Discrete Mathematics \& Computational Structures Lattice-Point Counting in Convex Polytopes
(10) The Decomposition of a Polytope into Its Cones

Yoshio Okamoto

Tokyo Institute of Technology

$$
\text { July 16, } 2009
$$

## "Last updated: 2009/07/16 1:44"

Important theorems from the previous lectures

$$
\begin{aligned}
& \text { Theorem } 3.8 \text { (Ehrhart's Theorem) } \\
& \mathcal{P} \text { is an integral convex } d \text {-polytope } \Rightarrow \\
& L_{\mathcal{P}}(t) \text { is a polynomial in } t \text { of degree } d
\end{aligned}
$$

```
Theorem 3.23 (Ehrhart's Theorem for rational polytopes)
```

$\mathcal{P}$ is a rational convex $d$-polytope $\Rightarrow$
$L_{\mathcal{P}}(t)$ is a quasipolynomial in $t$ of degree $d$;
Its period divides the denominator of $\mathcal{P}$

## Theorem 4.1 (Ehrhart-Macdonald reciprocity)

$\mathcal{P}$ a convex rational polytope $\Rightarrow$ for any $t \in \mathbb{Z}_{>0}$

$$
L_{\mathcal{P}}(-t)=(-1)^{\operatorname{dim} \mathcal{P}} L_{\mathcal{P}^{\circ}}(t)
$$

(1) The Identity " $\sum_{m \in \mathbb{Z}} z^{m}=0$ " $\ldots$ or "Much Ado About Nothing"
(2) Tangent Cones and Their Rational Generating Functions
(3) Brion's Theorem
(4) Brion Implies Ehrhart

## The goal of this chapter

## Conclusion from the previous chapter

We saw the following can be computed efficiently (by means of reciprocity)

- Ehrhart polynomials of the Mordell-Pommersheim tetrahedra
- Ehrhart quasipolynomials of rational convex polygons


## Question from the previous chapter

Can we compute the Ehrhart quasipolynomial of any convex polytope efficiently?

## Goal of this chapter

Look at mathematical (geometric) ideas that form a basis of efficient algorithm for the task above
(1) The Identity " $\sum_{m \in \mathbb{Z}} z^{m}=0$ " $\ldots$ or "Much Ado About Nothing"
(2) Tangent Cones and Their Rational Generating Functions
(3) Brion's Theorem
(4) Brion Implies Ehrhart

A one-dimensional example (1)

- Consider the line segment $\mathcal{I}:=[20,34]$
- Then

$$
\begin{aligned}
\sigma_{\mathcal{I}}(z) & =z^{20}+z^{21}+\cdots+z^{34} \\
& =\frac{z^{20}-z^{35}}{1-z}
\end{aligned}
$$

- Observation: Long polynomial representation vs. Short rational representation
- We rewrite the expression

$$
\sigma_{\mathcal{I}}(z)=\frac{z^{20}}{1-z}+\frac{z^{34}}{1-\frac{1}{z}}
$$

## The Identity " $\sum_{m \subset-\pi} z^{m}=0$ " $\ldots$ or "Much Ado About Nothing"

## Definition (Integer-point transform, recap)

The integer-point transform of $S \subseteq \mathbb{R}^{d}$ is

$$
\sigma_{S}(\mathbf{z})=\sigma_{S}\left(z_{1}, z_{2}, \ldots, z_{d}\right):=\sum_{\mathbf{m} \in S \cap \mathbb{Z}^{d}} \mathbf{z}^{\mathbf{m}}
$$

$$
\text { Recall: } \mathbf{z}^{\mathbf{m}}=z_{1}^{m_{1}} z_{2}^{m_{2}} \cdots z_{d}^{m_{d}}
$$

-     - $\boldsymbol{1}$ - •
-     -         - Example:



## The Identity " $\sum_{m c=} z^{m}=0$ " $\ldots$ or "Much Ado About Nothing"

A one-dimensional example (2)

- As a matter of fact

$$
\begin{aligned}
\sigma_{[20, \infty)}(z) & =\sum_{m \geq 20} z^{m}=\frac{z^{20}}{1-z} \\
\sigma_{(-\infty, 34]}(z) & =\sum_{m \leq 34} z^{m}=\frac{z^{34}}{1-\frac{1}{z}}
\end{aligned}
$$

- Therefore, it holds that as rational functions

$$
\sigma_{[20, \infty)}(z)+\sigma_{(-\infty, 34]}(z)=\sigma_{[20,34]}(z)
$$


Y. Okamoto (Tokyo Tech)

DMCS'09 (10)

- Any affine space $\mathcal{A} \subseteq \mathbb{R}^{d}$ equals $\mathbf{w}+\mathcal{V}$ for some $\mathbf{w} \in \mathbb{R}^{d}$ and some $n$-dimensional vector subspace $\mathcal{V} \subseteq \mathbb{R}^{d}$
- $\mathcal{A}$ contains integer points $\Rightarrow$ we may choose $\mathbf{w} \in \mathbb{Z}^{d}$
- $\exists$ a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ for $\mathcal{V} \cap \mathbb{Z}^{d}$
- $\therefore$ Any integer point $\mathbf{m} \in \mathcal{A} \cap \mathbb{Z}^{d}$ can be uniquely written as
$\mathbf{m}=\mathbf{w}+k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{n} \mathbf{v}_{n}$ for some $k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{Z}$



## Lemma 9.1

Suppose $\mathcal{A}$ is an $n$-dimensional affine space with skewed orthants $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{2^{n}}$. Then as rational functions,

$$
\sigma_{\mathcal{O}_{1}}(\mathbf{z})+\sigma_{\mathcal{O}_{2}}(\mathbf{z})+\cdots+\sigma_{\mathcal{O}_{2^{n}}}(\mathbf{z})=0
$$

## Proof:

- Suppose

$$
\mathcal{A}=\left\{\mathbf{w}+\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}+\cdots+\lambda_{n} \mathbf{v}_{n}: \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}\right\}
$$

- Then a typical skewed orthant $\mathcal{O}$ looks like

$$
\mathcal{O}=\left\{\mathbf{w}+\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}+\cdots+\lambda_{n} \mathbf{v}_{n}: \begin{array}{l}
\lambda_{1}, \ldots, \lambda_{k} \geq 0, \\
\lambda_{k+1}, \ldots, \lambda_{n}<0
\end{array}\right\}
$$

## Identity " $\sum_{\text {.man }} z^{m}=0$ " $\ldots$ or "Much Ado About Nothing"

## Definition (skewed orthant)

Using this fixed lattice basis for $\mathcal{V}$, we define the skewed orthants of $\mathcal{A}$ as the sets of the form

$$
\left\{\mathbf{w}+\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}+\cdots+\lambda_{n} \mathbf{v}_{n}\right\}
$$

where for each $1 \leq j \leq n$, we require either $\lambda_{j} \geq 0$ or $\lambda_{j}<0$

- So there are $2^{n}$ such skewed orthants, and their disjoint union equals $\mathcal{A}$
- We denote them by $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{2^{n}}$
- All of them are (half-open) pointed cones, and so their integer-point transforms are rational


## The Identity " $\sum_{\text {mco }} z^{m}=0$ " $\ldots$ or "Much Ado About Nothing"

Proof of Lemma 9.1 (cont'd)

- The integer-point transform of $\mathcal{O}$ is
$\sigma_{\mathcal{O}}(\mathbf{z})$
$=\mathbf{z}^{\mathbf{w}}\left(\sum_{j_{1} \geq 0} \mathbf{z}^{j_{1} \mathbf{v}_{1}}\right) \cdots\left(\sum_{j_{k} \geq 0} \mathbf{z}^{j_{k} \mathbf{v}_{k}}\right)\left(\sum_{j_{k+1}<0} \mathbf{z}^{j_{k+1} \mathbf{v}_{k+1}}\right) \cdots\left(\sum_{j_{n}<0} \mathbf{z}^{j_{n} \mathbf{v}_{n}}\right)$
$=\mathbf{z}^{\mathbf{w}} \frac{1}{1-\mathbf{z}^{\mathbf{v}_{1}}} \cdots \frac{1}{1-\mathbf{z}^{\mathbf{v}_{k}}} \frac{1}{\mathbf{z}^{\mathbf{v}_{k+1}}-1} \cdots \frac{1}{\mathbf{z}^{\mathbf{v}_{n}}-1}$
- Consider the skewed orthant $\mathcal{O}^{\prime}$ with the same conditions on the $\lambda$ 's as in $\mathcal{O}$ except that we switch $\lambda_{1} \geq 0$ to $\lambda_{1}<0$; Then the integer-point transform of $\mathcal{O}^{\prime}$ is

$$
\sigma_{\mathcal{O}^{\prime}}(\mathbf{z})=\mathbf{z}^{\mathbf{w}} \frac{1}{\mathbf{z}^{\mathbf{v}_{1}}-1} \frac{1}{1-\mathbf{z}^{\mathbf{v}_{2}}} \cdots \frac{1}{1-\mathbf{z}^{\mathbf{v}_{k}}} \frac{1}{\mathbf{z}^{\mathbf{v}_{k+1}}-1} \cdots \frac{1}{\mathbf{z}^{\mathbf{v}_{n}}-1}
$$

- $\therefore \sigma_{\mathcal{O}}(\mathbf{z})+\sigma_{\mathcal{O}^{\prime}}(\mathbf{z})=0$
- Since we can pair up all skewed orthants in this fashion, the sum of all their rational generating functions is zero

Since $\mathcal{O}_{1} \cup \mathcal{O}_{2} \cup \cdots \cup \mathcal{O}_{2^{n}}$ is equal to $\mathcal{A}$ as a disjoint union, it now makes sense to set

$$
\sigma_{\mathcal{A}}(\mathbf{z}):=0
$$

when $\mathcal{A}$ is an affine space of dimension $n>0$

## Functions

## Hyperplane arrangements

## Definition (Hyperplane arrangement)

- A hyperplane arrangement $\mathcal{H}$ is a finite collection of hyperplanes
- An arrangement $\mathcal{H}$ is rational if all its hyperplanes are, that is, if each hyperplane in $\mathcal{H}$ is of the form
$\left\{\mathbf{x} \in \mathbb{R}^{d}: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d} x_{d}=b\right\}$ for some $a_{1}, a_{2}, \ldots, a_{d}, b \in \mathbb{Z}$
- An arrangement $\mathcal{H}$ is called a central hyperplane arrangement if its hyperplanes meet in (at least) one point

(1) The Identity " $\sum_{m \in \mathbb{Z}} z^{m}=0$ " $\ldots$ or "Much Ado About Nothing'
(2) Tangent Cones and Their Rational Generating Functions
(3) Brion's Theorem
(4) Brion Implies Ehrhart


## Tangent Cones and Their Rational Generating Functions

## Convex cones

## Definition (Convex cone)

A convex cone is the intersection of finitely many half-spaces of the form $\left\{\mathbf{x} \in \mathbb{R}^{d}: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d} x_{d} \leq b\right\}$ for which the corresponding hyperplanes $\left\{\mathbf{x} \in \mathbb{R}^{d}: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{d} x_{d}=b\right\}$ form a central arrangement

- This definition extends that of a pointed cone: a cone is pointed if the defining hyperplanes meet in exactly one point
- A cone is rational if all of its defining hyperplanes are rational
- Cones and polytopes are special cases of polyhedra, which are convex bodies defined as the intersection of finitely many half-spaces


## Their Rational Generating Functions <br> Tangent cones

## Definition (Tangent cone)

For a face $\mathcal{F}$ of a convex poyltope $\mathcal{P}$, define its tangent cone as

$$
\mathcal{K}_{\mathcal{F}}:=\left\{\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x}): \mathbf{x} \in \mathcal{F}, \mathbf{y} \in \mathcal{P}, \lambda \in \mathbb{R}_{\geq 0}\right\}
$$



Tangent cones

## Lemma 9.3

For any face $\mathcal{F}$ of $\mathcal{P}, \operatorname{span} \mathcal{F} \subseteq \mathcal{K}_{\mathcal{F}}$.
Proof: As $\mathbf{x}$ and $\mathbf{y}$ vary over all points of $\mathcal{F}, \mathbf{x}+\lambda(\mathbf{y}-\mathbf{x})$ varies over $\operatorname{span} \mathcal{F}$

## Remarks

- Lem 9.3 implies that $\mathcal{K}_{\mathcal{F}}$ contains a line, unless $\mathcal{F}$ is a vertex
- More precisely, if $\mathcal{K}_{\mathcal{F}}$ is not pointed, it contains the affine space $\operatorname{span} \mathcal{F}$, which is called the apex of the tangent cone
- (A pointed cone has a point as apex)


## Tangent Cones and Their Rational Generating Functions

tangent cones

- $\mathcal{K}_{\mathcal{F}}$ is the smallest convex cone containing both $\operatorname{span} \mathcal{F}$ and $\mathcal{P}$
- $\mathcal{K}_{\mathcal{P}}=\operatorname{span} \mathcal{P}$
- $\mathcal{K}_{\mathbf{v}}$ is often called a vertex cone if $\mathbf{v}$ is a vertex of $\mathcal{P}$; it is pointed
- $\mathcal{K}_{\mathcal{F}}$ is not pointed for a $k$-face $\mathcal{F}$ of $\mathcal{P}$ with $k>0$



## Orthogonal complements of affine spaces

Reminder: An affine space $\mathcal{A} \subseteq \mathbb{R}^{d}$ equals $\mathbf{w}+\mathcal{V}$ for some $\mathbf{w} \in \mathbb{R}^{d}$ and some vector subspace $\mathcal{V} \subseteq \mathbb{R}^{d}$

## Definition (Orthogonal complement)

The orthogonal complement $\mathcal{A}^{\perp}$ of this affine space $\mathcal{A}$ is defined by

$$
\mathcal{A}^{\perp}:=\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{x} \cdot \mathbf{v}=0 \text { for all } \mathbf{v} \in \mathcal{V}\right\}
$$

Note: $\mathcal{A} \oplus \mathcal{A}^{\perp}=\mathbb{R}^{d}$


## Lemma 9.4

For any face $\mathcal{F}$ of $\mathcal{P}$, the tangent cone $\mathcal{K}_{\mathcal{F}}$ has the decomposition

$$
\mathcal{K}_{\mathcal{F}}=\operatorname{span} \mathcal{F} \oplus\left((\operatorname{span} \mathcal{F})^{\perp} \cap \mathcal{K}_{\mathcal{F}}\right)
$$

Consequently, $\sigma_{\mathcal{K}_{\mathcal{F}}}(\mathbf{z})=0$ unless $\mathcal{F}$ is a vertex

## Proof of the 1st part:

- Since span $\mathcal{F} \oplus(\operatorname{span} \mathcal{F})^{\perp}=\mathbb{R}^{d}$,

$$
\begin{aligned}
\mathcal{K}_{\mathcal{F}} & =\left(\operatorname{span} \mathcal{F} \oplus(\operatorname{span} \mathcal{F})^{\perp}\right) \cap \mathcal{K}_{\mathcal{F}} \\
& =\left(\operatorname{span} \mathcal{F} \cap \mathcal{K}_{\mathcal{F}}\right) \oplus\left((\operatorname{span} \mathcal{F})^{\perp} \cap \mathcal{K}_{\mathcal{F}}\right) \\
& =\operatorname{span} \mathcal{F} \oplus\left((\operatorname{span} \mathcal{F})^{\perp} \cap \mathcal{K}_{\mathcal{F}}\right) \quad(\text { Lem 9.3) }
\end{aligned}
$$

## Brion's Theorem

[^0](3) Brion's Theorem
(4) Brion Implies Ehrhart

## Lemma 9.4

For any face $\mathcal{F}$ of $\mathcal{P}$, the tangent cone $\mathcal{K}_{\mathcal{F}}$ has the decomposition

$$
\mathcal{K}_{\mathcal{F}}=\operatorname{span} \mathcal{F} \oplus\left((\operatorname{span} \mathcal{F})^{\perp} \cap \mathcal{K}_{\mathcal{F}}\right)
$$

Consequently, $\sigma_{\mathcal{K}_{\mathcal{F}}}(\mathbf{z})=0$ unless $\mathcal{F}$ is a vertex

## Proof of the 2nd part:

- Immediate from the 1st part since
- $\sigma_{\text {span } \mathcal{F} \oplus\left((\text { span } \mathcal{F})^{\perp} \cap \mathcal{K}_{\mathcal{F}}\right)}(\mathbf{z})=\sigma_{\text {span } \mathcal{F}}(\mathbf{z}) \sigma_{(\text {span } \mathcal{F})^{\perp} \cap \mathcal{K}_{\mathcal{F}}}(\mathbf{z})$ and
- $\sigma_{\text {span }} \mathcal{F}(\mathbf{z})=0$


## Brion's theorem

The main theorem of this chapter

## Theorem 9.7 (Brion's theorem)

Suppose $\mathcal{P}$ is a rational convex polytope. Then as rational functions:

$$
\sigma_{\mathcal{P}}(\mathbf{z})=\sum_{\mathbf{v} \text { a vertex of } \mathcal{P}} \sigma_{\mathcal{K}_{\mathbf{v}}}(\mathbf{z})
$$

## Roadmap for the proof:

- Prove Thm 9.5 (Brianchon-Gram identity for simplices)
- Prove Cor 9.6 (Brion's theorem for simplices)
- Prove Thm 9.7


## Definition (Indicator function)

The indicator function $1_{S}$ of a set $S \subset \mathbb{R}^{d}$ is defined by

$$
1_{S}(\mathbf{x}):=\left\{\begin{array}{lll}
1 & \text { if } & x \in S \\
0 & \text { if } & x \notin S
\end{array}\right.
$$

## Theorem 9.5 (Brianchon-Gram identity for simplices)

Let $\Delta$ be a $d$-simplex. Then

$$
1_{\Delta}(\mathbf{x})=\sum_{\mathcal{F} \subseteq \Delta}(-1)^{\operatorname{dim} \mathcal{F}} 1_{\mathcal{K}_{\mathcal{F}}}(\mathbf{x})
$$

where the sum is taken over all nonempty faces $\mathcal{F}$ of $\Delta$

## Brion's Theorem

Brion's theorem for simplices

## Corollary 9.6 (Brion's theorem for simplices)

Suppose $\Delta$ is a rational simplex. Then as rational functions:

$$
\sigma_{\Delta}(\mathbf{z})=\sum \sigma_{\mathcal{K}_{v}}(\mathbf{z})
$$

## Proof:

- We sum both sides of the identity in Thm $9.5 \forall \mathbf{m} \in \mathbb{Z}^{d}$ :

$$
\begin{aligned}
\sum_{\mathbf{m} \in \mathbb{Z}^{d}} 1_{\Delta}(\mathbf{m}) \mathbf{z}^{\mathbf{m}} & =\sum_{\mathbf{m} \in \mathbb{Z}^{d}} \sum_{\mathcal{F} \subseteq \Delta}(-1)^{\operatorname{dim} \mathcal{F}} 1_{\mathcal{K}_{\mathcal{F}}}(\mathbf{m}) \mathbf{z}^{\mathbf{m}} \\
\therefore & \sigma_{\Delta}(\mathbf{z})
\end{aligned}=\sum_{\mathcal{F} \subseteq \Delta}(-1)^{\operatorname{dim} \mathcal{F}} \sigma_{\mathcal{K}_{\mathcal{F}}}(\mathbf{z})
$$

- But Lem 9.4 implies that $\sigma_{\mathcal{K}_{\mathcal{F}}}(\mathbf{z})=0$ unless $\mathcal{F}$ is a vertex; Hence

$$
\sigma_{\Delta}(\mathbf{z})=\sum_{\mathbf{v} \text { a vertex of } \Delta} \sigma_{\mathcal{K}_{\mathbf{v}}}(\mathbf{z})
$$

## Proof of Brianchon-Gram for simplicies

We distinguish between two disjoint cases: whether or not $\mathbf{x}$ is in $\Delta$

- Case 1: $x \in \Delta$
- $\mathbf{x} \in \mathcal{K}_{\mathcal{F}}$ for all $\mathcal{F} \subseteq \Delta$
- Then

$$
1=\sum_{k=0}^{\operatorname{dim} \Delta}(-1)^{k} f_{k}=\sum_{\mathcal{F} \subseteq \Delta}(-1)^{\operatorname{dim} \mathcal{F}}
$$

by the Euler relation for simplices (Exer 5.5)

- Case 2: $\mathbf{x} \notin \Delta$
- $\exists$ ! a minimal face $\mathcal{F} \subseteq \Delta$ (w.r.t. dimension) s.t. $\mathbf{x} \in \mathcal{K}_{\mathcal{F}}$ and $\mathbf{x} \in \mathcal{K}_{\mathcal{G}}$ for all faces $\mathcal{G} \subseteq \Delta$ that contain $\mathcal{F}$
- Then $0=\sum_{\mathcal{G} \supseteq \mathcal{F}}(-1)^{\operatorname{dim} \mathcal{G}}$


## Proof of Brion's theorem (1)

## Theorem 9.7 (Brion's theorem)

Suppose $\mathcal{P}$ is a rational convex polytope. Then as rational functions:

$$
\sigma_{\mathcal{P}}(\mathbf{z})=\sum_{\mathbf{v} \text { a vertex of } \mathcal{P}} \sigma_{\mathcal{K}_{\mathbf{v}}}(\mathbf{z})
$$

Proof: We use the same irrational trick as in the proofs of Thms 3.12 \& 4.3

- Triangulate $\mathcal{P}$ into the simplices $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{m}$ (using no new vertices)


DMCS'09 (10)

- Consider the hyperplane arrangement

$$
\mathcal{H}:=\left\{\operatorname{span} \mathcal{F}: \mathcal{F} \text { is a facet of } \Delta_{1}, \Delta_{2}, \ldots, \text { or } \Delta_{m}\right\}
$$

- Now shift the hyperplanes in $\mathcal{H}$, obtaining a new hyperplane arrangement $\mathcal{H}^{\text {shift }}$
- Those hyperplanes of $\mathcal{H}$ that defined $\mathcal{P}$ now define, after shifting, a new polytope that we will call $\mathcal{P}^{\text {shift }}$



## Proof of Brion's theorem (4)

- This setup implies that
- the lattice points in $\mathcal{P}$ are precisely the lattice points in $\mathcal{P}^{\text {shift }}$
- the lattice points in a vertex cone of $\mathcal{P}^{\text {shift }}$ can be written as a disjoint union of lattice points in vertex cones of simplices of the triangulation that $\mathcal{H}^{\text {shift }}$ induces on $\mathcal{P}^{\text {shift }}$
- These conditions, in turn, mean that Brion follows from Brion for simplices: the integer-point transforms on both sides of the identity can be written as a sum of integer-point transforms of simplices and their vertex cones



## Proof of Brion's theorem (3)

- Exer 9.6 ensures that we can shift $\mathcal{H}$ in such a way that:
- No hyperplane in $\mathcal{H}^{\text {shift }}$ contains any lattice point
- $\mathcal{H}^{\text {shift }}$ yields a triangulation of $\mathcal{P}^{\text {shift }}$
- The lattice points contained in a vertex cone of $\mathcal{P}$ are precisely the lattice points contained in the corresp. vertex cone of $\mathcal{P}$ shift

(1) The Identity " $\sum_{m \in \mathbb{Z}} z^{m}=0$ " $\ldots$ or "Much Ado About Nothing"
(2) Tangent Cones and Their Rational Generating Functions
(3) Brion's Theorem
(4) Brion Implies Ehrhart
.. by Brion's theorem
- As in our first proof of Ehrhart's thm, it suffices to prove Ehrhart's thm for simplices, because we can triangulate any polytope (using only the vertices)
- So suppose $\Delta$ is a rational $d$-simplex whose vertices have coordinates with denominator $p$
- Goal: for a fixed $0 \leq r<p$, the function $L_{\Delta}(r+p t)$ is a polynomial in $t$
- This means that $L_{\Delta}$ is a quasipolynomial with period dividing $p$


## Proof (3)

- Then

$$
\begin{aligned}
& (r+p t) \mathcal{K}_{\mathbf{v}} \\
& =\left\{(r+p t) \mathbf{v}+\lambda_{1} \mathbf{w}_{1}+\cdots+\lambda_{d} \mathbf{w}_{d}: \lambda_{1}, \ldots, \lambda_{d} \geq 0\right\} \\
& =t p \mathbf{v}+\left\{r \mathbf{v}+\lambda_{1} \mathbf{w}_{1}+\cdots+\lambda_{d} \mathbf{w}_{d}: \lambda_{1}, \ldots, \lambda_{d} \geq 0\right\} \\
& =t p \mathbf{v}+r \mathcal{K}_{\mathbf{v}}
\end{aligned}
$$

- Important to note: $p \mathbf{v}$ is an integer vector
- In particular, we can safely write $\sigma_{(r+p t) \mathcal{K}_{v}}(\mathbf{z})=\mathbf{z}^{t p v} \sigma_{r \mathcal{K}_{v}}(\mathbf{z})$


## Proof (2)

- Then, by Brion's thm

$$
\begin{aligned}
L_{\Delta}(r+p t) & =\sum_{\mathbf{m} \in(r+p t) \Delta \cap \mathbb{Z}^{d}} 1=\lim _{\mathbf{z} \rightarrow \mathbf{1}} \sigma_{(r+p t) \Delta}(\mathbf{z}) \\
& =\lim _{\mathbf{z} \rightarrow \mathbf{1}} \sum_{v \text { a vertex of } \Delta} \sigma_{(r+p t) \mathcal{K}_{v}}(\mathbf{z})
\end{aligned}
$$

- Note: $\mathcal{K}_{\mathrm{v}}$ are all simplicial, because $\Delta$ is a simplex
- So suppose

$$
\mathcal{K}_{\mathbf{v}}=\left\{\mathbf{v}+\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\cdots+\lambda_{d} \mathbf{w}_{d}: \lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \geq 0\right\}
$$

## Proof (4)

- Now we can rewrite as

$$
L_{\Delta}(r+p t)=\lim _{\mathbf{z} \rightarrow 1} \sum_{v} \sum_{\text {vertex of } \Delta} \mathbf{z}^{t p \mathbf{v}} \sigma_{r K_{v}}(\mathbf{z})
$$

- The exact forms of the rational functions $\sigma_{r \mathcal{K}_{v}}(\mathbf{z})$ is not important, except for the fact that they do not depend on $t$
- To compute $L_{\Delta}(r+p t)$, we write all the rational functions on the RHS over one denominator and use L'Hôpital's rule to compute the limit of this one huge rational function
- We wrote

$$
L_{\Delta}(r+p t)=\lim _{z \rightarrow 1} \sum_{v \text { vertex of } \Delta} \mathbf{z}^{t p v} \sigma_{r K_{v}}(\mathbf{z})
$$

- The variable $t$ appears only in the simple monomials $\mathbf{z}^{t p v}$, so the effect of L'Hôpital's rule is that we obtain linear factors of $t$ every time we differentiate the numerator of this rational function
- At the end we evaluate the remaining rational function at $\mathbf{z}=\mathbf{1}$
- The result is a polynomial in $t$


[^0]:    (1) The Identity " $\sum_{m \in \mathbb{Z}} z^{m}=0$ "... or "Much Ado About Nothing'
    (2) Tangent Cones and Their Rational Generating Functions

