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‘P is an integral convex d-polytope =
Lp(t) is a polynomial in t of degree d

‘P is a rational convex d-polytope =
Lp(t) is a quasipolynomial in t of degree d;
Its period divides the denominator of P

‘P a convex rational polytope = for any t € Z+q

Lp(—t) = (—=1)4™P Lpo(t)

@ The Identity Z z™=10" ...or "Much Ado About Nothing"

meZ

@® Tangent Cones and Their Rational Generating Functions
© Brion’'s Theorem

O Brion Implies Ehrhart

We saw the following can be computed efficiently (by means of
reciprocity)
e Ehrhart polynomials of the Mordell-Pommersheim tetrahedra
e Ehrhart quasipolynomials of rational convex polygons

Can we compute the Ehrhart quasipolynomial of any convex polytope
efficiently?

Look at mathematical (geometric) ideas that form a basis of efficient
algorithm for the task above




The Identity ">, -7 2™ = 0" ...or "Much Ado About Nothing"

© The Identity > ~ 2™ = 0" ...or "Much Ado About Nothing"
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The Identity “>7..~» z” = 0" ...or “Much Ado About Nothing"
A one-dimensional example (1)

/37

o Consider the line segment Z := [20, 34]

e Then
or(z) = 22°+22+. + 2
B 20 _ 535
N 11—z

e QObservation: Long polynomial representation vs. Short rational
representation

o \We rewrite the expression

UI(Z) = +
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The Identity “S°..-» z™ = 0" ...or "Much Ado About Nothing”
Integer-point transforms

Definition (Integer-point transform, recap)

The integer-point transform of S C RY is

US(Z):US (217227"'7Zd) = Z zm

meSnzd
. m __ my my my
Recall: z™ = z/" 2, --- z4
Example:
_ 2 —1
0s(z1,2) = z21zy +z1z0+ 21+ 212,
~1
+z+1+ 2z
Y. Okamoto (Tokyo Tech) DMCS'09 (10) 2009-07-16 6 /37
The Identity “>...~» z™ = 0" ...or “Much Ado About Nothing”
A one-dimensional example (2)
e As a matter of fact
20
0[20,00)(2) = E z" = z s
11—~z
m>20
34
i m __ Z
O(—0034)(2) = = 11
m<34 z
e Therefore, it holds that as rational functions
0120,00)(2) 4 0(—00,34)(2) = 020,341 (2)
—_— e [ >
20 34
« o *——————
20 34
. -
20 34
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The Identity “>>...-» z™ = 0" ...or “Much Ado About Nothing"
Affine spaces

e Any affine space A C R? equals w + V for some w € R? and
some n-dimensional vector subspace V C R?

e A contains integer points = we may choose w € Z¢
e Ja basis vi,vs,...,v, for VN ZI

e .. Any integer point m € AN Z9 can be uniquely written as

m =w + kyvy + koVo + - - - + kv, for some ky, ky, ..., k, € Z
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The Identity “>>..~» z™ = 0" ...or “Much Ado About Nothing"

Much Ado about Nothing

Lemma 9.1
Suppose A is an n-dimensional affine space with skewed orthants
01,05, ...,0n. Then as rational functions,
00,(2) +00,(2) + -+ + 00, (2) =0
Proof:
e Suppose

A={w+Avi+Xvo+ -+ AV, 0 A, Ao, N, €RY

e Then a typical skewed orthant O looks like

)\17"'7)‘1(20;
Mests- Ay <0

O:{W+A1V1+)\2V2+"'+/\nvn:
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The Identity “>>...~-» z™ = 0" ...or “Much Ado About Nothing"

Skewed orthants

Definition (skewed orthant)

Using this fixed lattice basis for 1V, we define the skewed orthants of
A as the sets of the form

{W+ vy + Xovo + -+ A\, )

where for each 1 < j < n, we require either \; > 0 or \; <0

o So there are 2" such skewed orthants, and their disjoint union
equals A
e We denote them by 01,05, ..., O

o All of them are (half-open) pointed cones, and so their
integer-point transforms are rational
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The Identity “>7...~» z™ = 0" ...or “Much Ado About Nothing”

Proof of Lemma 9.1 (cont'd)

e The integer-point transform of O is

o0(2)

— ZW E Zjl"l) e E ijvk> § ij+lvk+1 ce E Zjnvn)
1>0 k=0 Jk+1<0 in<0

1 1 1 1

1—2zw 1— 2 zvk1 — 1 zvn —1

e Consider the skewed orthant O’ with the same conditions on the
N's as in O except that we switch A\; > 0 to A; < 0; Then the
integer-point transform of O’ is
1 1 1 1 1

i —11—2% 1—z%z%a1—1 z%—1

oo(z) =2z"
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The Identity “>...~» z™ = 0" ...or “Much Ado About Nothing”

Proof of Lemma 9.1 (further cont'd)

e 00(z) +oo(z) =0
e Since we can pair up all skewed orthants in this fashion, the sum
of all their rational generating functions is zero O

Since O; U Oy U - --U Oan is equal to A as a disjoint union, it now
makes sense to set

oa(z) =0

when A is an affine space of dimension n > 0
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Tangent Cones and Their Rational Generating Functions

Hyperplane arrangements

Definition (Hyperplane arrangement)

o A hyperplane arrangement H is a finite collection of hyperplanes

o An arrangement H is rational if all its hyperplanes are, that is, if
each hyperplane in H is of the form
{x €RY: a;xq + ax + -+ + agxg = b} for some
ai,as,...,aq,beZ

o An arrangement H is called a central hyperplane arrangement if
its hyperplanes meet in (at least) one point
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Tangent Cones and Their Rational Generating Functions

@® Tangent Cones and Their Rational Generating Functions
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Tangent Cones and Their Rational Generating Functions

Convex cones

Definition (Convex cone)

A convex cone is the intersection of finitely many half-spaces of the
form {x € RY: ayx; + apxo + - -+ + agxg < b} for which the
corresponding hyperplanes {x € R? : ayx; + ayxo + - - - + agxq = b}
form a central arrangement

e This definition extends that of a pointed cone: a cone is pointed
if the defining hyperplanes meet in exactly one point

o A cone is rational if all of its defining hyperplanes are rational

e Cones and polytopes are special cases of polyhedra, which are
convex bodies defined as the intersection of finitely many
half-spaces
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For a face F of a convex poyltope P, define its tangent cone as

Kr={x+Ay—x): xeF,yeP, A€ R}

XY _

For any face F of P, spanF C K. l

Proof: As x and y vary over all points of F, x + A (y — x) varies over
span F O

e Lem 9.3 implies that ICx contains a line, unless F is a vertex

o More precisely, if ICx is not pointed, it contains the affine space
span F, which is called the apex of the tangent cone

e (A pointed cone has a point as apex)

K £ is the smallest convex cone containing both span F and P
Kp = spanP

K, is often called a vertex cone if v is a vertex of P; it is pointed
K £ is not pointed for a k-face F of P with k >0

VY _

Reminder: An affine space A C R? equals w + ) for some w € RY
and some vector subspace V C R?

The orthogonal complement A of this affine space A is defined by

ti={xeR’: x-v=0forallveV}

Note: A @ AL = R?

_=C



Tangent Cones and Their Rational Generating Functions

A decomposition of tangent cones

Tangent Cones and Their Rational Generating Functions

A decomposition of tangent cones: 2nd part

Lemma 9.4
For any face F of P, the tangent cone Iz has the decomposition

Kz =spanF @ ((span F) n IC;r) ;

Consequently, ox,(z) = 0 unless F is a vertex

Proof of the 1st part:
e Since span F @ (span ]:)l =RY,

Kr= (span]-"@ (span ]—")l) NKz
= (span FNKx) ® ((span F)'n IC;)
=span F & <(span F)'n IC;) (Lem 9.3)
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Brion's Theorem

© Brion's Theorem
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Lemma 9.4
For any face F of P, the tangent cone Kz has the decomposition

Kz =spanF @ ((span F)Y'n IC;:) ;

Consequently, ox,.(z) = 0 unless F is a vertex

Proof of the 2nd part:
e Immediate from the 1st part since

° Uspan]-'@((span]-')LﬁICf)(z) = Uspan]:(z) U(Span]—‘)Lﬁ}C}—(z) and
b Uspan]—'(z) =0 O
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Brion's Theorem

Brion's theorem

The main theorem of this chapter

Theorem 9.7 (Brion's theorem)
Suppose P is a rational convex polytope. Then as rational functions:

@)= Y onl2)

v a vertex of P

Roadmap for the proof:
e Prove Thm 9.5 (Brianchon—Gram identity for simplices)
e Prove Cor 9.6 (Brion's theorem for simplices)
e Prove Thm 9.7
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Brion's Theorem

Brianchon—Gram identity for simplices

Brion's Theorem

Proof of Brianchon—Gram for simplicies

Definition (Indicator function)

The indicator function 15 of a set S C R? is defined by

_J 1 if xeS§,
15(")'{0 if x¢$

We distinguish between two disjoint cases: whether or not x is in A

o Case 1: xe A
e xe Krforall FC A

Theorem 9.5 (Brianchon—Gram identity for simplices)
Let A be a d-simplex. Then

1a(x) = (-1 L, (),

FCA

where the sum is taken over all nonempty faces F of A
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Brion’s Theorem

Brion's theorem for simplices

e Then
dim A )
1= Z (—l)kfk _ Z (_1)d|mf
k=0 FCA
by the Euler relation for simplices (Exer 5.5)
o Case 2: x ¢ A
e 3!l a minimal face 7 C A (w.r.t. dimension) s.t. x € K and
x € Kg for all faces G C A that contain F (Exer 9.2)
e Then 0= Z(—l)dimg (Exer 9.4)
G2F
O
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Brion’s Theorem

Proof of Brion's theorem (1)

Corollary 9.6 (Brion's theorem for simplices)
Suppose A is a rational simplex. Then as rational functions:

w@= Y o

v a vertex of A

Theorem 9.7 (Brion's theorem)
Suppose P is a rational convex polytope. Then as rational functions:

op(z) = Z or.(2)

Proof:
e We sum both sides of the identity in Thm 9.5V m € Z¢:

S 1am)zm = > (1)1, (m) 2"

meZd meZd FCA

oa(z) = Y (-1)™F ok, (2)

Fca

e But Lem 9.4 implies that ox,.(z) = 0 unless F is a vertex; Hence

oa(z) = Z ox.(2)

v a vertex of A
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v a vertex of P

Proof: We use the same irrational trick as in the proofs of Thms 3.12

& 4.3
e Triangulate P into the simplices Ay, Ay, ..., A, (using no new
vertices)
O
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Brion's Theorem

Proof of Brion's theorem (3)

Brion's Theorem

Proof of Brion's theorem (2)

o Exer 9.6 ensures that we can shift H in such a way that:

o Consider the hyperplane arrangement
e No hyperplane in H*"t contains any lattice point

H := {spanF : Fis a facet of Ay, Ay, ..., or Ap,} o MM yields a triangulation of Pshift
. : . e The lattice points contained in a vertex cone of P are precisely
e Now shift the hyperplanes in 7, obtaining a new hyperplane the lattice points contained in the corresp. vertex cone of Pshift

arrangement Fshift

e Those hyperplanes of H that defined P now define, after
shifting, a new polytope that we will call Pshift
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Brion’s Theorem Brion Implies Ehrhart

Proof of Brion's theorem (4)

e This setup implies that
e the lattice points in P are precisely the lattice points in Pshift
e the lattice points in a vertex cone of PNt can be written as a
disjoint union of lattice points in vertex cones of simplices of
the triangulation that 7" induces on Pshift
e These conditions, in turn, mean that Brion follows from Brion
for simplices: the integer-point transforms on both sides of the
identity can be written as a sum of integer-point transforms of
simplices and their vertex cones O

@ Brion Implies Ehrhart
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Brion Implies Ehrhart Brion Implies Ehrhart

Proof of Ehrhart’s theorem for rational polytopes Proof (2)
... by Brion’s theorem e Then, by Brion's thm
e As in our first proof of Ehrhart’s thm, it suffices to prove
Ehrhart’s thm for simplices, because we can triangulate any La(r+pt) = Z 1= zl'_rf‘l O(r+pt)a(2)
polytope (using only the vertices) me(r+pt) ANZ
e So suppose A is a rational d-simplex whose vertices have = lim Z O(r4pt)k, (2)
coordinates with denominator p 771, 2 vertex of A

e Goal: for a fixed 0 < r < p, the function Lo(r + pt) is a

| Slin t e Note: C, are all simplicial, because A is a simplex
polynomial in

. . ) o . . e S0 suppose
e This means that La is a quasipolynomial with period dividing p PP

KV:{V+)\1W1+>\2W2+“'+)\dwdZ )\1,)\2,...,)\d20}

Y. Okamoto (Tokyo Tech) DMCS'09 (10) 2000-07-16 33 /37 Y. Okamoto (Tokyo Tech) DMCS'09 (10) 2000-07-16 34 / 37
Brion Implies Ehrhart Brion Implies Ehrhart
Proof (3) Proof (4)
e Then e Now we can rewrite as
(r+ pt)K, La(r + pt) = Iim1 Z 20, (2)
z—
={(r+pt)v+Awi+ -+ AgwWg 1 A1,..., A\g >0} v vertex of A
=tpv + {rv+ MWy + -+ AgWg 1 Ag, .o, Ag > 0} e The exact forms of the rational functions ok, (z) is not
= tpv + rk, important, except for the fact that they do not depend on t

e To compute La(r + pt), we write all the rational functions on
the RHS over one denominator and use L'Hépital's rule to
e In particular, we can safely write o, p)x,(2) = 20k, (2) compute the limit of this one huge rational function

e Important to note: pv is an integer vector
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Brion Implies Ehrhart

Proof (5)

e We wrote

— I tpv
La(rpt)=1lim > 20 (2)

v vertex of A

e The variable t appears only in the simple monomials z*V, so the
effect of L'Hopital’s rule is that we obtain linear factors of t
every time we differentiate the numerator of this rational
function

e At the end we evaluate the remaining rational function at z=1

e The result is a polynomial in t O
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