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Important theorems from the previous lectures

Theorem 3.8 (Ehrhart’s Theorem)

P is an integral convex d-polytope ⇒
LP(t) is a polynomial in t of degree d

Theorem 3.23 (Ehrhart’s Theorem for rational polytopes)

P is a rational convex d-polytope ⇒
LP(t) is a quasipolynomial in t of degree d ;
Its period divides the least common multiple of the denominators of
the coordinates of the vertices of P

Theorem 4.1 (Ehrhart–Macdonald reciprocity)

P a convex rational polytope ⇒ for any t ∈ Z>0

LP(−t) = (−1)dimPLP◦(t)
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The goal of this chapter

The goal of this chapter

1 To prove Dehn–Sommerville relations, a set of fascinating
identities, which give linear relations among the face numbers fk

2 To unify the Dehn–Sommerville relations with
Ehrhart–Macdonald reciprocity
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Face it!

Faces of a convex polytope: recap

P ⊆ Rd a convex polytope

Definition (Face)

F is a face of P if ∃ a valid inequality a · x ≤ b for P s.t.

F = P ∩ {x : a · x = b}

Remark

• Every face of a convex polytope is also a convex polytope

• P and ∅ are faces of P
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Face it!

Face numbers

P a d-polytope, fixed

Definition (Face number)

fk := the number of k-dimensional faces of P , k = 0, 1, . . . , d

f0 = 5, f1 = 5, f2 = 1
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Face it!

Simple polytopes

Definition (Simple polytope)

The d-polytope P is simple if each vertex of P lies on precisely d
edges of P

simple non-simple
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Face it!

Dehn–Sommerville relations

Fundamental linear relations among face numbers

Theorem 5.1 (Dehn–Sommerville relations: Dehn ’05, Sommerville
’27)

For a simple d-polytope P and 0 ≤ k ≤ d ,

fk =
k∑

j=0

(−1)j

(
d − j

d − k

)
fj

Remarks

• This holds for all simple polytopes

• Doesn’t hold for non-simple polytopes in general (Exer 5.11)

• We will prove for rational polytopes by means of Ehrhart theory
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Face it!

Dehn–Sommerville relations: Example

f0 = 8

f1 = 12

f2 = 6

f3 = 1

f0 =

(
3

3

)
f0 = f0

f1 =

(
3

2

)
f0 −

(
2

2

)
f1 = 3f0 − f1

⇒ 3f0 = 2f1

f2 =

(
3

1

)
f0 −

(
2

1

)
f1 +

(
1

1

)
f2

= 3f0 − 2f1 + f2 ⇒ 3f0 = 2f1

f3 =

(
3

0

)
f0 −

(
2

0

)
f1 +

(
1

0

)
f2 −

(
0

0

)
f3

= f0 − f1 + f2 − f3

⇒ f0 − f1 + f2 = 2f3 = 2
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Face it!

The Euler relation

Theorem 5.2 (The Euler relation)

P a convex d-polytope ⇒

d∑
j=0

(−1)j fj = 1

Proof for simple polytopes via Theorem 5.1:

• Theorem 5.1 for k = d gives

1 = fd =
d∑

j=0

(−1)j

(
d − j

d − d

)
fj =

d∑
j=0

(−1)j fj
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The Euler relation (cont’d)

Proof for rational polytopes via Ehrhart–Mcdonald’s reciprocity:

• By Ehrhart–Mcdonald’s reciprocity

LP(t) =
∑
F⊆P

LF◦(t) =
∑
F⊆P

(−1)dimFLF(−t)

where the sums are over all nonempty faces

• const(LF(t)) = 1 for all F (Exer 3.27)

• The constant term gives

1 = const(LP(t)) =
∑
F⊆P

(−1)dimF const(LF(−t))

=
∑
F⊆P

(−1)dimF1 =
d∑

j=0

(−1)j fj
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Dehn–Sommerville Extended

Toward a generalization

P a convex polytope

Definition

Fk(t) :=
∑
F⊆P

dimF=k

LF(t)

Remark: Suppose P is rational

• Fk(t) is a quasipolynomial

• Fk(0) = fk (∵ LF(0) = 1)

• The leading coefficient of Fk(t) is the relative volume of the
k-skeleton of P
• The k-skeleton of P is the union of all k-faces of P
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Dehn–Sommerville Extended

Today’s main theorem

Theorem 5.3 (McMullen ’77)

P a simple rational d-polytope and 0 ≤ k ≤ d ⇒

Fk(t) =
k∑

j=0

(−1)j

(
d − j

d − k

)
Fj(−t)

Proof of Theorem 5.1 via Theorem 5.3:

• Looking at the constant terms, we obtain

fk =
k∑

j=0

(−1)j

(
d − j

d − k

)
fj
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Dehn–Sommerville Extended

“Proof” of Ehrhart–Macdonald’s reciprocity via Theorem 5.3

for simple polytopes

LP(t) = Fd(t) =
d∑

j=0

(−1)j

(
d−j

d−d

)
Fj(−t) = (−1)d

d∑
j=0

(−1)d−jFj(−t)

∴ LP(−t) = (−1)d
d∑

j=0

(−1)d−jFj(t)

= (−1)d
d∑

j=0

(−1)d−j
∑
F⊆P

dimF=j

LF(t)

= (−1)d
∑
F⊆P

(−1)d−dimFLF(t) = (−1)dLP◦(t)

by the Inclusion–Exclusion (á la Exer 5.4)
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Dehn–Sommerville Extended

Proof of Theorem 5.3

P a simple d-polytope, F a k-face of P
• Since ∀ m ∈ F ∩ Zd ∃! G ⊆ F : m ∈ G◦,

LF(t) =
∑
G⊆F

LG◦(t)

• By Ehrhart–Macdonald’s reciprocity

LF(t) =
∑
G⊆F

(−1)dimGLG(−t) =
k∑

j=0

(−1)j
∑
G⊆F

dimG=j

LG(−t)

Now we take the sum over all k-faces
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Dehn–Sommerville Extended

Proof of Theorem 5.3, cont’d

Fk(t) =
∑
F⊆P

dimF=k

k∑
j=0

(−1)j
∑
G⊆F

dimG=j

LG(−t) =
k∑

j=0

(−1)j
∑
F⊆P

dimF=k

∑
G⊆F

dimG=j

LG(−t)

=
k∑

j=0

(−1)j
∑
G⊆P

dimG=j

fk(P/G)LG(−t)

=
k∑

j=0

(−1)j
∑
G⊆P

dimG=j

(
d − j

d − k

)
LG(−t) (Exer 5.4)

=
k∑

j=0

(−1)j

(
d − j

d − k

)
Fj(−t)

where fk(P/G) is the number of k-faces of P containing G
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Applications to the Coefficients of an Ehrhart Polynomial

A consequence of Theorem 5.3 (?)

• From Theorem 5.3

LP(t) = Fd(t) =
d∑

j=0

(−1)jFj(−t)

• Indeed, this holds for any rational polytope (even non-simple)

LP(t) =
∑
F⊆P

LF◦(t)

=
∑
F⊆P

(−1)dimFLF(−t) (reciprocity)

=
d∑

j=0

(−1)j
∑
F⊆P

dimF=j

LF(−t) =
d∑

j=0

(−1)jFj(−t)
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Applications to the Coefficients of an Ehrhart Polynomial

Counting the integer points on the boundary

• By Ehrhart–Macdonald’s reciprocity,

(−1)dFd(−t) = (−1)dLP(−t) = LP◦(t)

• Therefore

LP(t)− LP◦(t) =

(
d∑

j=0

(−1)jFj(−t)

)
− (−1)dFd(−t)

=
d−1∑
j=0

(−1)jFj(−t)

• The LHS counts the number of integer points on the boundary
of t P
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Applications to the Coefficients of an Ehrhart Polynomial

Sum of every second terms of the Ehrhart polynomial

• Let LP(t) = cd td + cd−1 td−1 + · · ·+ c0 (P integral)

• Then LP◦(t) = cd td − cd−1 td−1 + · · ·+ (−1)dc0

• Hence

LP(t)− LP◦(t) = 2cd−1 td−1 + 2cd−3 td−3 + · · ·

where this sum ends with 2c0 if d is odd and 2c1t if d is even

Theorem 5.4

cd−1 td−1 + cd−3 td−3 + · · · =
1

2

d−1∑
j=0

(−1)jFj(−t)
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Applications to the Coefficients of an Ehrhart Polynomial

We know cd = volP . How about other coefficients?

• Let Fj(t) = cj ,j t
j + cj ,j−1t

j−1 + · · ·+ cj ,0

Corollary 5.5

k and d are of different parity ⇒ ck =
1

2

d−1∑
j=0

(−1)j+kcj ,k

Example

• cd−1 =
1

2

∑
F a facet of P

the leading coeff’s of LF(t)
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Relative Volume

Return to continuous volumes

Lemma 3.19 (recap)

S ⊂ Rd d-dimensional ⇒

vol S = lim
t→∞

1

td
·#
(
tS ∩ Zd

)
One issue

S is not d-dimensional ⇒ vol S = 0 by definition

Motivation

We still would like to compute the volume of smaller-dimensional
objects, in the relative sense
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Relative Volume

Relative volume

Setup

• S ⊂ Rd of dimension m < d

• span S = {x + λ(y − x) : x, y ∈ S , λ ∈ R}, the affine span of S

• Consider the sublattice (span S) ∩ Zd

• The relative volume of S is the volume relative to (span S) ∩ Zd

Definition or Proposition (Relative volume)

The relative volume of S is

vol S = lim
t→∞

1

tm
·#
(
tS ∩ Zd

)
Convention: vol S represents the relative volume of S , not the
volume of S when m < d
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Relative Volume

Example

(0, 0)

(4, 2)

• span L = {(x , y) ∈ R2 : y = x/2}
• vol L = 2

Cf.

• the Euclidean length of L = 2
√

5
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Relative Volume

Example 2

2

20

5
x

y

z

• P = the triangle defined by
x
5

+ y
20

+ z
2

= 1,
x ≥ 0, y ≥ 0, z ≥ 0

• volP = 5

Cf.

• the Euclidean area of P
= 15

√
13

• the Euclidean area of the shaded
region = 3

√
13
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Relative Volume

Relation to the coefficients of Ehrhart polynomials

• Let LP(t) = cd td + cd−1 td−1 + · · ·+ c0 (P integral)

• We saw cd−1 =
1

2

∑
F a facet of P

the leading coeff of LF(t)

• We know the leading coeff of LF(t) is volF

Therefore

Theorem 5.6

cd−1 =
1

2

∑
F a facet ofP

volF
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