Discrete Mathematics \& Computational Structures Lattice-Point Counting in Convex Polytopes
(6) Face Numbers and the Dehn-Sommerville Relations in Ehrhartian Terms

Yoshio Okamoto
Tokyo Institute of Technology
June 4, 2009
"Last updated: 2009/06/10 11:55"

Important theorems from the previous lectures

$$
\begin{aligned}
& \text { Theorem } 3.8 \text { (Ehrhart's Theorem) } \\
& \mathcal{P} \text { is an integral convex } d \text {-polytope } \Rightarrow \\
& L_{\mathcal{P}}(t) \text { is a polynomial in } t \text { of degree } d
\end{aligned}
$$

Theorem 3.23 (Ehrhart's Theorem for rational polytopes)

\mathcal{P} is a rational convex d-polytope \Rightarrow
$L_{\mathcal{P}}(t)$ is a quasipolynomial in t of degree d;
Its period divides the least common multiple of the denominators of the coordinates of the vertices of \mathcal{P}

$$
\begin{aligned}
& \text { Theorem } 4.1 \text { (Ehrhart-Macdonald reciprocity) } \\
& \mathcal{P} \text { a convex rational polytope } \Rightarrow \text { for any } t \in \mathbb{Z}_{>0}
\end{aligned}
$$

$$
L_{\mathcal{P}}(-t)=(-1)^{\operatorname{dim} \mathcal{P}} L_{\mathcal{P}^{\circ}}(t)
$$

(1) Face it!
(2) Dehn-Sommerville Extended
(3) Applications to the Coefficients of an Ehrhart Polynomial
(4) Relative Volume

The goal of this chapter

(1) To prove Dehn-Sommerville relations, a set of fascinating identities, which give linear relations among the face numbers f_{k}
(2) To unify the Dehn-Sommerville relations with Ehrhart-Macdonald reciprocity
(1) Face it!
(2) Dehn-Sommerville Extended
(3) Applications to the Coefficients of an Ehrhart Polynomial
(4) Relative Volume

$\mathcal{P} \subseteq \mathbb{R}^{d}$ a convex polytope

Definition (Face)

\mathcal{F} is a face of \mathcal{P} if \exists a valid inequality $\mathbf{a} \cdot \mathbf{x} \leq b$ for \mathcal{P} s.t.

$$
\mathcal{F}=\mathcal{P} \cap\{\mathbf{x}: \mathbf{a} \cdot \mathbf{x}=b\}
$$

Remark

- Every face of a convex polytope is also a convex polytope
- \mathcal{P} and \varnothing are faces of \mathcal{P}
Y. Okamoto (Tokyo Tech)

DMCS'09 (6)
2009-06-04 $6 / 29$

Simple polytopes

Definition (Simple polytope)

The d-polytope \mathcal{P} is simple if each vertex of \mathcal{P} lies on precisely d edges of \mathcal{P}

$$
f_{0}=5, f_{1}=5, f_{2}=1
$$

simple

non-simple

Fundamental linear relations among face numbers
Theorem 5.1 (Dehn-Sommerville relations: Dehn '05, Sommerville '27)
For a simple d-polytope \mathcal{P} and $0 \leq k \leq d$,

$$
f_{k}=\sum_{j=0}^{k}(-1)^{j}\binom{d-j}{d-k} f_{j}
$$

Remarks

- This holds for all simple polytopes
- Doesn't hold for non-simple polytopes in general (Exer 5.11)
- We will prove for rational polytopes by means of Ehrhart theory

The Euler relation

Theorem 5.2 (The Euler relation)

\mathcal{P} a convex d-polytope \Rightarrow

$$
\sum_{j=0}^{d}(-1)^{j} f_{j}=1
$$

Proof for simple polytopes via Theorem 5.1:

- Theorem 5.1 for $k=d$ gives

$$
1=f_{d}=\sum_{j=0}^{d}(-1)^{j}\binom{d-j}{d-d} f_{j}=\sum_{j=0}^{d}(-1)^{j} f_{j}
$$

$$
\begin{aligned}
& f_{0}=\binom{3}{3} f_{0}=f_{0} \\
& f_{1}=\binom{3}{2} f_{0}-\binom{2}{2} f_{1}=3 f_{0}-f_{1}
\end{aligned}
$$

$$
\Rightarrow 3 f_{0}=2 f_{1}
$$

$$
f_{2}=\binom{3}{1} f_{0}-\binom{2}{1} f_{1}+\binom{1}{1} f_{2}
$$

$$
f_{0}=8 \quad=3 f_{0}-2 f_{1}+f_{2} \Rightarrow 3 f_{0}=2 f_{1}
$$

$$
f_{1}=12
$$

$$
f_{2}=6
$$

$$
f_{3}=\binom{3}{0} f_{0}-\binom{2}{0} f_{1}+\binom{1}{0} f_{2}-\binom{0}{0} f_{3}
$$

$$
f_{3}=1
$$

$$
=f_{0}-f_{1}+f_{2}-f_{3}
$$

$$
\Rightarrow f_{0}-f_{1}+f_{2}=2 f_{3}=2
$$

The Euler relation (cont'd)

Proof for rational polytopes via Ehrhart-Mcdonald's reciprocity:

- By Ehrhart-Mcdonald's reciprocity

$$
L_{\mathcal{P}}(t)=\sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F} \circ}(t)=\sum_{\mathcal{F} \subseteq \mathcal{P}}(-1)^{\operatorname{dim} \mathcal{F}} L_{\mathcal{F}}(-t)
$$

where the sums are over all nonempty faces

- $\operatorname{const}\left(L_{\mathcal{F}}(t)\right)=1$ for all \mathcal{F}
(Exer 3.27)
- The constant term gives

$$
\begin{aligned}
1=\operatorname{const}\left(L_{\mathcal{P}}(t)\right) & =\sum_{\mathcal{F} \subseteq \mathcal{P}}(-1)^{\operatorname{dim} \mathcal{F}} \operatorname{const}\left(L_{\mathcal{F}}(-t)\right) \\
& =\sum_{\mathcal{F} \subseteq \mathcal{P}}(-1)^{\operatorname{dim} \mathcal{F}} 1=\sum_{j=0}^{d}(-1)^{j} f_{j}
\end{aligned}
$$

\mathcal{P} a convex polytope

Definition

$$
F_{k}(t):=\sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \operatorname{dim} \mathcal{F}=k}} L_{\mathcal{F}}(t)
$$

Remark: Suppose \mathcal{P} is rational

- $F_{k}(t)$ is a quasipolynomial
- $F_{k}(0)=f_{k}$

$$
\left(\because L_{\mathcal{F}}(0)=1\right)
$$

- The leading coefficient of $F_{k}(t)$ is the relative volume of the k-skeleton of \mathcal{P}
- The k-skeleton of \mathcal{P} is the union of all k-faces of \mathcal{P}

Dehn-Sommerville Extended

Today's main theorem

Theorem 5.3 (McMullen '77)

\mathcal{P} a simple rational d-polytope and $0 \leq k \leq d \Rightarrow$

$$
F_{k}(t)=\sum_{j=0}^{k}(-1)^{j}\binom{d-j}{d-k} F_{j}(-t)
$$

Proof of Theorem 5.1 via Theorem 5.3:

- Looking at the constant terms, we obtain

$$
f_{k}=\sum_{j=0}^{k}(-1)^{j}\binom{d-j}{d-k} f_{j}
$$

"Proof" of Ehrhart-Macdonald's reciprocity via Theorem 5.3
for simple polytopes

$$
\begin{aligned}
L_{\mathcal{P}}(t)=F_{d}(t) & =\sum_{j=0}^{d}(-1)^{j}\binom{d-j}{d-d} F_{j}(-t)=(-1)^{d} \sum_{j=0}^{d}(-1)^{d-j} F_{j}(-t) \\
\therefore L_{\mathcal{P}}(-t) & =(-1)^{d} \sum_{j=0}^{d}(-1)^{d-j} F_{j}(t) \\
& =(-1)^{d} \sum_{j=0}^{d}(-1)^{d-j} \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\
\operatorname{dim} \mathcal{F}=j}} L_{\mathcal{F}}(t) \\
& =(-1)^{d} \sum_{\mathcal{F} \subseteq \mathcal{P}}(-1)^{d-\operatorname{dim} \mathcal{F}} L_{\mathcal{F}}(t)=(-1)^{d} L_{\mathcal{P} \circ}(t)
\end{aligned}
$$

by the Inclusion-Exclusion (á la Exer 5.4)

Proof of Theorem 5.3

\mathcal{P} a simple d-polytope, \mathcal{F} a k-face of \mathcal{P}

- Since $\forall \mathbf{m} \in \mathcal{F} \cap \mathbb{Z}^{d} \exists!\mathcal{G} \subseteq \mathcal{F}: \mathbf{m} \in \mathcal{G}^{\circ}$,

$$
L_{\mathcal{F}}(t)=\sum_{\mathcal{G} \subseteq \mathcal{F}} L_{\mathcal{G}^{\circ}}(t)
$$

- By Ehrhart-Macdonald's reciprocity

$$
L_{\mathcal{F}}(t)=\sum_{\mathcal{G} \subseteq \mathcal{F}}(-1)^{\operatorname{dim} \mathcal{G}} L_{\mathcal{G}}(-t)=\sum_{j=0}^{k}(-1)^{j} \sum_{\substack{\mathcal{G} \subseteq \mathcal{F} \\ \operatorname{dim} \mathcal{G}=j}} L_{\mathcal{G}}(-t)
$$

Now we take the sum over all k-faces

Applications to the Coefficients of an Ehrhart Polynomial

(1) Face it!
(2) Dehn-Sommerville Extended
(3) Applications to the Coefficients of an Ehrhart Polynomial
(4) Relative Volume

Proof of Theorem 5.3, cont'd

$$
\begin{align*}
F_{k}(t) & =\sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\
\operatorname{dim}=k}} \sum_{j=0}^{k}(-1)^{j} \sum_{\substack{\mathcal{G} \subseteq \mathcal{F} \\
\operatorname{dim}=j}} L_{\mathcal{G}}(-t)=\sum_{j=0}^{k}(-1)^{j} \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\
\operatorname{dim} \mathcal{F}=k}} \sum_{\substack{\mathcal{G} \subseteq \mathcal{F} \\
\operatorname{dim} \mathcal{G}=j}} L_{\mathcal{G}}(-t) \\
& =\sum_{j=0}^{k}(-1)^{j} \sum_{\substack{\mathcal{G} \subseteq \mathcal{P} \\
\operatorname{dim}=j}} f_{k}(\mathcal{P} / \mathcal{G}) L_{\mathcal{G}}(-t) \\
& =\sum_{j=0}^{k}(-1)^{j} \sum_{\substack{\mathcal{G} \subseteq \mathcal{P} \\
\operatorname{dim}=j}}\binom{d-j}{d-k} L_{\mathcal{G}}(-t) \quad \text { (Exer 5.4) } \tag{Exer5.4}\\
& =\sum_{j=0}^{k}(-1)^{j}\binom{d-j}{d-k} F_{j}(-t)
\end{align*}
$$

where $f_{k}(\mathcal{P} / \mathcal{G})$ is the number of k-faces of \mathcal{P} containing \mathcal{G}

A consequence of Theorem 5.3 (?)

- From Theorem 5.3

$$
L_{\mathcal{P}}(t)=F_{d}(t)=\sum_{j=0}^{d}(-1)^{j} F_{j}(-t)
$$

- Indeed, this holds for any rational polytope (even non-simple)

$$
\begin{aligned}
L_{\mathcal{P}}(t) & =\sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t) \\
& =\sum_{\mathcal{F} \subseteq \mathcal{P}}(-1)^{\operatorname{dim} \mathcal{F}} L_{\mathcal{F}}(-t) \\
& =\sum_{j=0}^{d}(-1)^{j} \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\
\operatorname{dim} \mathcal{F}=j}} L_{\mathcal{F}}(-t)=\sum_{j=0}^{d}(-1)^{j} F_{j}(-t)
\end{aligned}
$$

- By Ehrhart-Macdonald's reciprocity,

$$
(-1)^{d} F_{d}(-t)=(-1)^{d} L_{\mathcal{P}}(-t)=L_{\mathcal{P} \circ}(t)
$$

- Therefore

$$
\begin{aligned}
L_{\mathcal{P}}(t)-L_{\mathcal{P} \circ}(t) & =\left(\sum_{j=0}^{d}(-1)^{j} F_{j}(-t)\right)-(-1)^{d} F_{d}(-t) \\
& =\sum_{j=0}^{d-1}(-1)^{j} F_{j}(-t)
\end{aligned}
$$

- The LHS counts the number of integer points on the boundary of $t \mathcal{P}$

Applications to the Coefficients of an Enhrart Polvnomial

We know $c_{d}=\operatorname{vol} \mathcal{P}$. How about other coefficients?

- Let $F_{j}(t)=c_{j, j} t^{j}+c_{j, j-1} j^{j-1}+\cdots+c_{j, 0}$

Corollary 5.5

k and d are of different parity $\Rightarrow c_{k}=\frac{1}{2} \sum_{j=0}^{d-1}(-1)^{j+k} c_{j, k}$

Example

- $c_{d-1}=\frac{1}{2} \sum_{\mathcal{F} \text { a facet of } \mathcal{P}}$ the leading coeff's of $L_{\mathcal{F}}(t)$

Sum of every second terms of the Ehrhart polynomial

- Let $L_{\mathcal{P}}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{0} \quad(\mathcal{P}$ integral)
- Then $L_{\mathcal{P} \circ}(t)=c_{d} t^{d}-c_{d-1} t^{d-1}+\cdots+(-1)^{d} c_{0}$
- Hence

$$
L_{\mathcal{P}}(t)-L_{\mathcal{P} \circ}(t)=2 c_{d-1} t^{d-1}+2 c_{d-3} t^{d-3}+\cdots
$$

where this sum ends with $2 c_{0}$ if d is odd and $2 c_{1} t$ if d is even

Theorem 5.4

$$
c_{d-1} t^{d-1}+c_{d-3} t^{d-3}+\cdots=\frac{1}{2} \sum_{j=0}^{d-1}(-1)^{j} F_{j}(-t)
$$

(2) Dehn-Sommerville Extended

[^0](4) Relative Volume

Lemma 3.19 (recap)

$S \subset \mathbb{R}^{d} d$-dimensional \Rightarrow

$$
\operatorname{vol} S=\lim _{t \rightarrow \infty} \frac{1}{t^{d}} \cdot \#\left(t S \cap \mathbb{Z}^{d}\right)
$$

One issue

S is not d-dimensional $\Rightarrow \operatorname{vol} S=0$ by definition

Motivation

We still would like to compute the volume of smaller-dimensional objects, in the relative sense

Relative volume

Setup

- $S \subset \mathbb{R}^{d}$ of dimension $m<d$
- $\operatorname{span} S=\{\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x}): \mathbf{x}, \mathbf{y} \in S, \lambda \in \mathbb{R}\}$, the affine span of S
- Consider the sublattice $(\operatorname{span} S) \cap \mathbb{Z}^{d}$
- The relative volume of S is the volume relative to $(\operatorname{span} S) \cap \mathbb{Z}^{d}$

Definition or Proposition (Relative volume)

The relative volume of S is

$$
\operatorname{vol} S=\lim _{t \rightarrow \infty} \frac{1}{t^{m}} \cdot \#\left(t S \cap \mathbb{Z}^{d}\right)
$$

Convention: vol S represents the relative volume of S, not the volume of S when $m<d$

Example 2

- $\mathcal{P}=$ the triangle defined by $\frac{x}{5}+\frac{y}{20}+\frac{z}{2}=1$,
$x \geq 0, y \geq 0, z \geq 0$
- $\operatorname{vol} \mathcal{P}=5$

Cf.

- the Euclidean area of \mathcal{P} $=15 \sqrt{13}$
- the Euclidean area of the shaded region $=3 \sqrt{13}$
- $\operatorname{span} L=\left\{(x, y) \in \mathbb{R}^{2}: y=x / 2\right\}$
- $\operatorname{vol} L=2$
f.
- the Euclidean length of $L=2 \sqrt{5}$
- Let $L_{\mathcal{P}}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{0} \quad(\mathcal{P}$ integral)
- We saw $c_{d-1}=\frac{1}{2} \sum_{\mathcal{F} \text { a facet of } \mathcal{P}}$ the leading coeff of $L_{\mathcal{F}}(t)$
- We know the leading coeff of $L_{\mathcal{F}}(t)$ is vol \mathcal{F}

Therefore

Theorem 5.6

$$
c_{d-1}=\frac{1}{2} \sum_{\mathcal{F} \text { a facet of } \mathcal{P}} \operatorname{vol} \mathcal{F}
$$

[^0]: (3) Applications to the Coefficients of an Ehrhart Polynomial

