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Statistics of Extremes TOKyO TECH

1. Introduction
Extreme values of random variables: largest,
smallest

Statistically, these pertain to the maximum and
minimum values from a set of observations.

Conceivably, if the set of observations(samples of
size n) were repeated, other maximum and
minimum values will be obtained; thus, the
possible largest and smallest values comprise
populations of their own.

- modeled as random variables
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Extreme values from observational data are of
special importance to many engineering applications.
In the structural safety
the high loads and low resistance

Gumbel(1954)

2. PrObabiIity Distribution of TOKYO TIECH
Extremes
2.1 Extract Distributions

*The largest and smallest values from samples of size n are also
random variables and therefore have probability distributions.

*These distributions can be expected to be related to the
distribution of the initial variate.

/Let X be the initial random variable with known initial \
distribution function  F,(x)

Consider samples of size n taken from the population
(sample space) of X;

Each sample will be a set of observations(x1, x2, ....... xn),
erresenting the first, second and nth observed values. /
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Since every observed value is unpredictable prior to actual
observation, we may assume that each observation is the
value of random variable.

The set of observations(x1, x2, ...... xn) is the realization of
the sample random variables(X1, X2,....... Xn).

The largest value and the smallest value from samples of
size n taken from a population X are also random variables
whose probability distributions may derived from that of
initial variate X.
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If Yn, the largest among(X1,X2, .. Xn), is less than some
value y, then all other sample random variables must
necessarily also be less than y.

Assume that X1, X2, ...... are statistically independent,
FX1(X): sz(x): = FXn(x): FX(X)

On these bases,
the distribution function of Yn is

F,(v)=P(Y, < y)
=P(X, <y, X,<y,.X, <)

= [FX (y)]n

The corresponding density function for Yn is

70)=L e 1,0) 6
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From these equations, we see that for a given y the
probability [F,(y)]' decreases with n; this means that the
functions F,,(y) and f,,(») will sift to the right with increasing
values of n.

For an exponential initial distribution,
it rn(7) B ()
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{a) PDF for Y¥p (b} CDF for Yp
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The distribution function for Y1, the smallest value from samples
of size n, can be similarly derived. In this case, we observe that

if Y1, the smallest among(X1, X2, ...Xn) is larger than y, then all
the other values in the same sample must larger than y. Hence,

the survival function is 1-F,(y)=P(Y, > y)

=P(X,>y,X,>y,,,X,>y)
=[1-F ()
The distribution function of Y1 is
F(y)=1-[1=F, ()]
And corresponding density function becomes

fn(y):"[I_Fx(y)]nilfx(y)
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Consider the initial variate X having the exponential density
function as follows:

fr(x)=2e; x>0
The corresponding distribution function is

FX(x)zl—e_ﬂx
Therefore, the largest value from samples of size n will have
the distribution function

Fy(»)=l-¢]; =0
The corresponding density function
Fu)=2n1—e? ) e
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The CDF of the smallest value from the above initial
distribution is 7,,(y)=1-[1-(1-¢ )|
=l—-e"; y>0
The corresponding PDF is
S (y) =nle"; y=0

10
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Consider an initial variate with . £, ()
fx(x)=7$ x>1 o |

.“:\_ |
=0; x<1 B \”=1
Then nes
1
FX(x)zl——; x2>1
X o (

1 n
FYn(y):(l__] e

y
and

Example - 3 TOKYD TECH

Consider the initial variate X having the standard normal
distribution with density function

1 —(1/2)x?
X)=——=ce
Sul)=—=
The corresponding cumulative distribution function is
__ L e
FX(X)— Ejiwe dZ = q)(X)

The largest value from samples of size n will be a CDF
given as follows:

A )

and the corresponding PDF

_n

fY,, (y) E [(D(y)]”’l e—(l/Z)y2

In this case, the distribution function cannot derived analytically,
will require numerical integration. 12




2.2 Asymptotic Distribution(#if 5> #5)  70KyD TECH

Characteristics of the distributions of the extremes as n
become large.

Are there limiting or asymptotic forms of
as n— o

13

3. The Three Asymptotic Forms  "ZK/OTELH
3.1 Gumbel’s Classification

The asymptotic distributions of the extremes tend to converge
on certain forms for large n; specifically to the double
exponential form or two different single exponential forms.

Gumbel’s classification

Type-1: the double exponential form, exp[— e_A(")y]

Type-II: the exponential form, exp[— A(n)/yk]

Type llI: the exponential form with upper
bound 5, expl|— A(n)w— )" |

14
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Because the extreme values of a random variable are invariably
associated with the tails of its probability density function, the
convergence of the distribution function of its extreme (largest or
smallest) value to a particular limiting form, therefore, will depend

largely on the tail behavior of the initial distribution in the
direction of extreme.

(The extreme value from an initial distribution with an
exponentially decaying tail (in the direction of the extreme) will
converge asymptotically to the type | limiting form.

For an initial variate that decays with a polynomial tail, its
extreme value will converge to the type Il.

If the extreme value has a finite lower bound, the corresponding
extremal distribution will converge to the type Il form.

15

3.1 The type | Asymptotic Form TOKYDO TIECH

The cumulative distribution function(CDF) of the type |
asymptotic form for the distribution of the largest value is

F, (x) = expl-e 70|

where, «,and u, are the location and scale parameters
defined as follows,

a, : The characteristic largest value of the initial variate X
u, -Aninverse measure of dispersion of Xn

The corresponding probability density function (PDF) is
Fo()= e e gl et |

16
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For the smallest value from an initial variate X with an
exponential tail, the corresponding type | asymptotic form for
the CDF is

F, (x) =1- exp[— el )]
and the PDF is

i (x) =qe (x-u) exp[— g el )]

Where the parameters are
@, : the characteristic smallest value of the initial variate X

u, : an inverse measure of dispersion of X1

17

The characteristic extremes TOKYO TECH

The characteristic largest value, u, is a convenient measure of
the central location of possible largest values.

In a sample of size n from an initial variate X, the expected
number of sample values that are larger than x is

”[1 —Fy (x)]
The characteristic largest value,u, , is defined as the particular
value of X such that in a sample of size n form the initial
population X, the expected number of sample values larger
than is one; that is
1

n[l—FX(x)]zl.O or FX(u”):l_;

18
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In other words, %, is the value of X with an exceedance
probability of 1/n

fX(x) fx(x)

A

Area=1/n
X

—1

u

n

The characteristic extremes, «,and u, are also the modal
values(i.e., most probable values) of the respective extremal
variates Xn and X1.

That is, u, , is the most probable largest value from samples
of X, and v, is the most probable smallest value from

samples of X.
19

Standard Extremal Variates TOKYDO TIECH

We may introduce the standardized extremal variate
S=a,(X,-u,)  a,=nf(u,)
Its distribution(CDF) is
FS(s)z exp(— e”)
And its PDF is
F(s)=e™ exp(— e’s)
The distribution of S remains of the type | asymptotic form,
with parameters
u,=0 and a,=1.0
The standard extremal variate serves the same purposed as
the standard normal variate.

In particular, the probabilities of S may be tabulated, from which
the cumulative probabilities of a general Type | extremal variate
Xn may be evaluated from such tables. 20

10
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Chap.4

Empirical Determination of Distribution Models
1. Introduction

The functional form of the required probability distribution
may not be easy to derive.
How to determine the distribution models from data?

Excel?

Empirical determination method--------------- probability paper

21

2. Probability Paper racyd TECH

Graph papers for plotting observed experimental data and their
corresponding cumulative frequencies (or probabilities) are

called probability papers. p

Probability papers are constructed such that a given
probability paper is associated with a specific probability
distribution: that is, different probability papers correspond to
different probability distributions. 7

A probability paper is constructed using a transformed
probability scale in such a manner as to obtain a linear graph
between the cumulative probabilities of the underlying
distribution and the corresponding values of the variate. 7

22
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For example, in the case of the uniform distribution, the
cumulative distribution function is linearly related to the values
of the variate.

Experimental data may be plotted on any probability paper;
the plotting position of each data point is determined as
follows,

If there are N observations x1, x2, ... xn, the mt value
among the N observations(arranged in increasing order)
is plotted at the cumulative probability

+
mi(N+1) Gumbel(1954)

23

2.1 The Normal Probability Paper—q;,vq iy

The normal (or Gaussian) probability paper is
constructed on the basis of the standard normal distribution
function, as follows.

One axis (in arithmetic scale) represents the values of the
variate X. as illustrated in Figure.

1

%84

Values of X (in arithmetic scale)

: Construction of normal probability paper 24

12
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On the other axis are two parallel lines; one in arithmetic scale
represents values of standard normal variate s,

whereas the other shows the cumulative probabilities Ps(s)
corresponding to the indicated values of s as shown in figure.

@®
Y

+

Values of X (in arithmetic scale)

i Construction of normal probability paper 25
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A normal variate X with distribution N(u. o) would then be
represented on this paper by a straight line passing
through®s (s) =0.50, and X=p, with a slope (xp —,u)/s =0

Where, xp is the value of the variate at probability p.
In particular, at p=0.84, s=1; hence the slope is (x.,, — 1)

Values of X (in arithmetic scale)

. Construction of normal probability paper 26

13
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Such normal probability papers are available commercially.

Any set of data may be plotted on the normal probability
paper; however, if the resulting graph of data plots shows a
lack of linearity, this would suggest that the underlying
population is not Gaussian.

27

Example - 1 TOKyD TECH

The data for fracture toughness of steel plate, given in the

table is plott3d on the normal probability paper in Fig. E6.1,
values of the fracture toughness Kc are plotted against the
plotting positions m/(N+1), with N=26.

00—

<)
I

] [ |
2 5 [} 20 40 80 80 90 9% ES) 999 9999

Cumulative Probability = m/(N+1)

Fracture Toughness Kic, ksi \in

Fracture toughness plotted on normal probability paper 28

14
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The straight line shown in fig.E6.1. is drawn by eye through
the data points, from which we find uy=77
also, the value of Kc at the 84% probability level is 81.6, thus

0=81.6-77=4.6 ksi

in

3

e

<3

3

Slope=81.6-77

Sl

‘&\‘—'J, :

Fracture Toughness Kic, ksi Vin

| \l\\\‘Jl\‘L_L_J._I
40 60 ©0 90 9% 99

L 5 10 20

Cumulative Probability = m/(N+1)
Fracture toughness plotted on normal probability paper

999 9999

29
Table E6.1. Fracture Toughness of Base
Plate of 18% Nickel Maraging Steel (Data TaKYO TIECH
From Kies et al., 1965)
m
m Ky, (ksiVin) N+1
1 69.5 0.0370
2 71.9 0.0741
3 72.6 0.1111
4 73.1 0.1418
5] 733 0.1852
6 73.5 0.2222
i 74.1 0.2592
8 74.2 0.2963
9 753 0.3333
10 755 0.3704
11 75.7 0.4074
12 75.8 0.4444
13 76.1 0.4815
14 76.2 0.5185
11i) 76.2 0.5556
16 76.9 0.5926
17 77.0 0.6296
18 77.9 0.6667
19 78.1 0.7037
20 79.6 0.7407
21 79.7 0.7778
22 79.9 0.8148
23 80.1 0.8518
24 82.2 0.8889
25 83.7 0.9259
26 93.7 0.9630
30
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2.2 The Log-Normal Probability
Paper

TOKyd TEECH

The log-normal probability paper can be obtained from the
normal probability paper by simply changing the arithmetic
scale for values of the variate X(on the normal probability
paper) to a logarithmic scale.

) ) In| X/ x
In this case, the standard normal variate becomes S = u
where X, isthe median of X
31
Example - 2 TOKYD TECH
Data for the fracture toughness of MIG welds are tabulated
in table E6-2. Table E6.2. Fracture Toughness of MIG
Welds (Data from Kies et al., 1965)

m Ky, (ksivin.) N+1

1 54.4 0.05

2 62.6 Q.10

3 63.2 0.15

4 67.0 0.20

5 70.2 0.25

6 70.5 0.30

T 70.6 0.35

8 T1.4 0.40

9 71.8 045

10 T4.1 0.50

11 74.1 0.55

12 74.3 0.60

13 78.8 0.65

14 81.8 0.70

15 83.0 0.75

16 84.4 0.80

17 85.3 0.85

18 86.9 0.

19 873 0.32 32

16



TOKyO TELCH-

On the basis of linear graph of the plotted data shown in fig.E6.2,
we may say that the fracture toughness of such welds has a log-
normal distribution with a median of 74 and cov of 12%.

200 - y =1
Xm=74
Lognormal

c g {c.o.v =12%
= '00;: Xogq =84 1
i s e e -
2 ' Slope=In(Xo.84/Xm)
(@) . . | —_ —_
< | -‘ =In(84/74)=0.12
» 40[ =
2 [0
< | i
O z0p- l
3 1 |
a e

‘8 | | | ] T T e | o 181 T | | |

(o]} Ol [ 4 5 10 2 40 80 80 90 95 98 9 999 9599

Cumulative Probability = m/(N+1)

33
Table E6.2. Fracture Toughness of MIG — TI=,
Welds (Data from Kies et al., 1965) rﬂl(‘/-ﬂ, I'LEH
™

m Ky, (ksiVin.) N+1

1 54.4 0.05

2 62.6 0.10

3 63.2 0.15

E: 67.0 0.20

5 70.2 0.25

6 70.5 0.30

7 T0.6 0.35

8 1.4 0.40

9 T1.8 0.45
10 T4.1 0.50
11 74.1 0 55
12 74.3 0.60
13 78.8 0.65
14 81.8 0.70
15 83.0 0.75
16 84.4 0.80
17 85.3 0.85
18 86.9 0.90
19 87.3 0.95 34

17



2.3 Construction of General
Probability Paper

Probability papers are constructed in such a way that the
values of the variate and the associated cumulative
probabilities yield a straight line.

TOKyd TEECH

Conversely, therefore, a straight line on a specific probability
paper represents a particular distribution (consistent with
that of the probability paper) with given values of the
parameters.

For this purpose, a probability paper should be constructed so
that it is independent of the values of the parameters of the
distribution.

This is accomplished by defining a standard variate (if one
exists) appropriate for the given distributions.

35
Example - 3 TOKyD TECH
The density function of the shifted exponential
distribution is £ (x): A M) x> q
=0; x<a
Where 4 is the parameter, and a is the minimum value of X.
In this case, the standard variate is § = i(X—a)
The density function of S is
S |
s)= —+al|—|=e’;520
fss) fx( - j ﬂ‘
=0; s<0
Corresponding CDF is
Fo(s)=1-¢"; 520
36

18
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On this basis, we construct the exponential probability paper
as follows,

On one axis, scale values of the standard variates (in
arithmetic scale);

On the same or parallel axis, mark the corresponding
cumulative probabilities

F(s)=1-¢"*

The other perpendicular axis will represent values of the
variate X (in arithmetic scale)

For illustration, specific values of s and FS(s) have been
calculated as summarized in Table E6.4a.

TOKyd TEECH

Drawing grid lines for given FS(s) at the indicated values of s
shown in table E6.4a, we obtain the resulting paper as shown
in fig.E6.4a.

— 1 I
()] |
Table E6.4.a Specific Values of s and Fg (s) (_3 o
s Fals) s Fyls) »n Ml lea
= 2 RS [ L4
0.11 0.10 2.53 0.92 += A
0.22 0.20 2.66 0.93 GEJ LT |
0.36 0.30 2.81 0.94 = 1 |
0.51 0.40 3.00 0.95 =
0.69 0.50 3110 0.955 = /’i 1
0.80 0.55 3.22 0.96 © Slope= —
0.92 0.60 3.35 0.965 c p
1.05 0.65 3.51 0.97 = L+ A
1.20 0.70 3.69 0.975 x adl [ ]
1.39 0.75 3.91 0.98 [
1.61 0.80 420 0.985 o -
1.90 0.85 4.61 0.99 $ i
2.30 0.90 E b
©
i !
> L 12345 . B d 85 - 92 95 96 97 98 .99 FSES}
L L L
0 H 3 3

Figure E6.4a Construction of the exponential probability paper




Gumbel probability paper: type | aKyd TECH
asymptotic distribution of extremes

Its CDF for the largest value is given by the double
exponential function.

Fy(x)= exp[— e_“(’“_”)] —00 < X <00

in which u is the characteristic largest value, and 1/a is a
measure of dispersion.

In this case, the standard variate can be defined as

S = a(X — u)
Then,
)
FS(S):eXp(_e )
39
TOKyd TIEECH
Table E6.5. Specific Values of 5 and Fg(s)

s Fg(s) K Fg(s) s Fg(s)
—1.53 0.01 0.37 0.50 248 0.92
=110 0.05 0.51 0.55 2.62 0.93
—0.83 0.10 0.67 0.60 2.78 0.94
—0.64 0.15 0.84 0.65 2.97 0.95
—0.48 0.20 1.03 0.70 3.08 0.955
—0.33 0.25 1.25 0.75 3.20 0.96
—0.19 0.30 1.50 0.80 3:33 0.965
—0.05 0.35 1.82 0.85 3.49 0.97

0.09 .40 2.25 0.90 3.68 0.975

0.23 0.45 2.36 0.91 3.90 0.98

Using the specific values of s and corresponding probabilities
FS(s) calculated as summarized in Table E6.5., we constructed
the Gumbel probability paper as follows,

40
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/ Pursuing Excellence

I
Scale the values of s on one axis as shown in fig. E6.5. The other

axis in Fig.E6.5. represents values of X, in arithmetic scale.
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Figure E6.5 Construction of Gumbel probability paper ([ rex] 41

The straight line on this paper represents a F
particular type | extremal distribution— N
The value of X on this line is the characteristic /
largest value u, whereas the slope of this line
is a.

TD\ |

E |

3 | a

ke) ' L] | ‘
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= [ L~ —u

© |
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LLL t 5 &l
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Figure E6.5 Construction of Gumbel probability paper ([ rex] 42
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END
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