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Important theorems from the previous lectures

Theorem 3.8 (Ehrhart’s Theorem)

P is an integral convex d-polytope ⇒
LP(t) is a polynomial in t of degree d

Theorem 3.23 (Ehrhart’s Theorem for rational polytopes)

P is a rational convex d-polytope ⇒
LP(t) is a quasipolynomial in t of degree d ;
Its period divides the denominator of P

Theorem 4.1 (Ehrhart–Macdonald reciprocity)

P a convex rational polytope ⇒ for any t ∈ Z>0

LP(−t) = (−1)dimPLP◦(t)
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The goal of this chapter

Conclusion from the previous chapter

We saw the following can be computed efficiently (by means of
reciprocity)

• Ehrhart polynomials of the Mordell–Pommersheim tetrahedra

• Ehrhart quasipolynomials of rational convex polygons

Question from the previous chapter

Can we compute the Ehrhart quasipolynomial of any convex polytope
efficiently?

Goal of this chapter

Look at mathematical (geometric) ideas that form a basis of efficient
algorithm for the task above
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The Identity “
∑

m∈Z zm = 0” . . . or “Much Ado About Nothing”

Integer-point transforms

Definition (Integer-point transform, recap)

The integer-point transform of S ⊆ Rd is

σS(z) = σS (z1, z2, . . . , zd) :=
∑

m∈S∩Zd

zm

Recall: zm = zm1
1 zm2

2 · · · zmd
d

Example:

σS(z1, z2) = z1z
2
2 + z1z2 + z1 + z1z

−1
2

+z2 + 1 + z−1
1
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The Identity “
∑

m∈Z zm = 0” . . . or “Much Ado About Nothing”

A one-dimensional example (1)

• Consider the line segment I := [20, 34]

• Then

σI(z) = z20 + z21 + · · ·+ z34

=
z20 − z35

1− z

• Observation: Long polynomial representation vs. Short rational
representation

• We rewrite the expression

σI(z) =
z20

1− z
+

z34

1− 1
z
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The Identity “
∑

m∈Z zm = 0” . . . or “Much Ado About Nothing”

A one-dimensional example (2)

• As a matter of fact

σ[20,∞)(z) =
∑
m≥20

zm =
z20

1− z
,

σ(−∞,34](z) =
∑
m≤34

zm =
z34

1− 1
z

• Therefore, it holds that as rational functions

σ[20,∞)(z) + σ(−∞,34](z) = σ[20,34](z)

20 34

20 34

20 34
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The Identity “
∑

m∈Z zm = 0” . . . or “Much Ado About Nothing”

Affine spaces

• Any affine space A ⊆ Rd equals w + V for some w ∈ Rd and
some n-dimensional vector subspace V ⊆ Rd

• A contains integer points ⇒ we may choose w ∈ Zd

• ∃ a basis v1, v2, . . . , vn for V ∩ Zd

• ∴ Any integer point m ∈ A ∩ Zd can be uniquely written as

m = w + k1v1 + k2v2 + · · ·+ knvn for some k1, k2, . . . , kn ∈ Z
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The Identity “
∑

m∈Z zm = 0” . . . or “Much Ado About Nothing”

Skewed orthants

Definition (skewed orthant)

Using this fixed lattice basis for V , we define the skewed orthants of
A as the sets of the form

{w + λ1v1 + λ2v2 + · · ·+ λnvn} ,

where for each 1 ≤ j ≤ n, we require either λj ≥ 0 or λj < 0

• So there are 2n such skewed orthants, and their disjoint union
equals A

• We denote them by O1,O2, . . . ,O2n

• All of them are (half-open) pointed cones, and so their
integer-point transforms are rational
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The Identity “
∑

m∈Z zm = 0” . . . or “Much Ado About Nothing”

Much Ado about Nothing

Lemma 9.1

Suppose A is an n-dimensional affine space with skewed orthants
O1,O2, . . . ,O2n . Then as rational functions,

σO1(z) + σO2(z) + · · ·+ σO2n (z) = 0

Proof:

• Suppose

A = {w + λ1v1 + λ2v2 + · · ·+ λnvn : λ1, λ2, . . . , λn ∈ R}

• Then a typical skewed orthant O looks like

O =

{
w + λ1v1 + λ2v2 + · · ·+ λnvn :

λ1, . . . , λk ≥ 0,
λk+1, . . . , λn < 0

}
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The Identity “
∑

m∈Z zm = 0” . . . or “Much Ado About Nothing”

Proof of Lemma 9.1 (cont’d)

• The integer-point transform of O is

σO(z)

= zw

(∑
j1≥0

zj1v1

)
· · ·

(∑
jk≥0

zjkvk

)∑
jk+1<0

zjk+1vk+1

 · · ·(∑
jn<0

zjnvn

)

= zw 1

1− zv1
· · · 1

1− zvk

1

zvk+1 − 1
· · · 1

zvn − 1

• Consider the skewed orthant O′ with the same conditions on the
λ’s as in O except that we switch λ1 ≥ 0 to λ1 < 0

; Then the
integer-point transform of O′ is

σO′(z) = zw 1

zv1 − 1

1

1− zv2
· · · 1

1− zvk

1

zvk+1 − 1
· · · 1

zvn − 1
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The Identity “
∑

m∈Z zm = 0” . . . or “Much Ado About Nothing”

Proof of Lemma 9.1 (further cont’d)

• ∴ σO(z) + σO′(z) = 0

• Since we can pair up all skewed orthants in this fashion, the sum
of all their rational generating functions is zero

Since O1 ∪ O2 ∪ · · · ∪ O2n is equal to A as a disjoint union, it now
makes sense to set

σA(z) := 0

when A is an affine space of dimension n > 0

Y. Okamoto (Tokyo Tech) DMCS’09 (10) 2009-07-16 13 / 37



The Identity “
∑

m∈Z zm = 0” . . . or “Much Ado About Nothing”

Proof of Lemma 9.1 (further cont’d)

• ∴ σO(z) + σO′(z) = 0

• Since we can pair up all skewed orthants in this fashion, the sum
of all their rational generating functions is zero

Since O1 ∪ O2 ∪ · · · ∪ O2n is equal to A as a disjoint union, it now
makes sense to set

σA(z) := 0

when A is an affine space of dimension n > 0

Y. Okamoto (Tokyo Tech) DMCS’09 (10) 2009-07-16 13 / 37



The Identity “
∑

m∈Z zm = 0” . . . or “Much Ado About Nothing”

Proof of Lemma 9.1 (further cont’d)

• ∴ σO(z) + σO′(z) = 0

• Since we can pair up all skewed orthants in this fashion, the sum
of all their rational generating functions is zero

Since O1 ∪ O2 ∪ · · · ∪ O2n is equal to A as a disjoint union, it now
makes sense to set

σA(z) := 0

when A is an affine space of dimension n > 0

Y. Okamoto (Tokyo Tech) DMCS’09 (10) 2009-07-16 13 / 37



Tangent Cones and Their Rational Generating Functions

1 The Identity “
∑
m∈Z

zm = 0” . . . or “Much Ado About Nothing”

2 Tangent Cones and Their Rational Generating Functions

3 Brion’s Theorem

4 Brion Implies Ehrhart

Y. Okamoto (Tokyo Tech) DMCS’09 (10) 2009-07-16 14 / 37



Tangent Cones and Their Rational Generating Functions

Hyperplane arrangements

Definition (Hyperplane arrangement)

• A hyperplane arrangement H is a finite collection of hyperplanes

• An arrangement H is rational if all its hyperplanes are, that is, if
each hyperplane in H is of the form{
x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd = b

}
for some

a1, a2, . . . , ad , b ∈ Z
• An arrangement H is called a central hyperplane arrangement if

its hyperplanes meet in (at least) one point
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Tangent Cones and Their Rational Generating Functions

Convex cones

Definition (Convex cone)

A convex cone is the intersection of finitely many half-spaces of the
form

{
x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd ≤ b

}
for which the

corresponding hyperplanes
{
x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd = b

}
form a central arrangement

• This definition extends that of a pointed cone: a cone is pointed
if the defining hyperplanes meet in exactly one point

• A cone is rational if all of its defining hyperplanes are rational

• Cones and polytopes are special cases of polyhedra, which are
convex bodies defined as the intersection of finitely many
half-spaces
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Tangent Cones and Their Rational Generating Functions

Tangent cones

Definition (Tangent cone)

For a face F of a convex poyltope P , define its tangent cone as

KF := {x + λ (y − x) : x ∈ F , y ∈ P , λ ∈ R≥0}

Y. Okamoto (Tokyo Tech) DMCS’09 (10) 2009-07-16 17 / 37



Tangent Cones and Their Rational Generating Functions

Properties of tangent cones

• KF is the smallest convex cone containing both spanF and P
• KP = spanP
• Kv is often called a vertex cone if v is a vertex of P ; it is pointed

• KF is not pointed for a k-face F of P with k > 0
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Tangent Cones and Their Rational Generating Functions

Tangent cones and the spans of faces

Lemma 9.3

For any face F of P , spanF ⊆ KF .

Proof: As x and y vary over all points of F , x + λ (y − x) varies over
spanF

Remarks

• Lem 9.3 implies that KF contains a line, unless F is a vertex

• More precisely, if KF is not pointed, it contains the affine space
spanF , which is called the apex of the tangent cone

• (A pointed cone has a point as apex)
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Tangent Cones and Their Rational Generating Functions

Orthogonal complements of affine spaces

Reminder: An affine space A ⊆ Rd equals w + V for some w ∈ Rd

and some vector subspace V ⊆ Rd

Definition (Orthogonal complement)

The orthogonal complement A⊥ of this affine space A is defined by

A⊥ :=
{
x ∈ Rd : x · v = 0 for all v ∈ V

}
Note: A⊕A⊥ = Rd
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Tangent Cones and Their Rational Generating Functions

A decomposition of tangent cones

Lemma 9.4

For any face F of P , the tangent cone KF has the decomposition

KF = spanF ⊕
(

(spanF)⊥ ∩ KF
)

;

Consequently, σKF (z) = 0 unless F is a vertex

Proof of the 1st part:

• Since spanF ⊕ (spanF)⊥ = Rd ,

KF =
(

spanF ⊕ (spanF)⊥
)
∩ KF

= (spanF ∩ KF)⊕
(

(spanF)⊥ ∩ KF
)

= spanF ⊕
(

(spanF)⊥ ∩ KF
)

(Lem 9.3)
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Tangent Cones and Their Rational Generating Functions

A decomposition of tangent cones: 2nd part

Lemma 9.4

For any face F of P , the tangent cone KF has the decomposition

KF = spanF ⊕
(

(spanF)⊥ ∩ KF
)

;

Consequently, σKF (z) = 0 unless F is a vertex

Proof of the 2nd part:

• Immediate from the 1st part since
• σspanF⊕((spanF)⊥∩KF)(z) = σspanF (z) σ(spanF)⊥∩KF (z) and

• σspanF (z) = 0
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Brion’s Theorem

Brion’s theorem

The main theorem of this chapter

Theorem 9.7 (Brion’s theorem)

Suppose P is a rational convex polytope. Then as rational functions:

σP(z) =
∑

v a vertex of P

σKv(z)

Roadmap for the proof:

• Prove Thm 9.5 (Brianchon–Gram identity for simplices)

• Prove Cor 9.6 (Brion’s theorem for simplices)

• Prove Thm 9.7
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Brion’s Theorem

Brianchon–Gram identity for simplices

Definition (Indicator function)

The indicator function 1S of a set S ⊂ Rd is defined by

1S(x) :=

{
1 if x ∈ S ,
0 if x 6∈ S

Theorem 9.5 (Brianchon–Gram identity for simplices)

Let ∆ be a d-simplex. Then

1∆(x) =
∑
F⊆∆

(−1)dimF1KF (x) ,

where the sum is taken over all nonempty faces F of ∆
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Brion’s Theorem

Proof of Brianchon–Gram for simplicies

We distinguish between two disjoint cases: whether or not x is in ∆

• Case 1: x ∈ ∆

• x ∈ KF for all F ⊆ ∆
• Then

1 =
dim ∆∑
k=0

(−1)k fk

=
∑
F⊆∆

(−1)dimF

by the Euler relation for simplices (Exer 5.5)

• Case 2: x /∈ ∆

• ∃! a minimal face F ⊆ ∆ (w.r.t. dimension) s.t. x ∈ KF and
x ∈ KG for all faces G ⊆ ∆ that contain F (Exer 9.2)

• Then 0 =
∑
G⊇F

(−1)dimG (Exer 9.4)
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Brion’s Theorem

Brion’s theorem for simplices

Corollary 9.6 (Brion’s theorem for simplices)

Suppose ∆ is a rational simplex. Then as rational functions:

σ∆(z) =
∑

v a vertex of ∆

σKv(z)

Proof:
• We sum both sides of the identity in Thm 9.5 ∀ m ∈ Zd :∑

m∈Zd

1∆(m) zm =
∑
m∈Zd

∑
F⊆∆

(−1)dimF1KF (m) zm

∴ σ∆(z) =
∑
F⊆∆

(−1)dimFσKF (z)

• But Lem 9.4 implies that σKF (z) = 0 unless F is a vertex; Hence

σ∆(z) =
∑

v a vertex of ∆

σKv(z)
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Brion’s Theorem

Proof of Brion’s theorem (1)

Theorem 9.7 (Brion’s theorem)

Suppose P is a rational convex polytope. Then as rational functions:

σP(z) =
∑

v a vertex of P

σKv(z)

Proof: We use the same irrational trick as in the proofs of Thms 3.12
& 4.3
• Triangulate P into the simplices ∆1,∆2, . . . ,∆m (using no new

vertices)
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Brion’s Theorem

Proof of Brion’s theorem (2)

• Consider the hyperplane arrangement

H := {spanF : F is a facet of ∆1,∆2, . . . , or ∆m}

• Now shift the hyperplanes in H, obtaining a new hyperplane
arrangement Hshift

• Those hyperplanes of H that defined P now define, after
shifting, a new polytope that we will call P shift
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Brion’s Theorem

Proof of Brion’s theorem (3)

• Exer 9.6 ensures that we can shift H in such a way that:
• No hyperplane in Hshift contains any lattice point
• Hshift yields a triangulation of Pshift

• The lattice points contained in a vertex cone of P are precisely
the lattice points contained in the corresp. vertex cone of Pshift
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Brion’s Theorem

Proof of Brion’s theorem (4)

• This setup implies that
• the lattice points in P are precisely the lattice points in Pshift

• the lattice points in a vertex cone of Pshift can be written as a
disjoint union of lattice points in vertex cones of simplices of
the triangulation that Hshift induces on Pshift

• These conditions, in turn, mean that Brion follows from Brion
for simplices: the integer-point transforms on both sides of the
identity can be written as a sum of integer-point transforms of
simplices and their vertex cones
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Brion Implies Ehrhart

1 The Identity “
∑
m∈Z

zm = 0” . . . or “Much Ado About Nothing”

2 Tangent Cones and Their Rational Generating Functions
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Brion Implies Ehrhart

Proof of Ehrhart’s theorem for rational polytopes

... by Brion’s theorem

• As in our first proof of Ehrhart’s thm, it suffices to prove
Ehrhart’s thm for simplices, because we can triangulate any
polytope (using only the vertices)

• So suppose ∆ is a rational d-simplex whose vertices have
coordinates with denominator p

• Goal: for a fixed 0 ≤ r < p, the function L∆(r + pt) is a
polynomial in t

• This means that L∆ is a quasipolynomial with period dividing p
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Brion Implies Ehrhart

Proof (2)

• Then,

by Brion’s thm

L∆(r + pt) =
∑

m∈(r+pt)∆∩Zd

1

= lim
z→1

σ(r+pt)∆(z)

= lim
z→1

∑
v a vertex of ∆

σ(r+pt)Kv(z)

• Note: Kv are all simplicial, because ∆ is a simplex

• So suppose

Kv = {v + λ1w1 + λ2w2 + · · ·+ λdwd : λ1, λ2, . . . , λd ≥ 0}
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Brion Implies Ehrhart

Proof (3)

• Then

(r + pt)Kv

= {(r + pt)v + λ1w1 + · · ·+ λdwd : λ1, . . . , λd ≥ 0}

= tpv + {rv + λ1w1 + · · ·+ λdwd : λ1, . . . , λd ≥ 0}
= tpv + rKv

• Important to note: pv is an integer vector

• In particular, we can safely write σ(r+pt)Kv(z) = ztpvσrKv(z)
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Brion Implies Ehrhart

Proof (4)

• Now we can rewrite as

L∆(r + pt) = lim
z→1

∑
v vertex of ∆

ztpvσrKv(z)

• The exact forms of the rational functions σrKv(z) is not
important, except for the fact that they do not depend on t

• To compute L∆(r + pt), we write all the rational functions on
the RHS over one denominator and use L’Hôpital’s rule to
compute the limit of this one huge rational function
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Brion Implies Ehrhart

Proof (5)

• We wrote

L∆(r + pt) = lim
z→1

∑
v vertex of ∆

ztpvσrKv(z)

• The variable t appears only in the simple monomials ztpv, so the
effect of L’Hôpital’s rule is that we obtain linear factors of t
every time we differentiate the numerator of this rational
function

• At the end we evaluate the remaining rational function at z = 1

• The result is a polynomial in t
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