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Curse of Dimensionality 3
{z;}l,, ©, €R?, d>1

If your data samples are high-dimensional,
they are often too complex to directly analyze.

Usual geometric intuitions are often only
applicable to low-dimensional spaces;
such intuitions could be even misleading Iin
high-dimensional spaces.



Curse of Dimensionality (cont.) *

When the dimensionality increases,

e VVolume of unit hyper-cube V. is always 1.

e VVolume of inscribed hyper-sphere Vs goes to O.
Relative size of hyper-sphere gets small!
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Curse of Dimensionality (cont.) °

Grid sampling requires an exponentially
large number.
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Unless you have an exponentially large
number of samples, your high-dimensional
samples are never dense.



Dimensionality Reduction

We want to reduce the dimensionality of
the data while preserving the intrinsic
“Information” in the data.

Dimensionality reduction Is also called
embedding; If the dimension is reduced up
to 3, it Is also called data visualization.

Basic assumption (or belief) behind
dimensionality reduction: your high-
dimensional data is redundant in some
sense.



Notation: Linear Embedding
Data samples:
()}, x; €RY, d>1
Embedding matrix:
BeR™ 1<m<d

Embedded data samples:
{z;}* ,, z;=Bx; € R™

m{ 25 = B




Principal Component Analysis (PCA)

ldea: We want to get rid of a redundant
dimension of the data samples

() (1) (1)

This could be achieved by minimizing the
distance between embedded samples and
original samples.




Data Centering )

We center the data samples by

n
- 1
L, = L; — — E $j

T n

g=1 1 _

In matrix, -
X =XH
X = (T1[x2| - [Ty)
X = (z1|za| - |20) I,: n-dimensional identity matrix

1,,«n: n X n matrix with all ones



Orthogonal Projection 10

{b; (€ R")}™, : Orthonormal basis in
m -dimensional embedding subspace
1 (=)

b;,b;) =0, ,; = o
(b, B W0 (i#7)

\

In matrix, BB' =1,,
B = (bi|bz| - |bm) "

Orthogonal projection of T; Is expressed by

m

> (b ®)b; (= BBz,

j=1



PCA Criterion 11

Minimize the sum of squared distances.

N |IB" Bz, - i) (: _tr(BCB") + tr(E))

1=1

C=N7z73 =X X
PCA criterion: -
Bpca = argmax tr(BCB ')
BecRm xd ¢ o T
subject to BB' =1, T i T
/3 °3 /B Bz,




PCA: Summary 12
A PCA solution:

Bpca = (¢1‘¢2‘ S Wm)T

{Ai, ¥; }iZ1 :Sorted eigenvalues and
normalized eigenvectors of Ci = A\

M >N > >\ (Vi) = 0

PCA embedding of a sample = :

1
zZ = BPCA<QJ — —Xln)
n

1,,: n-dimensional vector with all ones



| Proof 13
Lagrangian:

L(B,A)=tr(BCB') —tr(BB' —I,,)A)
A:Lagrange multipliers (symmetric)
Stationary point (necessary condition):

.g—é = 2BC —2AB =0
97 mm) CB' =B'A(1)
- - T— —

¢ BB' —1I 0

mm) BB' =1,,(2)

Eigendecomposition: T - orthogonal matrix

A = TTT' (3) T" : diagonal matrix
T '=1"



Proof (cont.) 14
(1)&(3) mmp CB' =B'TIT' (4)
mm) CB'T=B'1TT
mm) CF=FTr (5 F=B'T
(5) Is an eigensystem

) R(F) = span({ty, }i21) (6)
I' = diag(Agys Aoy - - Ak ) (7)

R(F)=R(B'T)=R(B") (8)
(6) & (8) mmp R(B') = span({t;, }/",)

A solution Is expressed as

B = (¢k1‘¢k2‘ T ka)T



Proof (cont.) 15
(2) mmmp rank(B) =m
mm) all {%;}i%, are distinct

We should choose the best {k:};~; that
maximizes tr(BCB') .
(4) & (7) mmp tr(BCB')=tr(BB'TTT")
= tr(TTT ")

b (




Correlation 16
Correlation coefficient for {si,ti}—1 :

) — >im1(si —5)(ti — 1)
VS (s —5)2) (S, (6 — 1)?)

i=1 i=1
Positively correlated N Uncorrelated Negatively correlated




PCA Uncorrelates Data 1/

Bpca = (¢1‘¢2‘ S Wm)T

Covariance matrix of the PCA-
embedded samples is diagonal.

—ZE_T diag (A1, A2, -+ s Am)

(Homework)

mm)> Each elementin z is uncorrelated!



Examples

Data Is well described

PCA Is Intultive, easy to implement,
analytic solution available, and fast.

18



Examples (cont.) 19

Iris data (4d->2d) Letter data (16d->2d)

O Setosa
Virginica
X Verisicolour

Embedded samples seem informative.



Examples (cont.) 20

However, PCA does not
necessarily preserve interesting
iInformation such as clusters.



Homework 21
Implement PCA and reproduce the 2-
dimensional examples shown in the class.

e Data sets 1 and 2 are available from
http://suglyama-www.cs.titech.ac.jp/~sugi/data/DataAnalysis

Data Set 1

5 DataSeth
. xx&%%xx 3

e Test PCA with your own (artificial or real) data
and analyze the characteristics of PCA.



Homework (cont.) =
Let

e B: mxd,(1<m<d)
e C.D :dxd, positive definite, symmetric

o {)\;, ¥, }" : Sorted generalized eigenvalues
and normalized eigenvectors of Cv¥ = AD1

A > > >\ (D, 1) = 0;
Prove that a solution of

B, = argmin {tr(BCBT)]
BeRde

o subject to BDB' =1,,
IS given by

mzn — (¢d‘¢d 1‘ ’?‘pd—m—l—l)—r



Homework (cont.) 23

Prove that PCA uncorrelates the samples;
more specifically, prove that the covariance
matrix of the PCA-embedded samples is
the following diagonal matrix:

—Z——T diag (A1, A2, -+ s Am)

zi = Bpoazx;

Bpoa= (Y| |¥,,) "



Suggestion 24

Read the following article for upcoming classes:

e X. He & P. Niyoqi: Locality preserving projections,
In Advances in Neural Information Processing
Systems 16, MIT Press, Cambridge, MA, 2004.

http://books.nips.cc/papers/files/nips16/NIPS2003 AA20.pdf



