Discrete Mathematics & Computational Structures Lattice-Point Counting in Convex Polytopes (6) Face Numbers and the Dehn–Sommerville Relations in Ehrhartian Terms

Yoshio Okamoto

Tokyo Institute of Technology

June 4, 2009

"Last updated: 2009/06/10 11:55"

• Face it!

2 Dehn-Sommerville Extended

3 Applications to the Coefficients of an Ehrhart Polynomial

A Relative Volume

Important theorems from the previous lectures

Theorem 3.8 (Ehrhart's Theorem)

 \mathcal{P} is an integral convex d-polytope \Rightarrow $L_{\mathcal{P}}(t)$ is a polynomial in t of degree d

Theorem 3.23 (Ehrhart's Theorem for rational polytopes)

 ${\mathcal P}$ is a rational convex d-polytope \Rightarrow

 $L_{\mathcal{P}}(t)$ is a quasipolynomial in t of degree d;

Its period divides the least common multiple of the denominators of the coordinates of the vertices of $\ensuremath{\mathcal{P}}$

Theorem 4.1 (Ehrhart-Macdonald reciprocity)

 \mathcal{P} a convex rational polytope \Rightarrow for any $t \in \mathbb{Z}_{>0}$

$$L_{\mathcal{P}}(-t) = (-1)^{\dim \mathcal{P}} L_{\mathcal{P}^{\circ}}(t)$$

The goal of this chapter

The goal of this chapter

- 1 To prove Dehn–Sommerville relations, a set of fascinating identities, which give linear relations among the face numbers f_k
- 2 To unify the Dehn–Sommerville relations with Ehrhart–Macdonald reciprocity

• Face it!

Dehn-Sommerville Extended

3 Applications to the Coefficients of an Ehrhart Polynomial

A Relative Volume

Faces of a convex polytope: recap

 $\mathcal{P} \subseteq \mathbb{R}^d$ a convex polytope

Definition (Face)

 $\mathcal F$ is a face of $\mathcal P$ if \exists a valid inequality $\mathbf a \cdot \mathbf x \leq b$ for $\mathcal P$ s.t.

$$\mathcal{F} = \mathcal{P} \cap \{\mathbf{x} : \mathbf{a} \cdot \mathbf{x} = b\}$$

Remark

- Every face of a convex polytope is also a convex polytope
- ullet $\mathcal P$ and \varnothing are faces of $\mathcal P$

Face numbers

 ${\cal P}$ a d-polytope, fixed

Definition (Face number)

 $f_k :=$ the number of k-dimensional faces of \mathcal{P} , $k = 0, 1, \ldots, d$

$$f_0 = 5, f_1 = 5, f_2 = 1$$

Simple polytopes

Definition (Simple polytope)

The d-polytope $\mathcal P$ is simple if each vertex of $\mathcal P$ lies on precisely d edges of $\mathcal P$

non-simple

Fundamental linear relations among face numbers

Theorem 5.1 (Dehn–Sommerville relations: Dehn '05, Sommerville '27)

For a simple d-polytope \mathcal{P} and $0 \le k \le d$,

$$f_k = \sum_{j=0}^k (-1)^j \binom{d-j}{d-k} f_j$$

Remarks

- This holds for *all* simple polytopes
- Doesn't hold for non-simple polytopes in general (Exer 5.11)
- We will prove for rational polytopes by means of Ehrhart theory

2009-06-04

$$f_0 = 8$$

$$f_1 = 12$$

$$f_2 = 6$$

$$f_3 = 1$$

$$f_0 = {3 \choose 3} f_0$$

$$f_1 = {3 \choose 2} f_0 - {2 \choose 2} f_1$$

$$f_2 = \binom{3}{1} f_0 - \binom{2}{1} f_1 + \binom{1}{1} f_2$$

$$f_0 = 8$$
 $f_1 = 12$
 $f_2 = 6$
 $f_3 = 1$

$$f_3 = \binom{3}{0} f_0 - \binom{2}{0} f_1 + \binom{1}{0} f_2 - \binom{0}{0} f_3$$

$$f_0 = {3 \choose 3} f_0 = f_0$$

$$f_1 = {3 \choose 2} f_0 - {2 \choose 2} f_1$$

$$f_2 = \binom{3}{1} f_0 - \binom{2}{1} f_1 + \binom{1}{1} f_2$$

$$f_0 = 8$$

$$f_1 = 12$$

$$f_2 = 6$$

$$f_3 = {3 \choose 0} f_0 - {2 \choose 0} f_1 + {1 \choose 0} f_2 - {0 \choose 0} f_3$$

 $f_{2} = 1$

$$f_0 = {3 \choose 3} f_0 = f_0$$

 $f_1 = {3 \choose 2} f_0 - {2 \choose 2} f_1 = 3f_0 - f_1$

$$f_2 = \binom{3}{1} f_0 - \binom{2}{1} f_1 + \binom{1}{1} f_2$$

$$f_3 = \binom{3}{0} f_0 - \binom{2}{0} f_1 + \binom{1}{0} f_2 - \binom{0}{0} f_3$$

$$f_1 = 12$$

 $f_2 = 6$
 $f_3 = 1$

 $f_0 = 8$

$$f_0 = {3 \choose 3} f_0 = f_0$$

$$f_1 = {3 \choose 2} f_0 - {2 \choose 2} f_1 = 3f_0 - f_1$$

$$\Rightarrow 3f_0 = 2f_1$$

$$f_2 = {3 \choose 1} f_0 - {2 \choose 1} f_1 + {1 \choose 1} f_2$$

$$f_0 = 8$$
 $f_1 = 12$
 $f_2 = 6$
 $f_3 = 1$

$$f_3 = \binom{3}{0} f_0 - \binom{2}{0} f_1 + \binom{1}{0} f_2 - \binom{0}{0} f_3$$

$$f_0 = 8$$

 $f_1 = 12$
 $f_2 = 6$
 $f_3 = 1$

$$f_{0} = {3 \choose 3} f_{0} = f_{0}$$

$$f_{1} = {3 \choose 2} f_{0} - {2 \choose 2} f_{1} = 3f_{0} - f_{1}$$

$$\Rightarrow 3f_{0} = 2f_{1}$$

$$f_{2} = {3 \choose 1} f_{0} - {2 \choose 1} f_{1} + {1 \choose 1} f_{2}$$

$$= 3f_{0} - 2f_{1} + f_{2}$$

$$f_{3} = {3 \choose 0} f_{0} - {2 \choose 0} f_{1} + {1 \choose 0} f_{2} - {0 \choose 0} f_{3}$$

$$f_0 = 8$$

 $f_1 = 12$
 $f_2 = 6$
 $f_3 = 1$

$$f_{0} = {3 \choose 3} f_{0} = f_{0}$$

$$f_{1} = {3 \choose 2} f_{0} - {2 \choose 2} f_{1} = 3f_{0} - f_{1}$$

$$\Rightarrow 3f_{0} = 2f_{1}$$

$$f_{2} = {3 \choose 1} f_{0} - {2 \choose 1} f_{1} + {1 \choose 1} f_{2}$$

$$= 3f_{0} - 2f_{1} + f_{2} \Rightarrow 3f_{0} = 2f_{1}$$

$$f_{3} = {3 \choose 0} f_{0} - {2 \choose 0} f_{1} + {1 \choose 0} f_{2} - {0 \choose 0} f_{3}$$

$$f_0 = 8$$

 $f_1 = 12$
 $f_2 = 6$
 $f_3 = 1$

$$f_{0} = {3 \choose 3} f_{0} = f_{0}$$

$$f_{1} = {3 \choose 2} f_{0} - {2 \choose 2} f_{1} = 3f_{0} - f_{1}$$

$$\Rightarrow 3f_{0} = 2f_{1}$$

$$f_{2} = {3 \choose 1} f_{0} - {2 \choose 1} f_{1} + {1 \choose 1} f_{2}$$

$$= 3f_{0} - 2f_{1} + f_{2} \Rightarrow 3f_{0} = 2f_{1}$$

$$f_{3} = {3 \choose 0} f_{0} - {2 \choose 0} f_{1} + {1 \choose 0} f_{2} - {0 \choose 0} f_{3}$$

$$= f_{0} - f_{1} + f_{2} - f_{3}$$

$$f_0 = 8$$

 $f_1 = 12$
 $f_2 = 6$
 $f_3 = 1$

$$f_{0} = {3 \choose 3} f_{0} = f_{0}$$

$$f_{1} = {3 \choose 2} f_{0} - {2 \choose 2} f_{1} = 3f_{0} - f_{1}$$

$$\Rightarrow 3f_{0} = 2f_{1}$$

$$f_{2} = {3 \choose 1} f_{0} - {2 \choose 1} f_{1} + {1 \choose 1} f_{2}$$

$$= 3f_{0} - 2f_{1} + f_{2} \Rightarrow 3f_{0} = 2f_{1}$$

$$f_{3} = {3 \choose 0} f_{0} - {2 \choose 0} f_{1} + {1 \choose 0} f_{2} - {0 \choose 0} f_{3}$$

$$= f_{0} - f_{1} + f_{2} - f_{3}$$

$$\Rightarrow f_{0} - f_{1} + f_{2} = 2f_{3} = 2$$

The Euler relation

Theorem 5.2 (The Euler relation)

 ${\mathcal P}$ a convex d-polytope \Rightarrow

$$\sum_{j=0}^{d} (-1)^{j} f_{j} = 1$$

<u>Proof</u> for simple polytopes via Theorem 5.1:

Theorem 5.2 (The Euler relation)

 ${\mathcal P}$ a convex d-polytope \Rightarrow

$$\sum_{j=0}^{d} (-1)^j f_j = 1$$

Proof for simple polytopes via Theorem 5.1:

• Theorem 5.1 for k = d gives

$$f_d = \sum_{j=0}^{d} (-1)^j \binom{d-j}{d-d} f_j$$

Theorem 5.2 (The Euler relation)

 ${\cal P}$ a convex d-polytope \Rightarrow

$$\sum_{j=0}^{d} (-1)^{j} f_{j} = 1$$

Proof for simple polytopes via Theorem 5.1:

• Theorem 5.1 for k = d gives

$$f_d = \sum_{i=0}^{d} (-1)^j {d-j \choose d-d} f_j = \sum_{i=0}^{d} (-1)^j f_j$$

Theorem 5.2 (The Euler relation)

 \mathcal{P} a convex d-polytope \Rightarrow

$$\sum_{j=0}^{d} (-1)^{j} f_{j} = 1$$

Proof for simple polytopes via Theorem 5.1:

• Theorem 5.1 for k = d gives

$$1 = f_d = \sum_{i=0}^{d} (-1)^j \binom{d-j}{d-d} f_j = \sum_{i=0}^{d} (-1)^j f_j \qquad \Box$$

 $\underline{\mathsf{Proof}} \ \mathsf{for} \ \mathsf{rational} \ \mathsf{polytopes} \ \mathsf{via} \ \mathsf{Ehrhart-Mcdonald's} \ \mathsf{reciprocity} :$

<u>Proof</u> for rational polytopes via Ehrhart–Mcdonald's reciprocity:

$$L_{\mathcal{P}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t)$$

where the sums are over all *nonempty* faces

<u>Proof</u> for rational polytopes via Ehrhart–Mcdonald's reciprocity:

• By Ehrhart–Mcdonald's reciprocity

$$L_{\mathcal{P}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\dim \mathcal{F}} L_{\mathcal{F}}(-t)$$

where the sums are over all *nonempty* faces

<u>Proof</u> for rational polytopes via Ehrhart–Mcdonald's reciprocity:

• By Ehrhart–Mcdonald's reciprocity

$$L_{\mathcal{P}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\dim \mathcal{F}} L_{\mathcal{F}}(-t)$$

where the sums are over all *nonempty* faces

$$ullet$$
 const $(L_{\mathcal{F}}(t))=1$ for all ${\mathcal{F}}$

(Exer 3.27)

<u>Proof</u> for rational polytopes via Ehrhart–Mcdonald's reciprocity:

By Ehrhart–Mcdonald's reciprocity

$$L_{\mathcal{P}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\dim \mathcal{F}} L_{\mathcal{F}}(-t)$$

where the sums are over all *nonempty* faces

• const $(L_{\mathcal{F}}(t)) = 1$ for all \mathcal{F}

(Exer 3.27)

$$\mathsf{const}(\mathit{L}_{\mathcal{P}}(t)) = \sum_{\mathcal{F} \subset \mathcal{P}} (-1)^{\mathsf{dim}\,\mathcal{F}} \, \mathsf{const}(\mathit{L}_{\mathcal{F}}(-t))$$

<u>Proof</u> for rational polytopes via Ehrhart–Mcdonald's reciprocity:

By Ehrhart–Mcdonald's reciprocity

$$L_{\mathcal{P}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\dim \mathcal{F}} L_{\mathcal{F}}(-t)$$

where the sums are over all nonempty faces

• const $(L_{\mathcal{F}}(t)) = 1$ for all \mathcal{F}

(Exer 3.27)

$$1 = \mathsf{const}(\mathit{L}_{\mathcal{P}}(t)) = \sum_{\mathcal{F} \subset \mathcal{P}} (-1)^{\mathsf{dim}\,\mathcal{F}} \mathsf{const}(\mathit{L}_{\mathcal{F}}(-t))$$

<u>Proof</u> for rational polytopes via Ehrhart–Mcdonald's reciprocity:

• By Ehrhart–Mcdonald's reciprocity

$$L_{\mathcal{P}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\dim \mathcal{F}} L_{\mathcal{F}}(-t)$$

where the sums are over all nonempty faces

• const $(L_{\mathcal{F}}(t)) = 1$ for all \mathcal{F}

(Exer 3.27)

$$1 = \, \mathsf{const}(L_{\mathcal{P}}(t)) = \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\mathsf{dim}\,\mathcal{F}} \, \mathsf{const}(L_{\mathcal{F}}(-t))$$

$$= \sum_{\mathcal{F} \subset \mathcal{P}} (-1)^{\dim \mathcal{F}} 1$$

<u>Proof</u> for rational polytopes via Ehrhart–Mcdonald's reciprocity:

• By Ehrhart–Mcdonald's reciprocity

$$L_{\mathcal{P}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\dim \mathcal{F}} L_{\mathcal{F}}(-t)$$

where the sums are over all *nonempty* faces

• const $(L_{\mathcal{F}}(t)) = 1$ for all \mathcal{F}

(Exer 3.27)

$$egin{aligned} 1 &= \mathsf{const}(L_{\mathcal{P}}(t)) = \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\mathsf{dim}\,\mathcal{F}} \mathsf{const}(L_{\mathcal{F}}(-t)) \ &= \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\mathsf{dim}\,\mathcal{F}} 1 = \sum_{j=0}^d (-1)^j f_j \end{aligned}$$

• Face it!

2 Dehn-Sommerville Extended

3 Applications to the Coefficients of an Ehrhart Polynomial

A Relative Volume

Toward a generalization

${\mathcal P}$ a convex polytope

Definition

$$F_k(t) := \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \ \dim \mathcal{F} = k}} L_{\mathcal{F}}(t)$$

Remark: Suppose \mathcal{P} is rational

- $F_k(t)$ is a quasipolynomial
- $F_k(0) = f_k$
- The leading coefficient of $F_k(t)$ is the relative volume of the k-skeleton of \mathcal{P}
 - The k-skeleton of \mathcal{P} is the union of all k-faces of \mathcal{P}

 $(:: L_{\mathcal{F}}(0) = 1)$

Today's main theorem

Theorem 5.3 (McMullen '77)

 ${\mathcal P}$ a simple rational d-polytope and $0 \le k \le d \Rightarrow$

$$F_k(t) = \sum_{j=0}^k (-1)^j {d-j \choose d-k} F_j(-t)$$

Proof of Theorem 5.1 via Theorem 5.3:

Today's main theorem

Theorem 5.3 (McMullen '77)

 ${\mathcal P}$ a simple rational d-polytope and $0 \le k \le d \Rightarrow$

$$F_k(t) = \sum_{j=0}^k (-1)^j {d-j \choose d-k} F_j(-t)$$

Proof of Theorem 5.1 via Theorem 5.3:

· Looking at the constant terms, we obtain

$$f_k = \sum_{j=0}^k (-1)^j \binom{d-j}{d-k} f_j$$

"Proof" of Ehrhart-Macdonald's reciprocity via Theorem 5.3

for simple polytopes

$$= F_d(t) = \sum_{j=0}^{d} (-1)^j \binom{d-j}{d-d} F_j(-t)$$

"Proof" of Ehrhart-Macdonald's reciprocity via Theorem 5.3

for simple polytopes

$$L_{\mathcal{P}}(t) = F_d(t) = \sum_{j=0}^{d} (-1)^j {d-j \choose d-d} F_j(-t)$$

$$L_{\mathcal{P}}(t) = F_d(t) = \sum_{j=0}^d (-1)^j \binom{d-j}{d-d} F_j(-t) = (-1)^d \sum_{j=0}^d (-1)^{d-j} F_j(-t)$$

$$L_{\mathcal{P}}(t) = F_d(t) = \sum_{j=0}^d (-1)^j \binom{d-j}{d-d} F_j(-t) = (-1)^d \sum_{j=0}^d (-1)^{d-j} F_j(-t)$$

$$\therefore L_{\mathcal{P}}(-t) = (-1)^d \sum_{j=0}^d (-1)^{d-j} F_j(t)$$

$$L_{\mathcal{P}}(t) = F_d(t) = \sum_{j=0}^d (-1)^j \binom{d-j}{d-d} F_j(-t) = (-1)^d \sum_{j=0}^d (-1)^{d-j} F_j(-t)$$

$$\therefore L_{\mathcal{P}}(-t) = (-1)^d \sum_{j=0}^d (-1)^{d-j} F_j(t)$$

$$= (-1)^d \sum_{j=0}^d (-1)^{d-j} \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \dim \mathcal{F} = j}} L_{\mathcal{F}}(t)$$

$$L_{\mathcal{P}}(t) = F_{d}(t) = \sum_{j=0}^{d} (-1)^{j} {d-j \choose d-d} F_{j}(-t) = (-1)^{d} \sum_{j=0}^{d} (-1)^{d-j} F_{j}(-t)$$

$$\therefore L_{\mathcal{P}}(-t) = (-1)^{d} \sum_{j=0}^{d} (-1)^{d-j} F_{j}(t)$$

$$= (-1)^{d} \sum_{j=0}^{d} (-1)^{d-j} \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \dim \mathcal{F} = j}} L_{\mathcal{F}}(t)$$

$$= (-1)^{d} \sum_{\mathcal{F} \in \mathcal{P}} (-1)^{d-\dim \mathcal{F}} L_{\mathcal{F}}(t)$$

for *simple* polytopes

$$L_{\mathcal{P}}(t) = F_{d}(t) = \sum_{j=0}^{d} (-1)^{j} {d-j \choose d-d} F_{j}(-t) = (-1)^{d} \sum_{j=0}^{d} (-1)^{d-j} F_{j}(-t)$$

$$\therefore L_{\mathcal{P}}(-t) = (-1)^{d} \sum_{j=0}^{d} (-1)^{d-j} F_{j}(t)$$

$$= (-1)^{d} \sum_{j=0}^{d} (-1)^{d-j} \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \dim \mathcal{F} = j}} L_{\mathcal{F}}(t)$$

$$= (-1)^{d} \sum_{j=0}^{d} (-1)^{d-\dim \mathcal{F}} L_{\mathcal{F}}(t) = (-1)^{d} L_{\mathcal{P}^{\circ}}(t)$$

by the Inclusion-Exclusion (á la Exer 5.4)

 ${\mathcal P}$ a simple *d*-polytope, ${\mathcal F}$ a *k*-face of ${\mathcal P}$

 \mathcal{P} a simple d-polytope, \mathcal{F} a k-face of \mathcal{P}

• Since $\forall \mathbf{m} \in \mathcal{F} \cap \mathbb{Z}^d \exists ! \mathcal{G} \subseteq \mathcal{F} : \mathbf{m} \in \mathcal{G}^{\circ}$,

$$L_{\mathcal{F}}(t) = \sum_{\mathcal{G} \subseteq \mathcal{F}} L_{\mathcal{G}^{\circ}}(t)$$

 \mathcal{P} a simple d-polytope, \mathcal{F} a k-face of \mathcal{P}

• Since $\forall \mathbf{m} \in \mathcal{F} \cap \mathbb{Z}^d \exists ! \mathcal{G} \subseteq \mathcal{F} : \mathbf{m} \in \mathcal{G}^{\circ}$,

$$L_{\mathcal{F}}(t) = \sum_{\mathcal{G} \subseteq \mathcal{F}} L_{\mathcal{G}^{\circ}}(t)$$

By Ehrhart–Macdonald's reciprocity

$$L_{\mathcal{F}}(t) = \sum_{\mathcal{G} \subset \mathcal{F}} (-1)^{\dim \mathcal{G}} L_{\mathcal{G}}(-t)$$

 \mathcal{P} a simple d-polytope, \mathcal{F} a k-face of \mathcal{P}

• Since $\forall \mathbf{m} \in \mathcal{F} \cap \mathbb{Z}^d \exists ! \ \mathcal{G} \subseteq \mathcal{F} : \mathbf{m} \in \mathcal{G}^{\circ}$.

$$L_{\mathcal{F}}(t) = \sum_{\mathcal{G} \subseteq \mathcal{F}} L_{\mathcal{G}^{\circ}}(t)$$

By Ehrhart–Macdonald's reciprocity

$$L_{\mathcal{F}}(t) = \sum_{\mathcal{G} \subseteq \mathcal{F}} (-1)^{\dim \mathcal{G}} L_{\mathcal{G}}(-t) = \sum_{j=0}^k (-1)^j \sum_{\substack{\mathcal{G} \subseteq \mathcal{F} \ \dim \mathcal{G} = j}} L_{\mathcal{G}}(-t)$$

 \mathcal{P} a simple d-polytope, \mathcal{F} a k-face of \mathcal{P}

• Since $\forall \mathbf{m} \in \mathcal{F} \cap \mathbb{Z}^d \exists ! \ \mathcal{G} \subseteq \mathcal{F} : \mathbf{m} \in \mathcal{G}^{\circ}$.

$$L_{\mathcal{F}}(t) = \sum_{\mathcal{G} \subseteq \mathcal{F}} L_{\mathcal{G}^{\circ}}(t)$$

By Ehrhart–Macdonald's reciprocity

$$L_{\mathcal{F}}(t) = \sum_{\mathcal{G} \subseteq \mathcal{F}} (-1)^{\dim \mathcal{G}} L_{\mathcal{G}}(-t) = \sum_{j=0}^k (-1)^j \sum_{\substack{\mathcal{G} \subseteq \mathcal{F} \ \dim \mathcal{G} = j}} L_{\mathcal{G}}(-t)$$

Now we take the sum over all k-faces

$$F_k(t) = \sum_{\mathcal{F} \subseteq \mathcal{P} top \dim \mathcal{F} = k} \sum_{j=0}^k (-1)^j \sum_{\mathcal{G} \subseteq \mathcal{F} top \dim \mathcal{G} = j} L_{\mathcal{G}}(-t)$$

$$F_k(t) = \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \dim \mathcal{F} = k}} \sum_{j=0}^k (-1)^j \sum_{\substack{\mathcal{G} \subseteq \mathcal{F} \\ \dim \mathcal{G} = j}} L_{\mathcal{G}}(-t) = \sum_{j=0}^k (-1)^j \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \dim \mathcal{F} = k}} \sum_{\substack{\mathcal{G} \subseteq \mathcal{F} \\ \dim \mathcal{G} = j}} L_{\mathcal{G}}(-t)$$

$$egin{aligned} F_k(t) &= \sum_{\mathcal{F} \subseteq \mathcal{P} top \ \dim \mathcal{F} = k} \sum_{j=0}^k (-1)^j \sum_{\mathcal{G} \subseteq \mathcal{F} top \ \dim \mathcal{G} = j} L_{\mathcal{G}}(-t) = \sum_{j=0}^k (-1)^j \sum_{\mathcal{F} \subseteq \mathcal{P} top \ \dim \mathcal{F} = k} \sum_{\mathcal{G} \subseteq \mathcal{F} top \ \dim \mathcal{G} = j} L_{\mathcal{G}}(-t) \end{aligned}$$
 $= \sum_{j=0}^k (-1)^j \sum_{\mathcal{G} \subseteq \mathcal{P} top \ \dim \mathcal{G} = j} f_k(\mathcal{P}/\mathcal{G}) L_{\mathcal{G}}(-t)$

where $f_k(\mathcal{P}/\mathcal{G})$ is the number of k-faces of \mathcal{P} containing \mathcal{G}

$$F_{k}(t) = \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \dim \mathcal{F} = k}} \sum_{j=0}^{k} (-1)^{j} \sum_{\substack{\mathcal{G} \subseteq \mathcal{F} \\ \dim \mathcal{G} = j}} L_{\mathcal{G}}(-t) = \sum_{j=0}^{k} (-1)^{j} \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \dim \mathcal{F} = k}} \sum_{\substack{\mathcal{G} \subseteq \mathcal{F} \\ \dim \mathcal{G} = j}} L_{\mathcal{G}}(-t)$$

$$= \sum_{j=0}^{k} (-1)^{j} \sum_{\substack{\mathcal{G} \subseteq \mathcal{P} \\ \dim \mathcal{G} = j}} f_{k}(\mathcal{P}/\mathcal{G}) L_{\mathcal{G}}(-t)$$

$$= \sum_{j=0}^{k} (-1)^{j} \sum_{\substack{\mathcal{G} \subseteq \mathcal{P} \\ \dim \mathcal{G} = i}} {d - j \choose d - k} L_{\mathcal{G}}(-t)$$
(Exer 5.4)

where $f_k(\mathcal{P}/\mathcal{G})$ is the number of k-faces of $\mathcal P$ containing $\mathcal G$

4□ > 4□ > 4≡ > 4≡ > 9<0</p>

$$F_{k}(t) = \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \dim \mathcal{F} = k}} \sum_{j=0}^{k} (-1)^{j} \sum_{\substack{\mathcal{G} \subseteq \mathcal{F} \\ \dim \mathcal{G} = j}} L_{\mathcal{G}}(-t) = \sum_{j=0}^{k} (-1)^{j} \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \dim \mathcal{F} = k}} \sum_{\dim \mathcal{G} = j} L_{\mathcal{G}}(-t)$$

$$= \sum_{j=0}^{k} (-1)^{j} \sum_{\substack{\mathcal{G} \subseteq \mathcal{P} \\ \dim \mathcal{G} = j}} f_{k}(\mathcal{P}/\mathcal{G}) L_{\mathcal{G}}(-t)$$

$$= \sum_{j=0}^{k} (-1)^{j} \sum_{\substack{\mathcal{G} \subseteq \mathcal{P} \\ \dim \mathcal{G} = j}} \binom{d-j}{d-k} L_{\mathcal{G}}(-t)$$

$$= \sum_{j=0}^{k} (-1)^{j} \binom{d-j}{d-k} F_{j}(-t)$$
(Exer 5.4)

where $f_k(\mathcal{P}/\mathcal{G})$ is the number of k-faces of \mathcal{P} containing \mathcal{G}

0.0

Face it!

Dehn-Sommerville Extended

3 Applications to the Coefficients of an Ehrhart Polynomial

A Relative Volume

• From Theorem 5.3

$$L_{\mathcal{P}}(t) = F_d(t) = \sum_{j=0}^d (-1)^j F_j(-t)$$

From Theorem 5.3

$$L_{\mathcal{P}}(t) = F_d(t) = \sum_{j=0}^d (-1)^j F_j(-t)$$

• Indeed, this holds for any rational polytope (even non-simple)

$$L_{\mathcal{P}}(t) = \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t)$$

From Theorem 5.3

$$L_{\mathcal{P}}(t) = F_d(t) = \sum_{j=0}^d (-1)^j F_j(-t)$$

• Indeed, this holds for any rational polytope (even non-simple)

$$egin{aligned} L_{\mathcal{P}}(t) &= \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t) \ &= \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\dim \mathcal{F}} L_{\mathcal{F}}(-t) \end{aligned}$$
 (reciprocity)

From Theorem 5.3

$$L_{\mathcal{P}}(t) = F_d(t) = \sum_{j=0}^d (-1)^j F_j(-t)$$

Indeed, this holds for any rational polytope (even non-simple)

$$egin{aligned} L_{\mathcal{P}}(t) &= \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t) \ &= \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\dim \mathcal{F}} L_{\mathcal{F}}(-t) \ &= \sum_{j=0}^d (-1)^j \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \ \dim \mathcal{F} = j}} L_{\mathcal{F}}(-t) \end{aligned}$$
 (reciprocity)

From Theorem 5.3

$$L_{\mathcal{P}}(t) = F_d(t) = \sum_{j=0}^d (-1)^j F_j(-t)$$

• Indeed, this holds for any rational polytope (even non-simple)

$$egin{aligned} L_{\mathcal{P}}(t) &= \sum_{\mathcal{F} \subseteq \mathcal{P}} L_{\mathcal{F}^{\circ}}(t) \ &= \sum_{\mathcal{F} \subseteq \mathcal{P}} (-1)^{\dim \mathcal{F}} L_{\mathcal{F}}(-t) \end{aligned} \qquad \qquad ext{(reciprocity)} \ &= \sum_{j=0}^d (-1)^j \sum_{\substack{\mathcal{F} \subseteq \mathcal{P} \\ \dim \mathcal{F} = j}} L_{\mathcal{F}}(-t) = \sum_{j=0}^d (-1)^j F_j(-t) \end{aligned}$$

4□ > 4□ > 4 = > 4 = > = 90<</p>

By Ehrhart–Macdonald's reciprocity,

$$(-1)^d F_d(-t) = (-1)^d L_{\mathcal{P}}(-t) = L_{\mathcal{P}^{\circ}}(t)$$

By Ehrhart–Macdonald's reciprocity,

$$(-1)^d F_d(-t) = (-1)^d L_{\mathcal{P}}(-t) = L_{\mathcal{P}^{\circ}}(t)$$

Therefore

$$L_{\mathcal{P}}(t) - L_{\mathcal{P}^{\circ}}(t) = \left(\sum_{j=0}^{d} (-1)^{j} F_{j}(-t)\right) - (-1)^{d} F_{d}(-t)$$

By Ehrhart–Macdonald's reciprocity,

$$(-1)^d F_d(-t) = (-1)^d L_{\mathcal{P}}(-t) = L_{\mathcal{P}^{\circ}}(t)$$

Therefore

$$egin{align} L_{\mathcal{P}}(t) - L_{\mathcal{P}^{\circ}}(t) &= \left(\sum_{j=0}^{d} (-1)^{j} F_{j}(-t)\right) - (-1)^{d} F_{d}(-t) \ &= \sum_{j=0}^{d-1} (-1)^{j} F_{j}(-t) \ \end{aligned}$$

By Ehrhart–Macdonald's reciprocity,

$$(-1)^d F_d(-t) = (-1)^d L_{\mathcal{P}}(-t) = L_{\mathcal{P}^{\circ}}(t)$$

Therefore

$$egin{align} L_{\mathcal{P}}(t) - L_{\mathcal{P}^{\circ}}(t) &= \left(\sum_{j=0}^{d} (-1)^{j} F_{j}(-t)\right) - (-1)^{d} F_{d}(-t) \ &= \sum_{j=0}^{d-1} (-1)^{j} F_{j}(-t) \ \end{aligned}$$

• The LHS counts the number of integer points on the boundary of $t \mathcal{P}$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

• Let
$$L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \cdots + c_0$$
 (\mathcal{P} integral)

- Let $L_{\mathcal{P}}(t) = c_d \, t^d + c_{d-1} \, t^{d-1} + \cdots + c_0$ (\mathcal{P} integral)
- ullet Then $L_{\mathcal{P}^\circ}(t)=c_d\,t^d-c_{d-1}\,t^{d-1}+\cdots+(-1)^dc_0$

- Let $L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \cdots + c_0$ (\mathcal{P} integral)
- ullet Then $L_{\mathcal{P}^\circ}(t)=c_d\,t^d-c_{d-1}\,t^{d-1}+\cdots+(-1)^dc_0$
- Hence

$$L_{\mathcal{P}}(t) - L_{\mathcal{P}^{\circ}}(t) = 2c_{d-1} t^{d-1} + 2c_{d-3} t^{d-3} + \cdots$$

where this sum ends with $2c_0$ if d is odd and $2c_1t$ if d is even

- Let $L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \cdots + c_0$ $(\mathcal{P} \text{ integral})$
- Then $L_{\mathcal{P}^{\circ}}(t) = c_d t^d c_{d-1} t^{d-1} + \cdots + (-1)^d c_0$
- Hence

$$L_{\mathcal{P}}(t) - L_{\mathcal{P}^{\circ}}(t) = 2c_{d-1} t^{d-1} + 2c_{d-3} t^{d-3} + \cdots$$

where this sum ends with $2c_0$ if d is odd and $2c_1t$ if d is even

Theorem 5.4

$$c_{d-1} t^{d-1} + c_{d-3} t^{d-3} + \dots = \frac{1}{2} \sum_{j=0}^{d-1} (-1)^j F_j(-t)$$

We know $c_d = \text{vol } \mathcal{P}$. How about other coefficients?

• Let $F_j(t) = c_{j,j} t^j + c_{j,j-1} t^{j-1} + \cdots + c_{j,0}$

Corollary 5.5

$$k$$
 and d are of different parity $\Rightarrow c_k = \frac{1}{2} \sum_{j=0}^{d-1} (-1)^{j+k} c_{j,k}$

Example

•
$$c_{d-1} = \frac{1}{2} \sum_{\mathcal{F} \text{ a facet of } \mathcal{P}}$$
 the leading coeff's of $L_{\mathcal{F}}(t)$

Face it!

Dehn-Sommerville Extended

3 Applications to the Coefficients of an Ehrhart Polynomial

A Relative Volume

Return to continuous volumes

Lemma 3.19 (recap)

$$S \subset \mathbb{R}^d$$
 d-dimensional \Rightarrow

$$\operatorname{vol} S = \lim_{t \to \infty} \frac{1}{t^d} \cdot \# \left(tS \cap \mathbb{Z}^d \right)$$

Return to continuous volumes

Lemma 3.19 (recap)

$$S \subset \mathbb{R}^d$$
 d-dimensional \Rightarrow

$$\operatorname{\mathsf{vol}} S = \lim_{t o \infty} \frac{1}{t^d} \cdot \# \left(tS \cap \mathbb{Z}^d \right)$$

One issue

S is not *d*-dimensional \Rightarrow vol S = 0 by definition

Motivation

We still would like to compute the volume of smaller-dimensional objects, in the relative sense

Relative volume

Setup

- $S \subset \mathbb{R}^d$ of dimension m < d
- span $S = \{ \mathbf{x} + \lambda (\mathbf{y} \mathbf{x}) : \mathbf{x}, \mathbf{y} \in S, \ \lambda \in \mathbb{R} \}$, the affine span of S
- Consider the sublattice (span S) $\cap \mathbb{Z}^d$
- ullet The relative volume of S is the volume relative to $(\operatorname{\mathsf{span}} S) \cap \mathbb{Z}^d$

Definition or Proposition (Relative volume)

The relative volume of S is

$$\operatorname{vol} S = \lim_{t \to \infty} \frac{1}{t^m} \cdot \# \left(tS \cap \mathbb{Z}^d \right)$$

Convention: vol S represents the relative volume of S, not the volume of S when m < d

Example

- span $L = \{(x, y) \in \mathbb{R}^2 : y = x/2\}$
- vol L = 2

Cf.

• the Euclidean length of $L = 2\sqrt{5}$

Example 2

- $\mathcal{P}=$ the triangle defined by $\frac{x}{5}+\frac{y}{20}+\frac{z}{2}=1,$ $x\geq 0, y\geq 0, z\geq 0$
- $\operatorname{vol} \mathcal{P} = 5$

Cf.

- the Euclidean area of \mathcal{P} = $15\sqrt{13}$
- the Euclidean area of the shaded region = $3\sqrt{13}$

• Let
$$L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \cdots + c_0$$
 (\mathcal{P} integral)

- $(\mathcal{P} \text{ integral})$
- Let $L_{\mathcal{P}}(t) = c_d \, t^d + c_{d-1} \, t^{d-1} + \dots + c_0$ (\mathcal{P} We saw $c_{d-1} = \frac{1}{2} \sum_{\mathcal{F} \text{ a facet of } \mathcal{P}}$ the leading coeff of $L_{\mathcal{F}}(t)$

- $(\mathcal{P} \text{ integral})$
- Let $L_{\mathcal{P}}(t) = c_d \, t^d + c_{d-1} \, t^{d-1} + \dots + c_0$ (\mathcal{P} We saw $c_{d-1} = \frac{1}{2} \sum_{\mathcal{F} \text{ a facet of } \mathcal{P}}$ the leading coeff of $L_{\mathcal{F}}(t)$
- ullet We know the leading coeff of $L_{\mathcal{F}}(t)$ is vol ${\mathcal{F}}$

- $(\mathcal{P} \text{ integral})$
- Let $L_{\mathcal{P}}(t) = c_d \, t^d + c_{d-1} \, t^{d-1} + \dots + c_0$ (\mathcal{P} We saw $c_{d-1} = \frac{1}{2} \sum_{\mathcal{F} \text{ a facet of } \mathcal{P}}$ the leading coeff of $L_{\mathcal{F}}(t)$
- We know the leading coeff of $L_{\mathcal{F}}(t)$ is vol \mathcal{F}

Therefore

Theorem 5.6

