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P is an integral convex d-polytope =
Lp(t) is a polynomial in t of degree d

‘P is a rational convex d-polytope =
Lp(t) is a quasipolynomial in t of degree d;
Its period divides the denominator of P

‘P a convex rational polytope = for any t € Z+q

Lp(—t) = (—=1)4™P Lpo(t)

@ It's a Kind of Magic

® Semimagic Squares: Integer Points in the Birkhoff~von Neumann
Polytope
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@ Count the number of magic squares by means of Ehrhart theory I




A magic square in an engraving A magic square in architecture

Temple de la Sagrada Familia
Barcelona, Spain

1 & Melencolia |
e R Albrecht Diirer (1514)
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It's a Kind of Magic It's a Kind of Magic
You may think these definitions are too weak...

@ It's a Kind of Magic Definition (Semimagic square, Magic square)

e A semimagic square is a square matrix whose entries are
nonnegative integers and whose rows and columns sum to the
same number (called the line sum)

e The rows and columns are called lines

e A magic square is a semimagic square whose main diagonals also
add up to the line sum

00 112]0
1] 2 0] 1|2
021 2101
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A traditional magic square is a magic square of order n whose entries

are the distinct integers 1,2, ..., n?

41912
35| 7
8116

The Luo Shu square: the oldest(?) traditional magic square

H,(t) = # semimagic squares of order n and line sum ¢t
M, (t) = # magic squares of order n and line sum t

1 if t even
Hy(t) =t+1, Mz(t):{o €+ odd

t t
© t=0 51 3
t t

t=0 © 51 3

3 5 > 6
1 880 275305224 unknown

Source of integer sequences

e Visit “the On-Line Encyclopedia of Integer Sequences”
http://www.research.att.com/ “njas/sequences/

e Search with “A006052"
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. TheBirkhoffvon Newmann Polytope
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X11 o Xin XIkZO
B, = ; : | eR”: Yxp=1foralll<k<n
X1 -er Xom Yuxk=1forall1<;j<n

B, lives in R
e The dimension of B, is (n — 1)? (Exer 6.3)
B, is the set of all doubly stochastic matrices of order n

e The vertices of B, are the permuatation matrices of order n
(Exer 6.5)

X1  Xin Xje > 0
B, = : : cR™ ijjkzlforalllgkgn
Xol -ee Xom duXk=1forall1<j<n

Ho(t) = # (tB,, N Z"Z) = Ly (1)

H,(t) is a polynomial in t of degree (n — 1)?

Proof: Immediate from Ehrhart's theorem (Thm 3.8) O

e The definition:

X1 X X11, X12, X21, X2 > 0
) 4,
Bz = eR*: xi1 +X12=1,X21 4+ x0» =1
X21  X22 -1 -1
x11 + X1 = 1, x120 + X0 =

e The element of B is in the form

( 0 1-90

1-0 O ) where 0 <O <1

e This is one-dimensional
e The extreme points are

(01)(¥s)

H,(t) can be computed by interpolation if we know (n—1)?+1 values

e H(0)=1 (Cor 3.15)
o Hy(1)=2 (right?)
o Hy(t)=t+1

e H3(0)=1 (Cor 3.15)
e Other four values?

Let's look at a general case



The Birkhoff~von Neumann Polytope
The power of reciprocity

The Birkhoff~von Neumann Polytope

Backton=3

Definition (Hz(t))
Hy(t) denotes the number of n x n square matrices with positive
integer entries summing up to t along each row and column

o Ho(t) = H,(t —n) fort >n (Exer 6.6)
o HE(t) = Lis(t)

o o H(—t) = (1)’ H,(¢) (by Reciprocity)

e HY(1)=H)(2)=---=H(n—1)=0 (Exer 6.7)
Thus we obtain the following theorem
Theorem 6.3
The polynomial H, satisfies H,(—n — t) = (—=1)(""Y*H,(t) and
Hy(—1) = Hy(—2)=---=H,(-n+1)=0 O
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The Birkhoff-von Neumann Polytope
The use of Theorem 6.3: The general case

Need to know (n—1)?+1 values of H,(t)

e H,(0)=1

o Hy(=1) = Hy(—2) = --- = Hyo(—n+1) =0
Still need to know n?—3n+2 values of H,(t)

o Hy(—n) = (~1)0 H,(0)

e Compute H,(t) forall t =1,2,...,(n*-3n+2)/2

o Hy(—n— 1) = (~1) Ay 1)

forall t=1,...,(n*—3n+2)/2—1

The actual work is to compute (n*—3n+2)/2 values
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We already know

e H3(0)=1
From Theorem 6.3

o Hy(—=1) = H3(-2) =0

o Hy(=3) = (~1)F U Hy(0) = 1
We can also observe

e Hy(1)=6 (by Exer 6.1)

Therefore, by interpolation we get

1, 35 15, 9
H3(t)_8t+4t+8t+4t+1
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Magic Generating Functions and Constant-Term Identities

©® Magic Generating Functions and Constant-Term Identities
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Magic Generating Functions and Constant-Term ldentities Magic Generating Functions and Constant-Term ldentities

Compute H,(t) by means of a generating function Compute H,(t) by means of a generating function (cont'd)
Consider the points in B, as column vectors in R™ then e For a general rational polytope P = {x € R‘éo s Ax = b}, we
have

B, = {xcRZ: Ax=b},

Lp(t) = const ( ! ) ;

where (1—2z9)(1—2z%)---(1— z¢)ztb
1 ... 1 where ¢y, Cy, ..., cy denote the columns of A
1 -1 e To keep things as clear as possible,
1 we use 7y, 2, . . ., Z, for the first n rows of A
A — 1 ... 1 b — 1 (representing the row constraints of 5,) and
1 1 1 7 : Wy, Wa, . .., w, for the last n rows of A
1 (representing the column constraints of 5,)
1 1 1
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Magic Generating Functions and Constant-Term Identities Magic Generating Functions and Constant-Term ldentities

Compute H,(t) by means of a generating function (further cont'd) Looking at the generating function more carefully
Then, by Theorem 2.13 we get the following Hy(t)
Theorem 6.5 1
= const ——
2z (I—=zim1) (1 — z2m) (1 — z1m2) (1 — zowp) Zf ZEwfwi
= const < ! - : )
1 2z \z{zy (1 —zim) (1 — 2wm) wi (1 — ziws) (1 — z2m2) wy
H,(t) = const - O 1 1
Z1,..-3Zn,
Tz = t| — t
H (1= zwy) H & H Wk o <zlt22t o ((1 —z1m) (1 — zowy) W1t>
1<j,k<n 1<j<n  1<k<n 1
X const
When n = 2, Hy(t) is equal to we ((1 —z1w;) (1 — 22wy) W2t>>
1 2
1 ) = const (const
const 2,2 \ z{Z} w (1—=2zw) (1 — zow) Wt>
2z ((l —zimp) (1 — z2m) (1 — z1ma) (1 — zown) Zf ZEwfwi 172
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Magic Generating Functions and Constant-Term ldentities

A general consideration

Magic Generating Functions and Constant-Term ldentities

A general consideration: Partial fraction expansion

e In general, we get (by Exer 6.8)

1 1 "
H,(t) = t| ——— t
(1) chonszn ((zl---z,,)t (coVsz (1—2zw)---(1 z,,W)Wf) )

e Let's manipulate the inner expression

1
t
o0 (1—zw)--- (1 — zyw)wt

by the partial fraction expansion
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Magic Generating Functions and Constant-Term Identities

A general consideration: Partial fraction expansion (cont’d)

o By partial fraction expansion, we get

1 A " A; T A,
(l-zw) - (l-zwwt w-2 w-1 w—+
t
By
+ Zm
k=1
e Therefore
1
const =-Aiz1 — Ao — -+ — Az,

wo (1—ziw)--- (1 = zw)w!
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Magic Generating Functions and Constant-Term ldentities

Preparation for computing the constant terms

t+n—2
Z

_Hj;ék(zk - z)

e Thus we get the following

o Exercise 6.9 says A, =

Theorem 6.6

n
n t+n—1
1 z,

H,(t) = const
n Z1,...y2Zn (Zl cee Zn)t = H#k(zk - ZJ)

For n =2

1 St+1 St 2
H>(t) = const ( L - =2 )

21,2 (2122)t 11— 2 24

t+2_—t —t_t+2
( 7Tz, 212 7'z, )

(21 —2) (2a—2)P (21— 2)

We first compute the constant terms wrt z;, then wrt z,
Y. Okamoto (Tokyo Tech) DMCS'09 (7) 2009-06-11 27 / 34

= const
21,22

e Assume |z1| < |z| (by Exer 6.11)
e Then
k
1 ]. 1 1 Z (Z]_) Z 1 k
_—— ——— = — J— — — —_Z
_ 21 _ k+1 “1
Z1 — 2 2 Z 1 V) >0 V) >0 Z,
and hence
1 7_d ( 1 ) k zk_lfzk_klzk
- = k+1 41— k+2 “1
(21 = 2)? dz \z1 — 2 ek =%
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Magic Generating Functions and Constant-Term ldentities Magic Generating Functions and Constant-Term ldentities

Computing the constant terms (1) Computing the constant terms (2)
The first term The third term
t+2_—t t+2 —t_t+2 k 1
7"z _ z ) 42 —t +1
const 1722 =2z t const 172 const (2 = 22+ const | z; E i 4
1 (Zl — 22) Pl (21 — 22) 21 (21 — 22) z1 >0 Z,
k+1
R t42 k k+1 ,
=2 "const | 2 E 2 4 = 22 const E —=a "
k>0 2 a k>0 “2
k+1 t+1
_ -t k+t42 | _ 42 _
= z, " const E i 4 =0 =2 o = ttl
z 22
k>0 “2
Therefore
The second term (Exercise 6.10) 42—t b4
7z %z, 712, 7 'z,
Hy(t) = const 5= 5 5
Z12» 21,22 (Zl - 22) (Zl - 22) (21 — 22)
const | —2——— | =0
7 (21 — 2) =const(0—0+(t+1))=t+1
2
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The Enumeration of Magic Squares The Enumeration of Magic Squares

Quasipolynomiality of M,(t)

e Reminder: M,(t) = # magic squares of order n and line sum t
e We have already seen

1 if t is even,
”b“)"{o if ¢ is odd.

This is a quasipolynomial
e Similarly to B,, we may consider

X11 c Xin

X =1
B,:=B,n{ | : |
X.1 x. 2y %nie1 = 1
©® The Enumeration of Magic Squares
then M, (t) = Lg (1)
Theorem 6.7 (follows from Ehrhart’s theorem)
M, (t) is a quasipolynomial in t. DJ
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The Enumeration of Magic Squares

Computing M,(t)

The Enumeration of Magic Squares

Computing M,(t): Generating function

my| mz| ms
What is M5(t)?

mg| Ms| Mg
Let’s compute with a generating function J

mz| mg| my

The polytope B} is determined by

m+m+my=t, my+ms+mg=t, my+mg+mg=t,
Z1 22 Z3
m +mg+mp=t, m-+ms+mg=t, m3+mg+mg=t,
w1 w> w3
m +msg+mg=t, my+ms+m;=t

n Y2

For each equality, we use a variable
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Then, M;(t) is the constant term of

1
(1 —zimiy) (1 — ziw2) (1 — ziwzy2) (1 — z2m1) (1 — z2wayny2)
1

X

(1 — 22W3) (1 — Z3W1y2) (1 — Z3W2) (1 — Z3W3y1)

1

X t

(z122Z3W1 W2 W3 Y1 Y2)

After some minutes of calculation, we get

2 42 2 H
stP+5t+1 if 3|t

Ms(t) =
5(t) 0 otherwise
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