Discrete Mathematics & Computational Structures Lattice-Point Counting in Convex Polytopes (10) The Decomposition of a Polytope into Its Cones

Yoshio Okamoto

Tokyo Institute of Technology

July 16, 2009

"Last updated: 2009/07/16 1:44"

DMCS'09 (10)

2009-07-16 1 / 37

- The Identity " $\sum_{m \in \mathbb{Z}} z^m = 0$ " ... or "Much Ado About Nothing"
- **2** Tangent Cones and Their Rational Generating Functions
- Brion's Theorem
- **4** Brion Implies Ehrhart

Y. Okamoto (Tokyo Tech)

2009-07-16 2 / 37

Important	theorems	from	the	previous	lectures	
		_	_			-

Theorem 3.8	(Ehrhart's Theorem)	
-------------	---------------------	--

Y. Okamoto (Tokyo Tech)

 \mathcal{P} is an integral convex *d*-polytope \Rightarrow $L_{\mathcal{P}}(t)$ is a polynomial in *t* of degree *d*

Theorem 3.23 (Ehrhart's Theorem for rational polytopes)

 \mathcal{P} is a rational convex *d*-polytope \Rightarrow $L_{\mathcal{P}}(t)$ is a quasipolynomial in *t* of degree *d*; Its period divides the denominator of \mathcal{P}

Theorem 4.1 (Ehrhart–Macdonald reciprocity)

 ${\mathcal P}$ a convex rational polytope \Rightarrow for any $t\in {\mathbb Z}_{>0}$

$$L_{\mathcal{P}}(-t) = (-1)^{\dim \mathcal{P}} L_{\mathcal{P}^{\circ}}(t)$$

DMCS'09 (10)

The goal of this chapter

Conclusion from the previous chapter

We saw the following can be computed efficiently (by means of reciprocity)

• Ehrhart polynomials of the Mordell–Pommersheim tetrahedra

DMCS'09 (10)

• Ehrhart quasipolynomials of rational convex polygons

Question from the previous chapter

Can we compute the Ehrhart quasipolynomial of any convex polytope efficiently?

Goal of this chapter

Look at mathematical (geometric) ideas that form a basis of efficient algorithm for the task above

Y. Okamoto (Tokyo Tech)

• The Identity "
$$\sum_{m \in \mathbb{Z}} z^m = 0$$
" ... or "Much Ado About Nothing"

2 Tangent Cones and Their Rational Generating Functions

Brion's Theorem

4 Brion Implies Ehrhart

Y. Okamoto (Tokyo Tech) DMCS'09 (10) 2009-07-16 5 / 37

The Identity " $\sum_{m \in \mathbb{Z}} z^m = 0$ " ... or "Much Ado About Nothing" Integer-point transforms

The Identity " $\sum_{m \in \mathcal{T}} z^m = 0$ " ... or "Much Ado About Nothing" A one-dimensional example (1)

- Consider the line segment $\mathcal{I} := [20, 34]$
- Then

$$\sigma_{\mathcal{I}}(z) = z^{20} + z^{21} + \dots + z^{34}$$
$$= \frac{z^{20} - z^{35}}{1 - z}$$

- Observation: Long polynomial representation vs. Short rational representation
- We rewrite the expression

$$\sigma_{\mathcal{I}}(z) = \frac{z^{20}}{1-z} + \frac{z^{34}}{1-\frac{1}{z}}$$

DMCS'09 (10)

The Identity " $\sum_{m \in \mathcal{T}} z^m = 0$ " ... or "Much Ado About Nothing" A one-dimensional example (2)

• As a matter of fact

$$\sigma_{[20,\infty)}(z) = \sum_{m \ge 20} z^m = rac{z^{20}}{1-z},$$

 $\sigma_{(-\infty,34]}(z) = \sum_{m \le 34} z^m = rac{z^{34}}{1-rac{1}{z}},$

• Therefore, it holds that as rational functions

$$\sigma_{[20,\infty)}(z) + \sigma_{(-\infty,34]}(z) = \sigma_{[20,34]}(z)$$

Y. Okamoto (Tokyo Tech)

2009-07-1

2009-07-16 7 / 37

The Identity " $\sum_{m \in \mathcal{T}} z^m = 0$ " ... or "Much Ado About Nothing" Affine spaces

- Any affine space A ⊆ ℝ^d equals w + V for some w ∈ ℝ^d and some *n*-dimensional vector subspace V ⊆ ℝ^d
- \mathcal{A} contains integer points \Rightarrow we may choose $\mathbf{w} \in \mathbb{Z}^d$
- \exists a basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ for $\mathcal{V} \cap \mathbb{Z}^d$
- \therefore Any integer point $\mathbf{m} \in \mathcal{A} \cap \mathbb{Z}^d$ can be uniquely written as

$$\mathbf{m} = \mathbf{w} + k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$$
 for some $k_1, k_2, \dots, k_n \in \mathbb{Z}$

Y. Okamoto (Tokyo Tech)	DMCS'09 (10)	2009-07-16	9 / 37

The Identity " $\sum_{m \in \mathbb{Z}} z^m = 0$ " ... or "Much Ado About Nothing" Much Ado about Nothing

Lemma 9.1

Suppose \mathcal{A} is an *n*-dimensional affine space with skewed orthants $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_{2^n}$. Then as rational functions,

$$\sigma_{\mathcal{O}_1}(\mathbf{z}) + \sigma_{\mathcal{O}_2}(\mathbf{z}) + \dots + \sigma_{\mathcal{O}_{2^n}}(\mathbf{z}) = 0$$

Proof:

• Suppose

$$\mathcal{A} = \{\mathbf{w} + \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_n \mathbf{v}_n : \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}\}$$

• Then a typical skewed orthant $\mathcal O$ looks like

$$\mathcal{O} = \left\{ \mathbf{w} + \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_n \mathbf{v}_n : \begin{array}{c} \lambda_1, \dots, \lambda_k \ge \mathbf{0}, \\ \lambda_{k+1}, \dots, \lambda_n < \mathbf{0} \end{array} \right\}$$

DMCS'09 (10)

Y. Okamoto (Tokyo Tech)

2009-07-16 11 / 37

The Identity " $\sum_{m \in \mathcal{T}} z^m = 0$ " ... or "Much Ado About Nothing" Skewed orthants

Definition (skewed orthant)

Using this fixed lattice basis for $\mathcal V,$ we define the skewed orthants of $\mathcal A$ as the sets of the form

$$\left\{\mathbf{w}+\lambda_1\mathbf{v}_1+\lambda_2\mathbf{v}_2+\cdots+\lambda_n\mathbf{v}_n\right\},\,$$

where for each $1 \le j \le n$, we require either $\lambda_i \ge 0$ or $\lambda_i < 0$

- So there are 2^n such skewed orthants, and their disjoint union equals ${\cal A}$

DMCS'09 (10)

2009-07-16

2009-07-16

12 / 37

10 / 37

- We denote them by $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_{2^n}$
- All of them are (half-open) pointed cones, and so their integer-point transforms are rational

The Identity " $\sum_{m \in \mathbb{Z}} z^m = 0$ " ... or "Much Ado About Nothing" Proof of Lemma 9.1 (cont'd)

Y. Okamoto (Tokyo Tech)

Y. Okamoto (Tokyo Tech)

• The integer-point transform of $\ensuremath{\mathcal{O}}$ is

$$\sigma_{\mathcal{O}}(\mathbf{z}) = \mathbf{z}^{\mathbf{w}} \left(\sum_{j_1 \ge 0} \mathbf{z}^{j_1 \mathbf{v}_1} \right) \cdots \left(\sum_{j_k \ge 0} \mathbf{z}^{j_k \mathbf{v}_k} \right) \left(\sum_{j_{k+1} < 0} \mathbf{z}^{j_{k+1} \mathbf{v}_{k+1}} \right) \cdots \left(\sum_{j_n < 0} \mathbf{z}^{j_n \mathbf{v}_n} \right)$$
$$= \mathbf{z}^{\mathbf{w}} \frac{1}{1 - \mathbf{z}^{\mathbf{v}_1}} \cdots \frac{1}{1 - \mathbf{z}^{\mathbf{v}_k}} \frac{1}{\mathbf{z}^{\mathbf{v}_{k+1}} - 1} \cdots \frac{1}{\mathbf{z}^{\mathbf{v}_n} - 1}$$

• Consider the skewed orthant \mathcal{O}' with the same conditions on the λ 's as in \mathcal{O} except that we switch $\lambda_1 \geq 0$ to $\lambda_1 < 0$; Then the integer-point transform of \mathcal{O}' is

$$\sigma_{\mathcal{O}'}(\mathbf{z}) = \mathbf{z}^{\mathbf{w}} \frac{1}{\mathbf{z}^{\mathbf{v}_1} - 1} \frac{1}{1 - \mathbf{z}^{\mathbf{v}_2}} \cdots \frac{1}{1 - \mathbf{z}^{\mathbf{v}_k}} \frac{1}{\mathbf{z}^{\mathbf{v}_{k+1}} - 1} \cdots \frac{1}{\mathbf{z}^{\mathbf{v}_n} - 1}$$

DMCS'09 (10)

The Identity " $\sum_{m \in \mathcal{T}} z^m = 0$ " ... or "Much Ado About Nothing" Proof of Lemma 9.1 (further cont'd)

- $\therefore \sigma_{\mathcal{O}}(\mathbf{z}) + \sigma_{\mathcal{O}'}(\mathbf{z}) = \mathbf{0}$
- Since we can pair up all skewed orthants in this fashion, the sum of all their rational generating functions is zero

Since $\mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_{2^n}$ is equal to \mathcal{A} as a disjoint union, it now makes sense to set

$$\sigma_{\mathcal{A}}(\mathbf{z}) := \mathbf{0}$$

DMCS'09 (10)

when A is an affine space of dimension n > 0

• The Identity "
$$\sum_{m \in \mathbb{Z}} z^m = 0$$
" ... or "Much Ado About Nothing"

2 Tangent Cones and Their Rational Generating Functions

- **3** Brion's Theorem
- **4** Brion Implies Ehrhart

Y. Okamoto (Tokyo Tech)

2009-07-16 13 / 37

Y. Okamoto (Tokyo Tech)

Definition (Hyperplane arrangement)

- A hyperplane arrangement \mathcal{H} is a finite collection of hyperplanes
- An arrangement \mathcal{H} is rational if all its hyperplanes are, that is, if each hyperplane in \mathcal{H} is of the form
 - $\left\{ \mathbf{x} \in \mathbb{R}^d : a_1 x_1 + a_2 x_2 + \dots + a_d x_d = b \right\}$ for some $a_1, a_2, \dots, a_d, b \in \mathbb{Z}$
- An arrangement \mathcal{H} is called a central hyperplane arrangement if its hyperplanes meet in (at least) one point

DMCS'09 (10)

Tangent Cones and Their Rational Generating Functions

Definition (Convex cone)

A convex cone is the intersection of finitely many half-spaces of the form $\{\mathbf{x} \in \mathbb{R}^d : a_1x_1 + a_2x_2 + \cdots + a_dx_d \le b\}$ for which the corresponding hyperplanes $\{\mathbf{x} \in \mathbb{R}^d : a_1x_1 + a_2x_2 + \cdots + a_dx_d = b\}$ form a central arrangement

DMCS'09 (10)

- This definition extends that of a pointed cone: a cone is pointed if the defining hyperplanes meet in *exactly* one point
- A cone is rational if all of its defining hyperplanes are rational
- Cones and polytopes are special cases of polyhedra, which are convex bodies defined as the intersection of finitely many half-spaces

Y. Okamoto (Tokyo Tech)

2009-07-16

Definition (Tangent cone)

For a face \mathcal{F} of a convex poyltope \mathcal{P} , define its tangent cone as

$$\mathcal{K}_{\mathcal{F}} := \left\{ \mathbf{x} + \lambda \left(\mathbf{y} - \mathbf{x} \right) : \ \mathbf{x} \in \mathcal{F}, \ \mathbf{y} \in \mathcal{P}, \ \lambda \in \mathbb{R}_{\geq 0} \right\}$$

Tangent Cones and Their Rational Generating Functions Properties of tangent cones

- $\mathcal{K}_\mathcal{F}$ is the smallest convex cone containing both span \mathcal{F} and \mathcal{P}
- $\mathcal{K}_{\mathcal{P}} = \operatorname{span} \mathcal{P}$
- $\mathcal{K}_{\mathbf{v}}$ is often called a vertex cone if \mathbf{v} is a vertex of \mathcal{P} ; it is pointed
- $\mathcal{K}_{\mathcal{F}}$ is not pointed for a *k*-face \mathcal{F} of \mathcal{P} with k > 0

Tangent Cones and Their Rational Generating Functions Tangent cones and the spans of faces

Lemma 9.3

For any face \mathcal{F} of \mathcal{P} , span $\mathcal{F} \subseteq \mathcal{K}_{\mathcal{F}}$.

<u>Proof</u>: As **x** and **y** vary over all points of \mathcal{F} , $\mathbf{x} + \lambda (\mathbf{y} - \mathbf{x})$ varies over span \mathcal{F}

Remarks

- Lem 9.3 implies that $\mathcal{K}_{\mathcal{F}}$ contains a line, unless \mathcal{F} is a vertex
- More precisely, if K_F is not pointed, it contains the affine space span F, which is called the apex of the tangent cone

DMCS'09 (10)

• (A pointed cone has a point as apex)

Tangent Cones and Their Rational Generating Functions Orthogonal complements of affine spaces

Reminder: An affine space $\mathcal{A} \subseteq \mathbb{R}^d$ equals $\mathbf{w} + \mathcal{V}$ for some $\mathbf{w} \in \mathbb{R}^d$ and some vector subspace $\mathcal{V} \subseteq \mathbb{R}^d$

Definition (Orthogonal complement)

The orthogonal complement \mathcal{A}^\perp of this affine space \mathcal{A} is defined by

$$\mathcal{A}^{\perp} := \left\{ \mathbf{x} \in \mathbb{R}^{d} : \, \mathbf{x} \cdot \mathbf{v} = 0 \text{ for all } \mathbf{v} \in \mathcal{V} \right\}$$

Note: $\mathcal{A} \oplus \mathcal{A}^{\perp} = \mathbb{R}^{d}$

2009-07-16

Tangent Cones and Their Rational Generating Functions A decomposition of tangent cones

Lemma 9.4

For any face ${\mathcal F}$ of ${\mathcal P},$ the tangent cone ${\mathcal K}_{{\mathcal F}}$ has the decomposition

$$\mathcal{K}_\mathcal{F} = \operatorname{\mathsf{span}} \mathcal{F} \oplus \left((\operatorname{\mathsf{span}} \mathcal{F})^\perp \cap \mathcal{K}_\mathcal{F}
ight)$$

Consequently, $\sigma_{\mathcal{K}_{\mathcal{F}}}(\mathsf{z}) = 0$ unless \mathcal{F} is a vertex

Proof of the 1st part:

Y. Okamoto (Tokyo Tech)

• Since span
$$\mathcal{F} \oplus (\operatorname{span} \mathcal{F})^{\perp} = \mathbb{R}^{d}$$
,
 $\mathcal{K}_{\mathcal{F}} = \left(\operatorname{span} \mathcal{F} \oplus (\operatorname{span} \mathcal{F})^{\perp}\right) \cap \mathcal{K}_{\mathcal{F}}$
 $= (\operatorname{span} \mathcal{F} \cap \mathcal{K}_{\mathcal{F}}) \oplus \left((\operatorname{span} \mathcal{F})^{\perp} \cap \mathcal{K}_{\mathcal{F}}\right)$
 $= \operatorname{span} \mathcal{F} \oplus \left((\operatorname{span} \mathcal{F})^{\perp} \cap \mathcal{K}_{\mathcal{F}}\right)$ (Lem 9.3)

DMCS'09 (10)

Tangent Cones and Their Rational Generating Functions A decomposition of tangent cones: 2nd part

Lemma 9.4

For any face ${\mathcal F}$ of ${\mathcal P},$ the tangent cone ${\mathcal K}_{{\mathcal F}}$ has the decomposition

$$\mathcal{K}_{\mathcal{F}} = \operatorname{\mathsf{span}} \mathcal{F} \oplus \left((\operatorname{\mathsf{span}} \mathcal{F})^{\perp} \cap \mathcal{K}_{\mathcal{F}}
ight)$$

Consequently, $\sigma_{\mathcal{K}_{\mathcal{F}}}(\mathbf{z}) = 0$ unless \mathcal{F} is a vertex

Proof of the 2nd part:

• Immediate from the 1st part since

•
$$\sigma_{\operatorname{span}\mathcal{F}\oplus(\operatorname{(span}\mathcal{F})^{\perp}\cap\mathcal{K}_{\mathcal{F}})}(\mathsf{z}) = \sigma_{\operatorname{span}\mathcal{F}}(\mathsf{z}) \sigma_{(\operatorname{span}\mathcal{F})^{\perp}\cap\mathcal{K}_{\mathcal{F}}}(\mathsf{z}) \text{ and }$$

• $\sigma_{\operatorname{span}\mathcal{F}}(\mathbf{z}) = 0$

Y. Okamoto (Tokyo Tech)

DMCS'09 (10)

2009-07-16 22 / 37

Brion's theorem

The main theorem of this chapter

Theorem 9.7 (Brion's theorem)

Suppose ${\mathcal{P}}$ is a rational convex polytope. Then as rational functions:

Brion's Theorem

$$\sigma_{\mathcal{P}}(\mathsf{z}) = \sum_{\mathsf{v} \text{ a vertex of } \mathcal{P}} \sigma_{\mathcal{K}_{\mathsf{v}}}(\mathsf{z})$$

Roadmap for the proof:

- Prove Thm 9.5 (Brianchon–Gram identity for simplices)
- Prove Cor 9.6 (Brion's theorem for simplices)
- Prove Thm 9.7

(1) The Identity " $\sum_{m \in \mathbb{Z}} z^m = 0$ " ... or "Much Ado About Nothing"

DMCS'09 (10)

2 Tangent Cones and Their Rational Generating Functions

Brion's Theorem

3 Brion's Theorem

4 Brion Implies Ehrhart

2009-07-16 21 / 37

Brianchon–Gram identity for simplices

Definition (Indicator function)

The indicator function 1_S of a set $S \subset \mathbb{R}^d$ is defined by

 $1_{\mathcal{S}}(\mathbf{x}) := \left\{ egin{array}{ccc} 1 & ext{if} & \mathbf{x} \in \mathcal{S}, \\ 0 & ext{if} & \mathbf{x}
ot\in \mathcal{S} \end{array}
ight.$

Theorem 9.5 (Brianchon–Gram identity for simplices)

Let Δ be a *d*-simplex. Then

$$1_\Delta({f x}) = \sum_{\mathcal{F}\subseteq \Delta} (-1)^{\dim \mathcal{F}} 1_{\mathcal{K}_\mathcal{F}}({f x})\,,$$

DMCS'09 (10)

where the sum is taken over all nonempty faces ${\cal F}$ of Δ

Y. Okamoto (Tokyo Tech)

2009-07-16 25 / 37

2009-07-16 27 / 37

Brion's theorem for simplices Corollary 9.6 (Brion's theorem for simplices)

Suppose Δ is a rational simplex. Then as rational functions: $\sigma_{\Delta}(\mathbf{z}) = \sum_{\mathbf{y} \text{ a vertex of } \Delta} \sigma_{\mathcal{K}_{\mathbf{y}}}(\mathbf{z})$

Brion's Theorem

Proof:

• We sum both sides of the identity in Thm 9.5 $\forall \mathbf{m} \in \mathbb{Z}^d$:

$$\begin{split} &\sum_{\mathbf{m}\in\mathbb{Z}^d}\mathbf{1}_{\Delta}(\mathbf{m})\,\mathbf{z}^{\mathbf{m}} &= \sum_{\mathbf{m}\in\mathbb{Z}^d}\sum_{\mathcal{F}\subseteq\Delta}(-1)^{\dim\mathcal{F}}\mathbf{1}_{\mathcal{K}_{\mathcal{F}}}(\mathbf{m})\,\mathbf{z}^{\mathbf{m}}\\ &\therefore \quad \sigma_{\Delta}(\mathbf{z}) &= \sum_{\mathcal{F}\subseteq\Delta}(-1)^{\dim\mathcal{F}}\sigma_{\mathcal{K}_{\mathcal{F}}}(\mathbf{z}) \end{split}$$

• But Lem 9.4 implies that $\sigma_{\mathcal{K}_{\mathcal{F}}}(\mathbf{z}) = 0$ unless \mathcal{F} is a vertex; Hence

$$\sigma_{\Delta}(\mathbf{z}) = \sum_{\mathbf{v} \text{ a vertex of } \Delta} \sigma_{\mathcal{K}_{\mathbf{v}}}(\mathbf{z}) \qquad \Box$$

Y. Okamoto (Tokyo Tech)

Proof of Brianchon–Gram for simplicies

We distinguish between two disjoint cases: whether or not ${\bf x}$ is in Δ

• Case 1: $\mathbf{x} \in \Delta$

• Then

• $\mathbf{x} \in \mathcal{K}_{\mathcal{F}}$ for all $\mathcal{F} \subseteq \Delta$

$$1 = \sum_{k=0}^{\dim \Delta} (-1)^k f_k = \sum_{\mathcal{F} \subseteq \Delta} (-1)^{\dim \mathcal{F}}$$

by the Euler relation for simplices (Exer 5.5)

• Case 2: $\mathbf{x} \notin \Delta$

• \exists ! a minimal face $\mathcal{F} \subseteq \Delta$ (w.r.t. dimension) s.t. $\mathbf{x} \in \mathcal{K}_{\mathcal{F}}$ and $\mathbf{x} \in \mathcal{K}_{\mathcal{G}}$ for all faces $\mathcal{G} \subseteq \Delta$ that contain \mathcal{F} (Exer 9.2)

• Then
$$0 = \sum_{\mathcal{G} \supseteq \mathcal{F}} (-1)^{\dim \mathcal{G}}$$
 (Exer 9.4)

2009-07-16 26 / 37

Y. Okamoto (Tokyo Tech)

Proof of Brion's theorem (1)

Theorem 9.7 (Brion's theorem)

Suppose \mathcal{P} is a rational convex polytope. Then as rational functions:

Brion's Theorem

DMCS'09 (10)

$$\sigma_{\mathcal{P}}(\mathbf{z}) = \sum_{\mathbf{v} \text{ a vertex of } \mathcal{P}} \sigma_{\mathcal{K}_{\mathbf{v}}}(\mathbf{z})$$

 $\underline{\text{Proof}}$: We use the same irrational trick as in the proofs of Thms 3.12 & 4.3

• Triangulate \mathcal{P} into the simplices $\Delta_1, \Delta_2, \ldots, \Delta_m$ (using no new vertices)

Proof of Brion's theorem (2)

• Consider the hyperplane arrangement

```
\mathcal{H} := \{ \operatorname{span} \mathcal{F} : \mathcal{F} \text{ is a facet of } \Delta_1, \Delta_2, \dots, \text{ or } \Delta_m \}
```

- Now shift the hyperplanes in $\mathcal H,$ obtaining a new hyperplane arrangement $\mathcal H^{\mathsf{shift}}$
- Those hyperplanes of H that defined P now define, after shifting, a new polytope that we will call P^{shift}

Brion's Theorem

DMCS'09 (10)

Brion's Theorem

2009-07-16 29 / 37

Proof of Brion's theorem (3)

- Exer 9.6 ensures that we can shift ${\cal H}$ in such a way that:
 - No hyperplane in $\mathcal{H}^{\mathsf{shift}}$ contains any lattice point

Brion's Theorem

- $\mathcal{H}^{\text{shift}}$ yields a triangulation of $\mathcal{P}^{\text{shift}}$
- The lattice points contained in a vertex cone of $\mathcal P$ are precisely the lattice points contained in the corresp. vertex cone of $\mathcal P^{\mathsf{shift}}$

DMCS'09 (10)

Proof	of	Brion	's	theorem	(4))
1 1001	<u> </u>	Dirion	-	theorem.	<u>۱</u>	/

- This setup implies that
 - the lattice points in ${\cal P}$ are precisely the lattice points in ${\cal P}^{\sf shift}$
 - the lattice points in a vertex cone of $\mathcal{P}^{\text{shift}}$ can be written as a *disjoint* union of lattice points in vertex cones of simplices of the triangulation that $\mathcal{H}^{\text{shift}}$ induces on $\mathcal{P}^{\text{shift}}$
- These conditions, in turn, mean that Brion follows from Brion for simplices: the integer-point transforms on both sides of the identity can be written as a sum of integer-point transforms of simplices and their vertex cones

DMCS'09 (10)

1 The Identity " $\sum_{m \in \mathbb{Z}} z^m = 0$ " or "Much Ado About Nothing"
Ø Tangent Cones and Their Rational Generating Functions
Brion's Theorem

Brion Implies Ehrhart

4 Brion Implies Ehrhart

Y. Okamoto (Tokyo Tech)

Y. Okamoto (Tokyo Tech)

2009-07-16

Brion Implies Ehrhart Proof of Ehrhart's theorem for rational polytopes

- ... by Brion's theorem
 - As in our first proof of Ehrhart's thm, it suffices to prove Ehrhart's thm for simplices, because we can triangulate any polytope (using only the vertices)
 - So suppose Δ is a rational *d*-simplex whose vertices have coordinates with denominator *p*
 - Goal: for a fixed $0 \le r < p$, the function $L_{\Delta}(r + pt)$ is a polynomial in t
 - This means that L_{Δ} is a quasipolynomial with period dividing p

Proof (2)

• Then, by Brion's thm

$$\begin{split} L_{\Delta}(r+\rho t) &= \sum_{\mathbf{m} \in (r+\rho t) \Delta \cap \mathbb{Z}^d} 1 = \lim_{\mathbf{z} \to \mathbf{1}} \sigma_{(r+\rho t)\Delta}(\mathbf{z}) \\ &= \lim_{\mathbf{z} \to \mathbf{1}} \sum_{\mathbf{v} \text{ a vertex of } \Delta} \sigma_{(r+\rho t)\mathcal{K}_{\mathbf{v}}}(\mathbf{z}) \end{split}$$

• Note: $\mathcal{K}_{\mathbf{v}}$ are all simplicial, because Δ is a simplex

Brion Implies Ehrhart

• So suppose

Y. Okamoto (Tokyo Tech)

$$\mathcal{K}_{\mathbf{v}} = \{\mathbf{v} + \lambda_1 \mathbf{w}_1 + \lambda_2 \mathbf{w}_2 + \dots + \lambda_d \mathbf{w}_d : \lambda_1, \lambda_2, \dots, \lambda_d \ge 0\}$$

DMCS'09 (10)

Y. Okamoto (Tokyo Tech)	DMCS'09 (10)	2009-07-16	33 / 37

Proof (3)

• Then

$$(r + pt)\mathcal{K}_{\mathbf{v}}$$

$$= \{(r + pt)\mathbf{v} + \lambda_{1}\mathbf{w}_{1} + \dots + \lambda_{d}\mathbf{w}_{d} : \lambda_{1}, \dots, \lambda_{d} \ge 0$$

$$= tp\mathbf{v} + \{r\mathbf{v} + \lambda_{1}\mathbf{w}_{1} + \dots + \lambda_{d}\mathbf{w}_{d} : \lambda_{1}, \dots, \lambda_{d} \ge 0\}$$

$$= tp\mathbf{v} + r\mathcal{K}_{\mathbf{v}}$$

• Important to note: *p***v** is an integer vector

Brion Implies Ehrhart

• In particular, we can safely write $\sigma_{(r+pt)\mathcal{K}_{\mathbf{v}}}(\mathbf{z}) = \mathbf{z}^{tp\mathbf{v}}\sigma_{r\mathcal{K}_{\mathbf{v}}}(\mathbf{z})$

DMCS'09 (10)

Brion Implies Ehrhart Proof (4)

• Now we can rewrite as

$$\mathcal{L}_{\Delta}(r+pt) = \lim_{\mathbf{z} \to 1} \sum_{\mathbf{v} \text{ vertex of } \Delta} \mathbf{z}^{t p \mathbf{v}} \sigma_{r \mathcal{K}_{\mathbf{v}}}(\mathbf{z})$$

- The exact forms of the rational functions σ_{rKν}(z) is not important, except for the fact that they do not depend on t
- To compute L_∆(r + pt), we write all the rational functions on the RHS over one denominator and use L'Hôpital's rule to compute the limit of this one huge rational function

2009-07-16

Brion Implies Ehrhart

• We wrote

$$L_{\Delta}(r+pt) = \lim_{\mathbf{z} \to \mathbf{1}} \sum_{\mathbf{v} \text{ vertex of } \Delta} \mathbf{z}^{t p \mathbf{v}} \sigma_{r \mathcal{K}_{\mathbf{v}}}(\mathbf{z})$$

- The variable *t* appears only in the simple monomials z^{tpv} , so the effect of L'Hôpital's rule is that we obtain linear factors of *t* every time we differentiate the numerator of this rational function
- At the end we evaluate the remaining rational function at $\mathsf{z}=1$

• The result is a polynomial in *t*

 Y. Okamoto (Tokyo Tech)
 DMCS'09 (10)
 2009-07-16
 37 / 37

Proof (5)