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‘P is an integral convex d-polytope =
Lp(t) is a polynomial in t of degree d

P is a rational convex d-polytope =

Lp(t) is a quasipolynomial in t of degree d;

Its period divides the least common multiple of the denominators of
the coordinates of the vertices of P

P a convex rational polytope = for any t € Z+

Lp(—t) = (~1)™P Lpa (1)

©® Face it!

® Dehn—-Sommerville Extended

© Applications to the Coefficients of an Ehrhart Polynomial

O Relative Volume

@ To prove Dehn—-Sommerville relations, a set of fascinating
identities, which give linear relations among the face numbers f;

® To unify the Dehn—-Sommerville relations with
Ehrhart—Macdonald reciprocity
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O Relative Volume

P a d-polytope, fixed

fx := the number of k-dimensional faces of P, k =0,1,...,d

fo=5f(=5hK=1

P C R9 a convex polytope

F is a face of P if 3 a valid inequality a- x < b for P s.t.

F=Pn{x:a-x=b}

e Every face of a convex polytope is also a convex polytope
e P and & are faces of P

The d-polytope P is simple if each vertex of P lies on precisely d
edges of P
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Face it!

Dehn—Sommerville relations

Face it!

Dehn—Sommerville relations: Example

Fundamental linear relations among face numbers )

Theorem 5.1 (Dehn—Sommerville relations: Dehn '05, Sommerville
'27)
For a simple d-polytope P and 0 < k < d,

=3 (47D

Jj=0

Remarks
e This holds for all simple polytopes
e Doesn't hold for non-simple polytopes in general (Exer 5.11)
o We will prove for rational polytopes by means of Ehrhart theory
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Face it!

The Euler relation

Theorem 5.2 (The Euler relation)
P a convex d-polytope =

Proof for simple polytopes via Theorem 5.1:
e Theorem 5.1 for k = d gives

1:fd:§;(—1Y(j__é)ﬂ=Zd;(—1)j’5‘ =
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Face it!
The Euler relation (cont'd)
Proof for rational polytopes via Ehrhart—-Mcdonald’s reciprocity:
e By Ehrhart—-Mcdonald'’s reciprocity
Lo(t) = 5 L) = S (-1 Ly(t)
FCP FCP
where the sums are over all nonempty faces
e const(Lx(t)) =1 for all F (Exer 3.27)
e The constant term gives
1= const(Lp(t)) = > _(—1)"" const(Lr(—t))
FCP
. d .
=S () =3 (s O
FCP j=0
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Dehn—Sommerville Extended Dehn-Sommerville Extended

Toward a generalization

‘P a convex polytope

Definition

® Dehn—-Sommerville Extended ' P

Remark: Suppose P is rational
e Fi(t) is a quasipolynomial
e The leading coefficient of Fi(t) is the relative volume of the
k-skeleton of P
e The k-skeleton of P is the union of all k-faces of P
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Dehn-Sommerville Extended Dehn-Sommerville Extended
Today's main theorem “Proof” of Ehrhart—Macdonald’s reciprocity via Theorem 5.3

for simple polytopes

k Lo(0) = Fule) = (-1 §7 ) -0 P ICUEE
() =>--1¥(§ 7)Ao y "
Lp(—t) = (~1)? S (- 1) IF(e)
Proof of Theorem 5.1 via Theorem 5.3: 1*0

o Looking at the constant terms, we obtain Z( l)d_J Z Lr(t

Theorem 5.3 (McMullen '77)
P a simple rational d-polytope and 0 < k < d =

FCP

B k d— | dim F=j
fi = Z( 1) <d k)f [ _ (—l)d Z(_l)d—dumFL}_(t) _ (—l)deo(t)

FCP
by the Inclusion-Exclusion (& la Exer 5.4)
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Dehn—Sommerville Extended Dehn-Sommerville Extended

Proof of Theorem 5.3 Proof of Theorem 5.3, cont'd

‘P a simple d-polytope, F a k-face of P k

e SinceYmeFNZ¢3IGCF: meg F®)= > > (-1 D> Lo(=0) =D (1) > > Lg(-t)

FCP  j=0 GCF j=0 FCP  GCF
dim F=k dim G=j dim F=k dim G=j

Lr(t) = Lgo(t) k
922; ’ = (1Y Y A(P/G)Lg(-1)

. . j=0 gcP
e By Ehrhart—-Macdonald'’s reciprocity dim G
k .
, d—j
_ k _ =) (-1 Z < )Lg(—t) (Exer 5.4)
Lr(t) = D (-1 9Lg(—t) = D (-1) Y Lo(-t) = g \dk
gcor j=0 GcF -

dim G=j

jﬁ;(—ly(jji)ﬁ-(—n

Now we take the sum over all k-faces

where f,(P/G) is the number of k-faces of P containing G O
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Applications to the Coefficients of an Ehrhart Polynomial Applications to the Coefficients of an Ehrhart Polynomial

A consequence of Theorem 5.3 (?)

e From Theorem 5.3

d

Lp(t) = Fa(t) = Y (-1 Fi(~t)

Jj=0

e Indeed, this holds for any rational polytope (even non-simple)

© Applications to the Coefficients of an Ehrhart Polynomial Lp(t) = Z Lro(t)
FCP
= Z(—l)dime;c(—t) (reciprocity)
FCP
d d
S Y Le(-1) = Y (-1 A=)
A= =9
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Applications to the Coefficients of an Ehrhart Polynomial

Counting the integer points on the boundary

e By Ehrhart-Macdonald’s reciprocity,

(~D?Ful—1) = (~1)Lp(~) = Lpo(2)

e Therefore
Lp(t) — Lpo(t) = (Z(—U’E(—ﬂ) — (—1)Fy(-t)
=3 (1A

e The LHS counts the number of integer points on the boundary
of t P
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Applications to the Coefficients of an Ehrhart Polynomial

We know ¢y = vol P. How about other coefficients?

Applications to the Coefficients of an Ehrhart Polynomial

Sum of every second terms of the Ehrhart polynomial

o Let Fj(t):(:j)jtf+<;j,j71tf—1_~_...+q’0
Corollary 5.5

d—1
1 .
k and d are of different parity = ¢, = 5 E (—1Y ¢4
Jj=0

Example

1
¢ 1= Z the leading coeff's of Lz(t)
F a facet of P
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o let Lp(t)=cyt?+cy 1t 14+ + g (P integral)
e Then Lpo(t) =cyt? — g1t 1+ +(=1)q
e Hence

Lp(t) - LPO(t) = 2Cd,]_ td71 =+ 2Cd73 td73 + ..

where this sum ends with 2¢ if d is odd and 2¢;t if d is even

Theorem 5.4
=
1 _ H
Co1tT Mgt P4 = 5 (=1)YFi(—t) [
Jj=0
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Relative Volume

O Relative Volume
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Relative Volume

Return to continuous volumes

Relative Volume

Relative volume

Lemma 3.19 (recap)
S C R? d-dimensional =

1
voIS:tIer;oﬁ-#(tSHZd)

One issue
S is not d-dimensional = vol S = 0 by definition

Motivation
We still would like to compute the volume of smaller-dimensional
objects, in the relative sense

Setup
e S C RY of dimension m < d
e spanS = {x+ Ay —x): x,y € S, A € R}, the affine span of S
e Consider the sublattice (span S) N Z¢
e The relative volume of S is the volume relative to (span S) N Z¢

Definition or Proposition (Relative volume)

The relative volume of S is

vol S = lim tim-#(tSmZd)

t—oo

Convention: vol S represents the relative volume of S, not the
volume of S when m < d
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Relative Volume

Example 2

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2000-06-04 25 /29
Relative Volume
Example
e spanlL = {(x,y) e R?: y = x/2}
e volL =2
Cf.
e the Euclidean length of L = 2v/5
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e P = the triangle defined by
f+g+i=1
x20,y=>20,z=>0

e volP=5

e the Euclidean area of P
=15v/13

e the Euclidean area of the shaded
region = 3v/13
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o let Lp(t)=cyt?+cyg 1t 4+ + (P integral)

1 .
e We saw ¢y_1 = 5 Z the leading coeff of Lz(t)
F a facet of P
e We know the leading coeff of Lz(t) is vol F

Therefore

1
Ca_1 = 5 E vol F |
F a facet of P
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