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Statistics of ExtremesStatistics of Extremes
1. Introduction
Extreme values of random variables: largest, 
smallest

Statistically, these pertain to the maximum and 
minimum values from a set of observations.

Conceivably, if the set of observations(samples of 
i ) d h i d

2

size n) were repeated, other maximum and 
minimum values will be obtained; thus, the 
possible largest and smallest values comprise 
populations of their own.

modeled as random variables
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Extreme values from observational data are of 
special importance to many engineering applications.

In the structural safetyIn the structural safety
the high loads and low resistance

Gumbel(1954)
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2. Probability Distribution of 2. Probability Distribution of 
ExtremesExtremes

2.1 Extract Distributions2.1 Extract Distributions
•The largest and smallest values from samples of size n are also 
random variables and therefore have probability distributionsrandom variables and therefore have probability distributions.

Let X be the initial random variable with known initial 
distribution function ( )xFX

•These distributions can be expected to be related to the 
distribution of the initial variate.
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Consider samples of size n taken from the population 
(sample space) of X;

Each sample will be a set of observations(x1, x2, …….xn), 
representing the first, second and nth observed values.
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Since every observed value is unpredictable prior to actual 
observation,  we may assume that each observation is the 
value of random variable.value of random variable.

The set of observations(x1, x2, ……xn) is the realization of 
the sample random variables(X1, X2,…….Xn).

The largest value and the smallest value from samples of 
size n taken from a population X are also random variables
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size n taken from a population X are also random variables 
whose probability distributions may derived from that of 
initial variate X.

If  Yn, the largest among(X1,X2, .. Xn), is less than some 
value y, then all other sample random variables must 
necessarily also be less than y.

A th t X1 X2 t ti ti ll i d d tAssume that X1, X2, ……are statistically independent,
( ) ( ) ( ) ( )xFxFxFxF XXnXX ==== ...21

On these bases,
the distribution function of Yn is

( ) ( )
( )
nYn yYPyF ≤=

6

( )
( )[ ]nX

n

yF

yXyXyXP

=

≤≤≤= ,..., 21

The corresponding density function for Yn is

( ) ( ) ( )[ ] ( )yfyFn
y
yFyf X

n
X

Yn
Yn

1−=
∂

∂
=
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From these equations, we see that for a given y the 
probability              decreases with n; this means that the 
functions           and           will sift to the right with increasing 
values of n

( )[ ]nX yF
( )yFYn ( )yfYn

values of n.

For an exponential initial distribution, 
( )yfYn ( )yFYn
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The distribution function for Y1, the smallest value from samples 
of size n, can be similarly derived. In this case, we observe that 
if Y1, the smallest among(X1, X2, …Xn) is larger than y, then all 
the other values in the same sample must larger than y Hencethe other values in the same sample must larger than y. Hence, 
the survival function is ( ) ( )

( )
( )[ ]nX

n

Y

yF

yXyXyXP
yYPyF

−=

>>>=
>≡−

1

,,,,
1

21
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The distribution function of Y1 is
( ) ( )[ ]n

8

( ) ( )[ ]nXY yFyF −−= 111

And corresponding density function becomes
( ) ( )[ ] ( )yfyFnyf X

n
XY

1
1 1 −−=
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Example Example -- 11

Consider the initial variate X having the exponential density 
function as follows:

( ) 0; ≥= − xexf x
X

λλ( ) ;f X
The corresponding distribution function is

( ) x
X exF λ−−=1

Therefore, the largest value from samples of size n will have 
the distribution function 

( ) ( ) 0;1 ≥−= − yeyF ny
Yn

λ

9

( ) ( ) ; yyYn

The corresponding density function
( ) ( ) yny

Yn eenyf λλλ −−−−=
11

The CDF of the smallest value from the above initial 
distribution is ( ) ( )[ ]

0;1

1111

≥−=

−−−=
−

−

ye

eyF
yn

ny
Y

λ

λ

The corresponding PDF is
( ) 0;1 ≥= − yenyf yn

Y
λλ

10
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Example Example -- 22
Consider an initial variate with

( )

1;0

1;12

<=

>=

x

x
x

xf X

( )yfYn

n=1

Then
( ) 1;11 ≥−= x

x
xFX

CDF
( )

n

Yn y
yF ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=
11

and
1

⎞⎛
n

( )yFYn

n=10
n=5
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Example Example -- 33
Consider the initial variate X having the standard normal 
distribution with density function

( ) ( ) 22/1

2
1 x

X exf −=
π

fThe corresponding cumulative distribution function is

( ) ( ) ( )xdzexF
y z

X Φ== ∫ ∞−

− 22/1

2
1
π

The largest value from samples of size n will be a CDF 
given as follows:

( ) ( ) ( )[ ]n
n

y z
Y xdzeyF Φ=⎟

⎠

⎞
⎜
⎝

⎛= ∫ − 22/11
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( ) ( )[ ]Y y
n ⎠⎝ ∫ ∞−2π

and the corresponding PDF
( ) ( )[ ] ( ) 22/11

2
yn

Y eynyf
n

−−Φ=
π

In this case, the distribution function cannot derived analytically, 
will require numerical integration.
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2.2 Asymptotic Distribution(2.2 Asymptotic Distribution(漸近分布漸近分布))

Characteristics of the distributions of the extremes as n
become large.

Are there limiting or asymptotic forms ofAre there limiting or asymptotic forms of 
as ∞→n

13

3. The Three Asymptotic Forms3. The Three Asymptotic Forms
3.1 3.1 Gumbel’sGumbel’s ClassificationClassification

The asymptotic distributions of the extremes tend to converge 
on certain forms for large n; specifically to the doubleon certain forms for large n; specifically to the double 
exponential form or two different single exponential forms.
Gumbel’s classification

Type-1: the double exponential form,
( )[ ]ynAe−−exp

Type-II: the exponential form, ( )[ ]kynA /exp −

14

( )( )[ ]kynA −− ωω exp,
Type III: the exponential form with upper 
bound

( )[ ]yp
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Because the extreme values of a random variable are invariably 
associated with the tails of its probability density function, the 
convergence of the distribution function of its extreme (largest or 
smallest) value to a particular limiting form therefore will dependsmallest) value to a particular limiting form, therefore, will depend 
largely on the tail behavior of the initial distribution in the 
direction of extreme.

The extreme value from an initial distribution with an 
exponentially decaying tail (in the direction of the extreme) will 
converge asymptotically to the type I limiting form.

15

For an initial variate that decays with a polynomial tail, its 
extreme value will converge to the type II.

If the extreme value has a finite lower bound, the corresponding 
extremal distribution will converge to the type III form.

3.1 The type 3.1 The type I Asymptotic FormAsymptotic Form

The cumulative distribution function(CDF) of the type I 
asymptotic form for the distribution of the largest value is

( ) ( )[ ]nn ux
Xn exF −−−= αexp( ) [ ]Xn p

where,                 are the location and scale parameters 
defined as follows,

nn uα and

: The characteristic largest value of the initial variate X
: An inverse measure of dispersion of Xnn

n

u
α

16

The corresponding probability density function (PDF) is
( ) ( ) ( )[ ]nnnn uxux

nXn eexf −−−− −= ααα exp
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For the smallest value from an initial variate X with an 
exponential tail, the corresponding type I asymptotic form for 
the CDF is

( ) ( )[ ]uxα( ) ( )[ ]11exp11
ux

X exF −−−−= α

and the PDF is

( ) ( ) ( )[ ]1111 exp11
uxux

X eexf −−−− −= ααα

Where the parameters are
: the characteristic smallest value of the initial variate Xα
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: the characteristic smallest value of the initial variate X
: an inverse measure of dispersion of X11

1

u
α

The characteristic extremes

The characteristic largest value,     is a convenient measure of 
the central location of possible largest values.

nu

In a sample of size n from an initial variate X the expectedIn a sample of size n from an initial variate X, the expected 
number of sample values that are larger than  x is 

( )[ ]xFn X−1
The characteristic largest value,    , is defined as the particular 
value of X such that in a sample of size n form the initial 
population X, the expected number of sample values larger 

nu

18

p p p p g
than is one; that is 

( )[ ] ( )
n

uForxFn nXX
110.11 −==−
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( )xfX ( )xfX

In other words,     is the value of X with an exceedance 
probability of 1/n

nu

x

( )f X

nu

Area = 1/n

The characteristic extremes,                are also the modal 
l (i t b bl l ) f th ti t l

nn uα and

19

values(i.e., most probable values) of the respective extremal 
variates Xn and X1.

That is,     , is the most probable largest value from samples 
of X, and     is the most probable smallest value from 
samples of X.

nu
1u

Standard Extremal Variates

We may introduce the standardized extremal variate
( )nnn uXS −=α

Its distribution(CDF) is
( )nXn unf=α

( ) ( )sS esF −−= exp
And its PDF is

( ) ( )ss
S eesF −− −= exp

The distribution of S remains of the type I asymptotic form, 
with parameters

0 01and
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0=nu 0.1=nαand
The standard extremal variate serves the same purposed as 
the standard normal variate. 
In particular, the probabilities of S may be tabulated, from which 
the cumulative probabilities of a general Type I extremal variate 
Xn may be evaluated from such tables.



11

Chap.4 
Empirical Determination of Distribution Models
1. Introduction1. Introduction

The functional form of the required probability distributionThe functional form of the required probability distribution 
may not be easy to derive.
How to determine the distribution models from data?

Excel?

21

Empirical determination method---------------probability paper

2. Probability Paper2. Probability Paper

Graph papers for plotting observed experimental data and their 
corresponding cumulative frequencies (or probabilities) are 
called probability papers.

Probability papers are constructed such that a given 
probability paper is associated with a specific probability 
distribution: that is, different probability papers correspond to 
different probability distributions.

22

A probability paper is constructed using a transformed 
probability scale in such a manner as to obtain a linear graph 
between the cumulative probabilities of the underlying 
distribution and the corresponding values of the variate.
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For example, in the case of the uniform distribution, the 
cumulative distribution function is linearly related to the values 
of the variate. 

Experimental data may be plotted on any probability paper; 
the plotting position of each data point is determined as 
follows,

If there are N observations x1, x2,  … xN, the mth value 
among the N observations(arranged in increasing order)

23

among the N observations(arranged in increasing order) 
is plotted at the cumulative probability 

m/(N+1)
Gumbel(1954)

2.1 The Normal Probability Paper2.1 The Normal Probability Paper
The normal (or Gaussian) probability paper is 
constructed on the basis of the standard normal distribution 
function, as follows.

One axis (in arithmetic scale) represents the values of theOne axis  (in arithmetic scale) represents the values of the 
variate X, as illustrated in Figure.
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On the other axis are two parallel lines; one in arithmetic scale 
represents values of standard normal variate s, 
whereas the other shows the cumulative probabilities Φs（s）
corresponding to the indicated values of s as shown in figurecorresponding to the indicated values of  s as shown in figure.   

rit
hm

et
ic

 s
ca

le
)
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Construction of normal probability paperVa

lu
es

 o
f X

 (i
n 

a

A normal variate X with distribution N(μ、σ) would then be 
represented on this paper by a straight line passing 
throughΦs（s）＝0.50, and X=μ, with a slope ( ) σμ =− sxp /

( )μ−84.x

hm
et

ic
 s

ca
le

)

Where, xp is the value of the variate at probability p. 
In particular, at p=0.84, s=1; hence the slope is 

μ

μ

−=

−
=

84.x
s

xpSlope 

26Construction of normal probability paperVa
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Such normal probability papers are available commercially.

Any set of data may be plotted on the normal probability y y p p y
paper; however, if the resulting graph of data plots shows a 
lack of linearity, this would suggest that the underlying 
population is not Gaussian. 
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Example Example -- 11

The data for fracture toughness of steel plate, given in the 
table is plott3d on the normal probability paper in Fig. E6.1, 
values of the fracture toughness Kc are plotted against the 
plotting positions m/(N+1), with N=26.

ss
 K

IC
, k

si
√i

n

28Fracture toughness plotted on normal probability paperFr
ac

tu
re

 T
ou

gh
ne

s

Cumulative Probability = m/(N+1)
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The straight line shown in fig.E6.1. is drawn by eye through 
the data points, from which we find μ＝77
also, the value of Kc at the 84% probability level is 81.6, thus 
σ=81.6-77=4.6 inksiσ 81.6 77 4.6

es
s 

KI
C

, k
si
√i

n

X0.84=81.6

μx=77

Slope=81.6-77
=4.6 

29
Fracture toughness plotted on normal probability paperFr

ac
tu

re
 T

ou
gh

n

Cumulative Probability = m/(N+1)

30
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2.2 The Log2.2 The Log--Normal Probability Normal Probability 
PaperPaper

The log-normal probability paper can be obtained from the 
normal probability paper by simply changing the arithmetic 
scale for values of the variate X(on the normal probability 
paper) to a logarithmic scale. 

In this case, the standard normal variate becomes ( )
ζ

mxXS /ln
=

where         is the median of Xmx

31

Example Example -- 22

Data for the fracture toughness of MIG welds are tabulated 
in table E6-2.

32
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On the basis of linear graph of the plotted data shown in fig.E6.2, 
we may say that the fracture toughness of such welds has a log-
normal distribution with a median of 74 and cov of 12%.

es
s 

KI
C

, k
si
√i

n

Lognormal Xm=74
c.o.v = 12%

Slope=ln(X0.84/Xm)
=ln(84/74)=0.12

33

To
ug

hn
e

Cumulative Probability = m/(N+1)

34
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2.3 Construction of General 2.3 Construction of General 
Probability PaperProbability Paper

Probability papers are constructed in such a way that the 
values of the variate and the associated cumulative 
probabilities yield a straight line.

Conversely, therefore, a straight line on a specific probability 
paper represents a particular distribution (consistent with 
that of the probability paper) with given values of the 
parameters. 

For this purpose, a probability paper should be constructed so 

35

p p , p y p p
that it is independent of the values of the parameters of the 
distribution. 

This is accomplished by defining a standard variate (if one 
exists) appropriate for the given distributions.

Example Example -- 33
The density function of the shifted exponential 
distribution is ( ) ( )

ax
axexf ax

X

<=
≥= −−

;0
;λλ

Where     is the parameter, and a is the minimum value of X. 
In this case, the standard variate is 

λ
( )aXS −= λ

The density function of S is

( ) 0;1
≥=⎟

⎠
⎞

⎜
⎝
⎛ += − seasfsf s

XS λλ

36

0;0 <=
⎠⎝

s
Corresponding CDF is

( ) 0;1 ≥−= − sesF s
S
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On this basis, we construct the exponential probability paper 
as follows,
On one axis scale values of the standard variates (inOn one axis, scale values of the standard variates (in 
arithmetic scale);
On the same or parallel axis, mark the corresponding 
cumulative probabilities

( ) s
S esF −−=1

The other perpendicular axis will represent values of the

37

The other perpendicular axis will represent values of the 
variate X (in arithmetic scale)

For illustration, specific values of s and FS(s) have been 
calculated as summarized in Table E6.4a.

Drawing grid lines for given FS(s) at the indicated values of s
shown in table E6.4a, we obtain the resulting paper as shown 
in fig.E6.4a.
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Gumbel probability paper: type I 
asymptotic distribution of extremes

Its CDF for the largest value is given by the double 
exponential function.

( ) ( )[ ]( ) ( )[ ] ∞<<∞−−= −− xexF ux
X

αexp

in which u is the characteristic largest value, and 1/α is a 
measure of dispersion.

In this case, the standard variate can be defined as
( )uXS =α

39

( )uXS −=α
Then,

( ) ( )sS esF −−= exp

40

Using the specific values of s and corresponding probabilities 
FS(s) calculated as summarized in Table E6.5., we constructed 
the Gumbel probability paper as follows,
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Scale the values of s on one axis as shown in fig. E6.5.  The other 
axis in Fig.E6.5. represents values of X, in arithmetic scale.
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uXa −

=Slope=
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The straight line on this paper represents a 
particular type I extremal distribution—
The value of X on this line is the characteristic 
largest value u, whereas the slope of this line 
is α.
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END
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