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® Face it!

® Dehn-Sommerville Extended

© Applications to the Coefficients of an Ehrhart Polynomial

O Relative Volume
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Important theorems from the previous lectures

Theorem 3.8 (Ehrhart's Theorem)

P is an integral convex d-polytope =
Lp(t) is a polynomial in t of degree d

Theorem 3.23 (Ehrhart's Theorem for rational polytopes)

P is a rational convex d-polytope =

Lp(t) is a quasipolynomial in t of degree d;

Its period divides the least common multiple of the denominators of
the coordinates of the vertices of P

Theorem 4.1 (Ehrhart—-Macdonald reciprocity)

P a convex rational polytope = for any t € Z+q

Lp(—t) = (=1)"™ " Lps(t)
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The goal of this chapter

The goal of this chapter
® To prove Dehn—Sommerville relations, a set of fascinating
identities, which give linear relations among the face numbers f;
® To unify the Dehn—Sommerville relations with
Ehrhart—Macdonald reciprocity
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P C RY a convex polytope

F is a face of P if 9 a valid inequality a - x < b for P s.t.

F=PnNn{x:a-x=b}

e Every face of a convex polytope is also a convex polytope
e P and & are faces of P




P a d-polytope, fixed

fx := the number of k-dimensional faces of P, k =0, 1,

..d

fo=5h=5hH=1
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The d-polytope P is simple if each vertex of P lies on precisely d
edges of P
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Face it!

Dehn—Sommerville relations

Fundamental linear relations among face numbers |

Theorem 5.1 (Dehn—Sommerville relations: Dehn '05, Sommerville
'27)
For a simple d-polytope P and 0 < k < d,

Y E AL

Jj=0

Remarks
e This holds for all simple polytopes
e Doesn't hold for non-simple polytopes in general (Exer 5.11)
e We will prove for rational polytopes by means of Ehrhart theory
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Face it!

Dehn—Sommerville relations: Example
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f=8
fi = 12
f=6
fi=1
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Face it!

Dehn—Sommerville relations: Example
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Face it!

Dehn—Sommerville relations: Example
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Face it!

Dehn—Sommerville relations: Example

3
fo=<3)fo=fo

3 2
f1=<2)fo—<2>f1=3fo—f1

|
|
T
|
|
|
|
P

7 = 3fy =2
4 3 2 1
o= (1)a-(5)ae ()
fo =28
=12 3 2 1 0
fi= f,— f; f, — f.
e e (g)a ()i (o)e (o)
=1
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Face it!

Dehn—Sommerville relations: Example

3
fo—<3)fo—fo

3 2
ﬂ_<96_<9ﬂ_36_ﬂ

|
|
|
1
‘7777k77
- = 3fy = 2f;

4 3 2 1
f, = fi— f, f,
= (5)6-(3)a+ (1)
=12 3 2 1 0
fi= f,— f, f, — f.
e e (g)a ()i (o)e (o)
=1
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Face it!

Dehn—Sommerville relations: Example

3
fo—<3)fo—fo

3 2
fl_<2)f°_<2>f1_3f°_fl

|
|
|
1
‘7777k77
- = 3fy = 2f;

4 3 2 1
=) (e )
f, =8 =3f—2f+ f = 3f, =2
f, =12 3 2 1 0
£— f— f, f, — f.
r =) (o) (o)e (o)
=1
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Face it!

Dehn—Sommerville relations: Example

3
fo—<3)fo—fo

3 2
fl_<2)ﬁ)_<2>ﬁ_3f°_f1

|
|
|
1
‘7777k77
- = 3fy = 2f;

4 3 2 1
o= (1)a-(5)ae ()
f, =8 =3fy—2fi + f = 3f, = 2f;
=12 3 2 1 0
fi= f,— f; f, — f.
e e (g)a ()i (o)e (o)
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Face it!

Dehn—Sommerville relations: Example

3
@-(9@—@

3 2
fl_<2)ﬁ)_<2>ﬁ_3f°_f1

|
|
|
1
‘7777k77
- = 3fy = 2f;

4 3 2 1
o= (1)a-(5)ae ()
f, =8 =3fy—2fi + f = 3f, = 2f;
=12 3 2 1 0
fi= f,— f; f, — f.
e e (g)a ()i (o)e (o)

S h—fith=26=2
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P a convex d-polytope =

Proof for simple polytopes via Theorem 5.1:




P a convex d-polytope =

Proof for simple polytopes via Theorem 5.1:
e Theorem 5.1 for k = d gives

fg = _z:;(—l)’(d _j)ﬂ'

d—d
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Face it!

The Euler relation

Theorem 5.2 (The Euler relation)
P a convex d-polytope =

> (-1f=1

j=0

Proof for simple polytopes via Theorem 5.1:
e Theorem 5.1 for k = d gives

o= Sen(§ )= S

Jj=0
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Face it!

The Euler relation

Theorem 5.2 (The Euler relation)
P a convex d-polytope =

> (-1f=1

j=0

Proof for simple polytopes via Theorem 5.1:
e Theorem 5.1 for k = d gives

1= f, = i(—l)f(j :f})ﬁ- = Zd;(—lﬂ- -

Jj=0
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Proof for rational polytopes via Ehrhart—Mcdonald's reciprocity:
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Face it!

The Euler relation (cont'd)

Proof for rational polytopes via Ehrhart—Mcdonald's reciprocity:

Z Lro(t

where the sums are over all nonempty faces
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Face it!

The Euler relation (cont'd)

Proof for rational polytopes via Ehrhart—Mcdonald's reciprocity:
e By Ehrhart—Mcdonald’s reciprocity

Lp(t) = Y Lee(t) = Y (1) Lx(—t)

FCP FCP

where the sums are over all nonempty faces
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Face it!

The Euler relation (cont'd)

Proof for rational polytopes via Ehrhart—Mcdonald's reciprocity:
e By Ehrhart—Mcdonald’s reciprocity

Lp(t) = Y Lee(t) = Y (1) Lx(—t)

FCP FCP

where the sums are over all nonempty faces
o const(Lg(t)) =1 for all F (Exer 3.27)
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Face it!

The Euler relation (cont'd)

Proof for rational polytopes via Ehrhart—Mcdonald's reciprocity:
e By Ehrhart—Mcdonald’s reciprocity

Lp(t) = Y Lee(t) = Y (1) Lx(—t)

FCP FCP

where the sums are over all nonempty faces
o const(Lg(t)) =1 for all F (Exer 3.27)
e The constant term gives

const(Lp(t)) = > (—=1)*™7 const(Lz(—t))

FCP
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Face it!

The Euler relation (cont'd)

Proof for rational polytopes via Ehrhart—Mcdonald's reciprocity:
e By Ehrhart—Mcdonald’s reciprocity

Lp(t) = Y Lee(t) = Y (1) Lx(—t)

FCP FCP

where the sums are over all nonempty faces
o const(Lg(t)) =1 for all F (Exer 3.27)
e The constant term gives

1 = const(Lp(t)) = > _(—1)"" const(Ly(—t))
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Face it!

The Euler relation (cont'd)

Proof for rational polytopes via Ehrhart—Mcdonald's reciprocity:
e By Ehrhart—Mcdonald’s reciprocity

Lp(t) = Y Lee(t) = Y (1) Lx(—t)

FCP FCP

where the sums are over all nonempty faces
o const(Lg(t)) =1 for all F (Exer 3.27)
e The constant term gives

1 = const(Lp(t)) = > _(—1)"" const(Ly(—t))

_ Z(_l)dim}'l ]

FCP
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Face it!

The Euler relation (cont'd)

Proof for rational polytopes via Ehrhart—Mcdonald's reciprocity:
e By Ehrhart—Mcdonald’s reciprocity

Lp(t) = Y Lee(t) = Y (1) Lx(—t)

FCP FCP

where the sums are over all nonempty faces
o const(Lg(t)) =1 for all F (Exer 3.27)
e The constant term gives

1 = const(Lp(t)) = > _(—1)"" const(Ly(—t))

FCP
. d .
=Y (=3 (-5 O
FCP j=0
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Dehn—Sommerville Extended

Toward a generalization

P a convex polytope
Definition

Fe(t) == > Lx(t)

FCP
dim F=k

Remark: Suppose P is rational
e Fi(t) is a quasipolynomial
o F(0) =1y (- Lr(0) =1)
e The leading coefficient of Fy(t) is the relative volume of the
k-skeleton of P

e The k-skeleton of P is the union of all k-faces of P

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 14 /29



P a simple rational d-polytope and 0 < k < d =

Fk(r)—Z( 1 (§73)AC0

d—k
Proof of Theorem 5.1 via Theorem 5.3
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Dehn—Sommerville Extended

Today's main theorem

Theorem 5.3 (McMullen '77)
P a simple rational d-polytope and 0 < k < d =

Flt) = Zko(—nf (523)A¢0

J=

Proof of Theorem 5.1 via Theorem 5.3:

e Looking at the constant terms, we obtain

fo = Zk:(—l)j(jii)fj

Jj=0

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04
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for simple polytopes

= Fq4(t) :i

- ( ) Fi(—1)

Q>
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for simple polytopes

Lp(t Fd(t _ i

- ( ) Fi(—1)

Q>
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Dehn—Sommerville Extended

“Proof” of Ehrhart-Macdonald's reciprocity via Theorem 5.3

for simple polytopes

d

R o) e S

Jj=0 J=0
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Dehn—Sommerville Extended

“Proof” of Ehrhart-Macdonald's reciprocity via Theorem 5.3

for simple polytopes

Lo(0) = Falt) = (-1 (§1) 5
Lp(—1) = (-1 Y ()R (1)
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Dehn—Sommerville Extended

“Proof” of Ehrhart-Macdonald's reciprocity via Theorem 5.3

for simple polytopes

La(0) = Falt) = (1) (5% ) A0 = (-1 L) I
(1) = (-1)* Y () IR()
S Y ()
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Dehn—Sommerville Extended

“Proof” of Ehrhart-Macdonald's reciprocity via Theorem 5.3

for simple polytopes

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 16 / 29



Dehn—Sommerville Extended

“Proof” of Ehrhart-Macdonald's reciprocity via Theorem 5.3

for simple polytopes

Ln(t) = Fult) = g(—l)f (57)At-0- (—1)6’%(—1)*15( 0
Ln(~1) = (~1)° zd;(—l)d‘fﬁ(t)
:(_1)d§(_1)d_,- > Lo
- (—1)d;<—1>d—d?:;zf(t> = (D Lpe(e)

by the Inclusion—Exclusion (a la Exer 5.4)
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P a simple d-polytope, F a k-face of P
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P a simple d-polytope, F a k-face of P
e SinceVYme FNZI3ANGC F: meg°,

Le(t) = 3 Loe(2)

GCF
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Dehn—Sommerville Extended

Proof of Theorem 5.3

P a simple d-polytope, F a k-face of P
e SinceVme FNZIINGCF: mege,

Le(t) = 3 Loo(t)

GoF

e By Ehrhart—Macdonald's reciprocity

Lr(t) = Y (~1)"™9Lg(~t)

GCF
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Dehn—Sommerville Extended

Proof of Theorem 5.3

P a simple d-polytope, F a k-face of P
e SinceVme FNZIINGCF: mege,

Lr(t) = 3 Lox(1)
GCF

e By Ehrhart—Macdonald's reciprocity

k

Lr(t) = Y (-1)"™9Lg(—t) = > (-1Y D La(~t)

GCF j=0 gCr
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Dehn—Sommerville Extended

Proof of Theorem 5.3

P a simple d-polytope, F a k-face of P
e SinceVme FNZIINGCF: mege,

Le(t) = 3 Lo (1)

GCF
e By Ehrhart—Macdonald's reciprocity

k

Lr(t) = Y (-1)"™9Lg(—t) = > (-1Y D La(~t)

GCF j=0 gCr

Now we take the sum over all k-faces

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 17 /29



Fi(t) = Z Z(—l)j Z L



FCP

Fi(t) = Z Z( 1)’ZLg( t)—Z( Y Y > Lot

GCF
dim F=k dim G=j



Dehn—Sommerville Extended

Proof of Theorem 5.3, cont'd

F(t)= > > (-1Y > Lg(—t)=Z(—1)j > > Ll

FCP  j=0 GCF j FCP GCF

dim F=k dim G=j dim F=k dim G=j
k

=Y (-1 Y A&(P/G)Lg(~t)
j=0 g7

where f,(P/G) is the number of k-faces of P containing G

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04

_1_-)

18 / 29



Dehn—Sommerville Extended

Proof of Theorem 5.3, cont'd

F(t)= > > (-1Y > Lg(—t)=Z(—1)j > Y La(-t)

FCP  j=0 GCF j FCP GCF

dim F=k dim G=j dim F=k dim G=j
k
=Y (-1 Y A&(P/G)Lg(~t)
j=0 gcpP
dim G=j
k . d— |
— Z(—l)f > (d_ k) Lo(—t) (Exer 5.4)
J=0 am o

where f,(P/G) is the number of k-faces of P containing G
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Dehn—Sommerville Extended

Proof of Theorem 5.3, cont'd

F(t)= > > (-1Y > Lg(—t)=Z(—1)j > Y La(-t)

FCP =0 gCF j FCP  GCF
dim F=k dim G=j dim F=k dim G=j
k
=Y (-1Y X &(P/G)Ls(~1)
j=0 GCP
dim G=j
k .y
Z( 1y Y (d B k) Lo(—t) (Exer 5.4)
j=0 gcp
dim G=j
k .
.(d —J
S A TE
j=0
where f,(P/G) is the number of k-faces of P containing G O
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Applications to the Coefficients of an Ehrhart Polynomial

© Applications to the Coefficients of an Ehrhart Polynomial
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e From Theorem 5.3

d

Lp(t) = Fa(t) = > _(~1YFi(~t)

j=0
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Applications to the Coefficients of an Ehrhart Polynomial

A consequence of Theorem 5.3 (?)

e From Theorem 5.3

e Indeed, this holds for any rational polytope (even non-simple)

Z Lo (t
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Applications to the Coefficients of an Ehrhart Polynomial

A consequence of Theorem 5.3 (?)

e From Theorem 5.3

=) (=1)dmFLp(—1) (reciprocity)
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Applications to the Coefficients of an Ehrhart Polynomial

A consequence of Theorem 5.3 (?)

e From Theorem 5.3

Lp(t) = Fy(t) = Y _(~1YF(~t)

j=0

e Indeed, this holds for any rational polytope (even non-simple)

Lp(t) = Y Lrs(t)

— Z(—l)‘“mef(—t) (reciprocity)
:Z(—l)f > Le(-t)

dim F=j
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Applications to the Coefficients of an Ehrhart Polynomial

A consequence of Theorem 5.3 (?)

e From Theorem 5.3

Lp(t) = Fy(t) = Y _(~1YF(~t)

J=0

e Indeed, this holds for any rational polytope (even non-simple)

Lp(t) = ) Lre(2)

— Z(—l)‘“mef(—t) (reciprocity)
=3 (1 Y Le(-t) =Y (-1VF(-1)

dim F=j
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e By Ehrhart-Macdonald’s reciprocity,

(—=D)?Fa(=t) = (=1)?Lp(~t) = Lpo(2)
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Applications to the Coefficients of an Ehrhart Polynomial

Counting the integer points on the boundary

e By Ehrhart-Macdonald's reciprocity,

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 21 /29



Applications to the Coefficients of an Ehrhart Polynomial

Counting the integer points on the boundary

e By Ehrhart-Macdonald's reciprocity,
(1) Fy(—t) = (=1)ILp(—1t) = Lpo(t)

e Therefore

Lo(t) ~ Lye(6) = (Z(—l)fﬁ(—r)) (1R
=Y (-1F(-1)

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 21 /29



Applications to the Coefficients of an Ehrhart Polynomial

Counting the integer points on the boundary

e By Ehrhart-Macdonald's reciprocity,
(1) Fy(—t) = (=1)ILp(—1t) = Lpo(t)

e Therefore

(©R

Il
o

Lp(t) — Lpo(t) = ( (—1)ij(—t)> — (-1)F4(—t)

d—1

(1Y Fi(-t)

—.
I
)

e The LHS counts the number of integer points on the boundary
of tP
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o let Lp(t)=cyt!+cyg 1t 1+ +q

(P integral)



Applications to the Coefficients of an Ehrhart Polynomial

Sum of every second terms of the Ehrhart polynomial

o Let Lp(t)=cyt!+cg 1t P+ + (P integral)
e Then Lpo(t) =cyt? —cg1t¥ 1+ + (1)

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 22 /29



Applications to the Coefficients of an Ehrhart Polynomial

Sum of every second terms of the Ehrhart polynomial

o Let Lp(t)=cyt!+cg 1t P+ + (P integral)
e Then Lpo(t) =cqt? —cg 1t 1+ +(-1)¢
e Hence

Lp(t) - Lpo(t) = 2Cq_1 tdil + 2Cd,3 td73 + -

where this sum ends with 2¢y if d is odd and 2¢;t if d is even

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 22 /29



Applications to the Coefficients of an Ehrhart Polynomial

Sum of every second terms of the Ehrhart polynomial

o Let Lp(t)=cat? +cy1t P+ + (P integral)
e Then Lpo(t) =cyt? —cg1t¥ 1+ + (1)

e Hence
Lp(t) — Lpo(t) = 2Cd,1 tdil -+ 2Cd,3 td73 + -
where this sum ends with 2¢y if d is odd and 2¢;t if d is even

Theorem 5.4

Q.
-

1 .
a1t gt =2 ) (—1YF(-1) O

-,
I
o

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 22 /29



o Let Fj(t):chtj+(:jJ_1tf_1+---+cj,0

k and d are of different parity = ¢, =

=
5 (1Y ¢
j=0
Example
1
® Cy_1= = Z the leading coeff’s of Lx(t)
F a facet of P
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S c R? d-dimensional =

vo|5=tllrgot—d-#(tSﬂZd)




S c R? d-dimensional =

td-#(tSnZd)

S is not d-dimensional = vol S = 0 by definition l

We still would like to compute the volume of smaller-dimensional
objects, in the relative sense

«O> «F>r «=» «E» Q>

volS = lim
t—o0




Relative Volume

Relative volume

Setup

S C R of dimension m < d

spanS = {x+ Ay —x) : x,y € S, A € R}, the affine span of S
Consider the sublattice (span S) N Z¢

The relative volume of S is the volume relative to (span S) N Z¢

Definition or Proposition (Relative volume)

The relative volume of S is

vol S = lim tim-#(tSmZd)

t—o0

Convention: vol S represents the relative volume of S, not the
volume of S when m < d

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 26 / 29



Relative Volume

Example

e spanl = {(x,y) e R?: y = x/2}
e volL=2

Cf.
e the Euclidean length of L = 2v/5

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 27 / 29



Relative Volume

Example 2

e P = the triangle defined by
st ts=1
x>0,y>0,z>0

e volP=5

e the Euclidean area of P
— 1513

e the Euclidean area of the shaded
region = 3113

Y. Okamoto (Tokyo Tech) DMCS'09 (6) 2009-06-04 28 /29



o let Lp(t)=cyt!+cyg 1t 1+ +q

(P integral)



Relative Volume

Relation to the coefficients of Ehrhart polynomials

o Let Lp(t)=cyt!+cg 1t P+ + (P integral)
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e We saw ¢4_1 = 5 Z the leading coeff of Lx(t)

F a facet of P
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Relative Volume

Relation to the coefficients of Ehrhart polynomials

o Let Lp(t)=cyt!+cg 1t P+ + (P integral)

1 .
e We saw ¢4_1 = 5 Z the leading coeff of Lx(t)
F a facet of P
o We know the leading coeff of L£(t) is vol F

Therefore
Theorem 5.6
1
Cd—1 = 5 E vol F ]
F a facet of P
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