都市施設の免震設計 2009年度後期 東京工業大学 大学院理工学研究科土木工学専攻

川島一彦

What types of damage do we have to urban infrastructures?

- •Damage resulted from ground motion effect
- •Damage resulted from failure of soils
 - ✓ Slope failure and rock falls
 - ✓Effect of soil liquefaction
 - ✓Effect of bearing capacity of loose clay
- •Damage resulted from fault
- •Damage resulted from tsunami
- •Damage resulted from fire

Damage Resulted from Ground Motion Effect

Damage Resulted from Ground Motion 1995 Kobe, Japan, Earthqujake

Damage Resulted from Ground Motion Effects

Collapse of Daikai Subway Station 1995 Kobe3, Japan, Earthquake

Failure of Water Pipes Resulted from Ground Motion Effects

1994 Northridge, USA, Earthquake

Collapse of a Student Dormitory 2009 La Aquila, Italy, Earthquake

Bricks

Failure of RC columns with poor concrete

Damage Resulted from Failure of Mountains 2008 Iwate-Miyagi, Japan, Earthquake

Aratozawa Dam

A fault?

Collapse of bridges resulted from soil liquefaction 1964 Niigata, Japan, Earthquake

Damage Resulted from Surface Fault Displacement Shikang Dam 1999 Chi Chi, Taiwan, Earthquake

Damage of a tunnel 1999 Bolu, Turkey earthquake

Damage resulted from fires

1906 San Francisco, USA, Earthquake

1995 Kobe, Japan, Earthquake

 講義名 都市施設の免震設計
開講時期後学期(西暦奇数年開講)
単位数 2-0-0
担当教官 川島一彦
講義のねらい都市施設の免震設計を橋梁に 重点を置いて講義する。

講義計画

- 1. 過去の地震被害から見た免震設計の重要
- 性
- 2. 粘性ダンパーを用いた免震設計
- 3.長周期化による免震
- 4. 免震設計に対する橋脚の塑性履歴の影響
- 5 衝突の影響
- アイソレーターとダンパーの設計
- 7. 免震設計法
- 8 免震設計の適用
- 9. 免震設計に係わる技術開発
- 10 上部構造の免震

11. 12. 13. 14.	ロッキング免震 免震設計を用いた耐震補強 地下構造物に対する免震設計 最終試験

履修の条件:構造力学・第一、第二及び地震 工学を履修していること。

成績評価 最終試験(70%)+課題(30%)

テキスト 独自のテキストとパワーポイントを使 用する。いずれも <http://seismic@cv.titech.ac.jp>からダウンロー ド可能 担当教官から一言

我が国は世界的に見て最も地震活動度の高い 地域に属しており、都市施設の建設に際して免震 設計は地震の影響の低減し、安全な構造物を設 計するために重要な技術である。免震設計は1960 年代からコンピューターの利用技術の向上ととも に急速に発展してきた分野である。現在では、橋 梁等地上構造物だけでなく、地下構造物に対して も免震技術が利用されるようになっており、免震を 用いた耐震補強も広く利用されるようになってきた。 この講義では、橋梁及び軟弱地盤中のライフライ ン施設を対象に免震設計の基本を勉強してほしい。

講義日程(予定)						
1	10⁄4	7	12/6 レポート提出			
	10/11休講	8	12/13 レポート提出			
2	10⁄18	9	12/20			
3	10⁄25	10	1/10			
	11/1 休講	11	1/17			
4	11⁄8	12	1⁄24			
5	11/15	13	補講週			
6	11⁄29	14	補講週			

講義日程(実施)						
1	10⁄4		地震被害			
	10/11休講					
2	10⁄18		粘性ダンパー			
3	10⁄25		3章p.33まで、DYMO 紹介			
	11/1 休講					
4	11⁄8		DYMOの計算を示す			
			3章のp。59まで			
5	11/15		5章のp。15まで			
6	11⁄29		5章のp。34まで			

7	12⁄6	レポート提出	
8	12⁄13	レポート提出	
9	12/20	5章、p.51、次回は橋 と免震支承だけの静 解析の課題を出す	脚的
10	1⁄10	5章終了。課題2,3記 明	ź
11	1⁄17	6章実例紹介終了	
12	1⁄24	7章 Various Damperを 修了	-
13	1/31(補講)	8章基礎ロッキング免 震	1