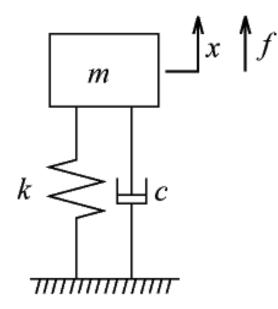
Mechanical Vibration I (14)

Department of Mechanical and Control Engineering

Hiroshi Yamaura

Response for an Arbitrary Exciting Force (3)

Impulse response function (1)



Equation of motion

$$m\ddot{x} + c\dot{x} + kx = f$$

Unit impulse exciting force

$$f(t) = \delta(t)$$

Dirac's delta function

Fig.1 Damped one degree-of-freedom vibrationsystem with force excitation

Impulse response function (2)

Table 1 Change of the states of the system with the unit impulse

Time	Momentum	Velocity	Displacement
t = 0	$m\dot{x}=0$	$\dot{x} = 0$	x = 0
$t = \epsilon$	m $\dot{x} = 1$	$\dot{x} = 1/m$	x = 0

$$x(t) = e^{-\zeta \omega t} \frac{1}{m\omega_d} \sin \omega_d t \equiv h(t)$$

h(t) : Impulse response function

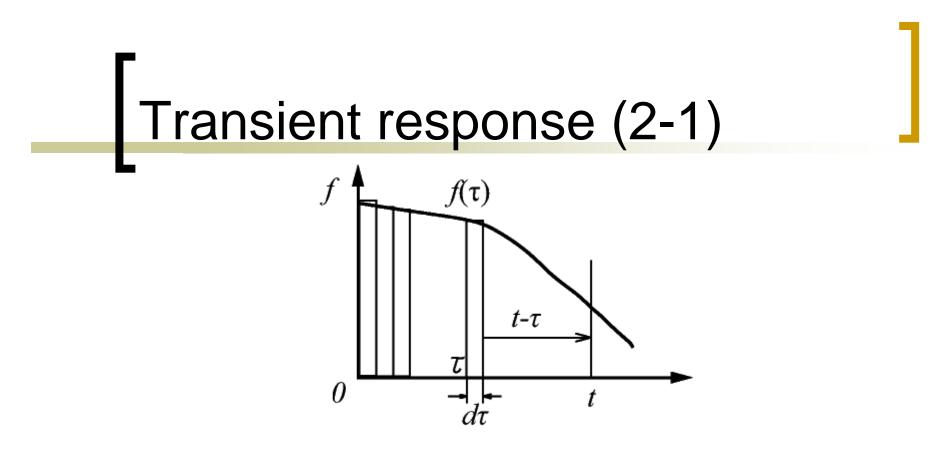


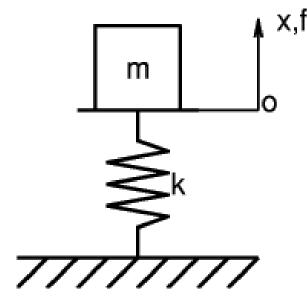
Fig.3 Decomposition of the exciting force into impulses

Transient response

$$x(t) = \int_0^t h(t-\tau) f(\tau) d\tau$$

Transient response (2-2)

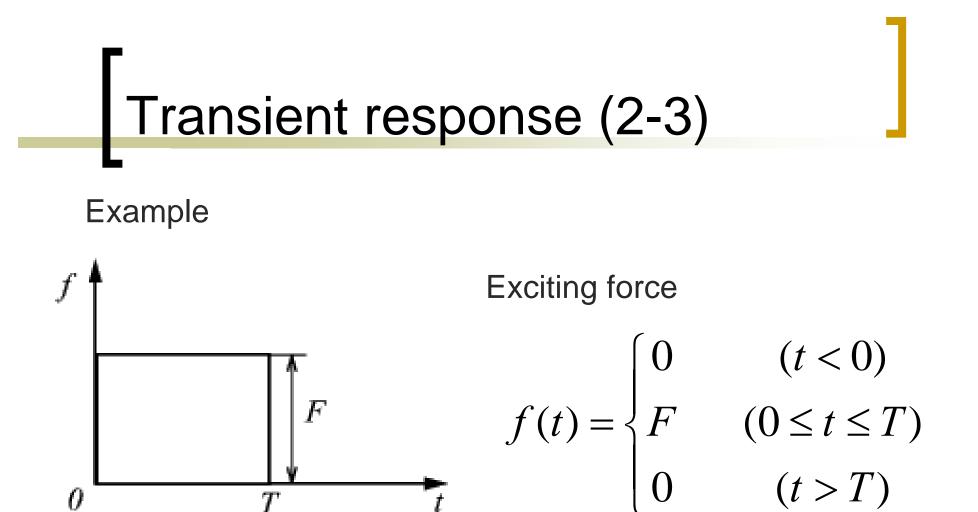
Example



Impulse response function

 $h(t) = \frac{1}{m\omega_n} \sin \omega_n t$

Fig.4 Undamped one degree-of-freedom vibration system



 θ

T

Fig.5 Exciting force

Transient response (2-4)

Example

$$x(t) = \begin{cases} 0 & (t < 0) \\ \int_0^t Fh(t - \tau) dt & (0 \le t \le T) \\ \int_0^T Fh(t - \tau) d\tau & (t > T) \end{cases}$$