

Repetition No.	Estimated Probability of Completion		PursuingExcellence	
	Sample Size 15	Sample Size	: 30	
1	0.13	0.23		
2	0.33	0.30		
3	0.40	0.30		
4	0.27	0.30		
5	0.20	0.27		
6	0.33	0.33		
7	0.33	0.30		
8	0.27	0.34		
9	0.13	0.20		
10	0.44	0.35		
11	0.33	0.30		
12 13	0.27 0.20	0.17		
15	0.20	0.33		
16	0.20	0.23		
17	0.33	0.37		
18	0.27	0.23		
Mean	0.26	0.27	Referred from	
Standard Deviation	0.10	0.07	Probability Concepts in Engineering Planning and Desig	
Range	0.07-0.44	0.10-0.37	Volume 1 and Volume 2, A.H. Ang and W.H. Tang	

Now suppose that u is a value of the standard uniform variate, U, with a uniform PDF between 0 and 1.0; then, as shown in fig. 5.2(b) $F_U(u) = u$ ------ Eq.(2) That is, the cumulative probability of $\underline{U} \leq \underline{u}$ is equal to u Therefore, if u is a value of U, the corresponding value of the variate X obtained through Eq.(1) will have a cumulative probability, $P(X \leq x) = P[F_X^{-1}(U) \leq x]$ $= P[U \leq F_X(x)]$ $= F_U[F_X(x)] = F_X(x)$

Which means that if
$$(u_1, u_2, ..., u_n)$$
 is a set of values from U,
the corresponding set of values obtained through Eq.(1), that
is
 $x_i = F_X^{-1}(u_i); \quad i = 1, 2, ..., n$ ------ Eq.(3)
will have the desired CDF Fx(x). the relationship between u
and x may be seen graphically in Fig. 3.
Fig. 3.

Example 2	CH cellence
The CDF of the Type I asymptotic distribution of larges value is	
where $\beta~$ is the most probable value of X, and $\alpha~$ is the shape parameter.	
At a given probability value Fx(x)= u, we have $x = \beta - \frac{1}{\alpha} \ln \left(\ln \frac{1}{u} \right)$	
Therefore, random numbers with the type I asymptotic distribution can be generated from the corresponding uniformly distributed random numbers using the above relation	
	12