Mechanical Vibration I (13)

Department of Mechanical and Control Engineering

Hiroshi Yamaura

Response for an Arbitrary Exciting Force (2)

Transient response (1-1)

Define the frequency response function $H(i \ \omega)$

$$H(i\omega) = \frac{X(i\omega)}{F}$$

Assume a complex exciting force

$$f(t) = F \exp(i\omega t)$$

Response against the complex exciting force

 $x(t) = FH(i\omega)\exp(i\omega t)$

Transient response (1-2)

Inverse Fourier transformation of the exciting force

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(i\omega) \exp(i\omega t) d\omega$$

Response against the exciting force

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(i\omega) H(i\omega) \exp(i\omega t) d\omega$$

Fourier transformation of the response

$$X(i\omega) = F(i\omega)H(i\omega)$$

Transient response (1-3)

Necessary condition of the Laplace transformation is not strict compared to that of the Fourier transformation.

$$x(t) = \frac{1}{2\pi} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s) H(s) \exp(st) ds$$

where

$$F(s) = \int_0^\infty f(t) \exp(-st) dt$$

$$H(s) = \int_0^\infty h(t) \exp(-st) dt = H(i\omega)|_{i\omega=s}$$

Transient response (1-4)

Table 2 Daplace transformation	
Time function	Laplace transformation
$\delta(t)$	1
u(t) (Unit function)	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
f(t-T)	$F(s)e^{-sT}$
$rac{d}{dt}f(t)$	sF(s) - f(0)
$\frac{d^2}{dt}f(t)$	$s^2 F(s) - sf(0) - \frac{d}{dt}f(0)$

Table 2 Laplace transformation

Transient response (1-5)

Example 1 Unit impulse response function $m\ddot{x} + c\dot{x} + kx = f$ and $f(t) = \delta(t)$ $ms^{2}X(s) + csX(s) + kX(s) = 1$ $X(s) = \frac{1}{ms^2 + cs + k}$ Transfer function $=\frac{1}{m}\frac{i}{2\omega_d}\left(\frac{-1}{s-\lambda_1}+\frac{1}{s-\lambda_2}\right)$ where $\lambda_{1,2} = -\zeta \omega_n \pm i \omega_d$ Open Course Ware, 2009, Tokyo Institute of Technology Copyright by Hiroshi Yamaura

Transient response (1-6)

Example 1 Unit impulse response function

$$x(t) = \frac{1}{m} \frac{i}{2\omega_d} \left(-e^{\lambda_1 t} + e^{\lambda_2 t} \right)$$
$$= e^{-\zeta \omega_n t} \frac{1}{m\omega_d} \sin \omega_d t \equiv h(t)$$

Transient response (1-7)

Example 2

Transfer function

$$H(s) = \frac{1}{m} \frac{1}{s^2 + \omega_n^2}$$

Fig.4 Undamped one degree-of-freedom vibration system

Transient response (1-8)

Example 2

Fig.6 Decomposition of the exciting force into unit step functions

Transient response (1-9)

Example 2

$$x(t) = \begin{cases} 0 & 0\\ L^{-1} \left[H(s) \frac{F}{s} \right] & (0 \le t \le T)\\ L^{-1} \left[H(s) \frac{F}{s} \left(1 - e^{-sT} \right) \right] & (t > T) \end{cases}$$

 L^{-1}] : Inverse Laplace transformation