tn and a damping ratio 
h under a ground motion 

�Response acceleration response 
spectrum is defined as

AS
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Natural Period Tn (sec)

maxgr uu &&&& +

How does response acceleration vary depending on 
damping ratio?

: A most simple evaluation for the effect of enhancing 

the energy dissipation capability for reducing 

structural response
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A modification factor of response acceleration spectrum 
depending on damping ratio 

Response spectrum shape (Ratio of response acceleration 
and the peak ground acceleration, or response 
acceleration ratio)
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How does response acceleration vary 
depending on damping ratio?

A ground motion recorded at Itajima Bridge site

How does response acceleration vary 
depending on damping ratio?

A ground motion recorded at Kaihoku Bridge site

How does                  vary in accordance with damping ratio?),( hTSAξ

How does                  vary in accordance with response 
spectrum shape?

),( hTSAξ

How does                  vary in accordance with response 
spectrum shape?

),( hTSAξ

)05.0,(log)()(log),(log hhbhahTSA βξ +=

Damping Ratio Dependence of a(h) and b(h)
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)05.0,(log)()(log),(log hhbhahTSA βξ +=

If we are interested in structural response under damping 
ratio less than 0.4, a(h) and b(h) may be approximated as
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This equation is widely used to estimate the response 
acceleration with an arbitrary damping ratio based on the 
response acceleration with 5% damping ratio

Practical Evaluation of Damping Ratio Dependence 
of Acceleration Response Spectra SA(T,h) Exercise 3  Evaluate how much can we reduce response 

acceleration spectrum by increasing damping ratio?

� From h=0.02 to h=0.05
� From h=0.04 to h=0.12


