Homework

- Calculate "the circular constant π " by applying Monte Carlo Simulation

Chap. 5
 Monte Carlo Simulation

 1. Introduction
 Check "google"
 Simulation is the process of replicating real world based on

 a set of assumptions and conceived models of reality.For problems involving random variables with known probability distributions, Monte Carlo simulation is required.

A sample from Monte Carlo simulations is similar to a sample from experimental observations may be treated statistically.

Monte Carlo method should be used only as a last resort; that is, when and if analytical solution methods are not available or are ineffective.

Table 5．3 Estimated Completion Probabilities			
Repetition No．	EstimatedProbability of Completion		
	Sample Size 15	Sample Size 30	
1	0.13	0.23	
2	0.33	0.30	
3	0.40	0.30	
4	0.27	0.30	
5	0.20	0.27	
6	0.33	0.33	
7	0.33	0.30	
8	0.27	0.34	
9	0.13	0.20	
10	0.44	0.35	
11	0.33	0.30	
12	0.27	0.17	
13	0.20	0.27	
14	0.07	0.10	
15	0.20	0.33	
16	0.20	0.23	
17	0.33	0.37	
18	0.27	0.23	
Mean	0.26	0.27 Re	
Standard Deviation	0.10	0.07 Prer	Referreatrom Probability Concepts in Engineering Planning and Design
Range	0．07－0．44	0．10－0．37 Vo	Volume 1 and Volume 2，A．H．Ang and W．H．Tang

ГロКソロートЕСН

This can be accomplished systematically for each variable by first generating a uniformly distributed random number between 0 and 1．0，and through appropriate transformations obtaining the corresponding random number with the specified probability distribution．
Suppose a random variable X with CDF Fx (x) ．
Then，at a given cumulative probability $\mathrm{Fx}(\mathrm{x})=\mathrm{u}$ ，
The value X is $x=F_{X}^{-1}(u)$－－－－－－－Eq．（1）

A key task in the application of Monte Carlo simulation is the generation of the appropriate values of the random variables， in accordance with the respective prescribed probability distributions．
$>$ Tossing coin for random variables with two equally likely values
$>$ Rolling a 6 －faces dice for random variables with 6 equally likely possible values

The automatic generation of the requisite random numbers with specified distributions will be necessary．

Now suppose that u is a value of the standard uniform variate，
U ，with a uniform PDF between 0 and 1．0；then，as shown in
fig．5．2（b）

$$
F_{U}(u)=u \text {------ Eq.(2) }
$$

That is，the cumulative probability of $\underline{U \leq u}$ is equal to u
Therefore，if u is a value of U ，the corresponding value of the variate X obtained through Eq．（1）will have a cumulative probability，

$$
\begin{aligned}
P(X \leq x) & =P\left[F_{X}^{-1}(U) \leq x\right] \\
& =P\left[U \leq F_{X}(x)\right] \\
& =F_{U}\left[F_{X}(x)\right]=F_{X}(x)
\end{aligned}
$$

Which means that if $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is a set of values from U ， the corresponding set of values obtained through Eq．（1），that is

$$
x_{i}=F_{X}^{-1}\left(u_{i}\right) ; \quad i=1,2, \ldots, n \quad----- \text { Eq.(3) }
$$

will have the desired CDF Fx（x）．the relationship between u and x may be seen graphically in Fig． 3.

Example 1

ГロКソロートEEL Pursuing Excellence

Consider the exponential distribution with the CDF

$$
F_{X}(x)=1-e^{-\lambda x} ; \quad x \geq 0
$$

The inverse function is

$$
x=F_{X}^{-1}(u)=-\frac{1}{\lambda} \ln (1-u)
$$

Therefore，in this case，once the standard uniformly distributed random numbers $u_{i}, i=1,2, \ldots$ are generated，we obtain the corresponding exponentially distributed random numbers，according to Eq．（3），as

$$
x_{i}=-\frac{1}{\lambda} \ln \left(1-u_{i}\right)
$$

Since（ $1-\mathrm{u}_{\mathrm{i}}$ ）is also uniformly distributed，the required random numbers may also generated by $x_{i}=-\frac{1}{\lambda} \ln u_{i} i=1,2 \ldots$
ГロКYロ TIECH

Random numbers with a prescribed distribution may be generated through Eq．（3）once the standard uniformly distributed random numbers have been obtained．
The generation of random numbers through Eq．（3）is known as the inverse transform method

Example 2

The CDF of the Type I asymptotic distribution of larges value is
where β is the most probable value of X ，and α is the shape parameter．

At a given probability value $F x(x)=u$ ，
we have

$$
x=\beta-\frac{1}{\alpha} \ln \left(\ln \frac{1}{u}\right)
$$

Therefore，random numbers with the type I asymptotic distribution can be generated from the corresponding uniformly distributed random numbers using the above relation

