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We saw several examples...

For several integral d-polytopes P we saw

LP(−t) = (−1)dLP◦(t)

This holds in general, also for rational polytopes

Theorem 4.1 (Ehrhart–Macdonald reciprocity)

P a convex rational polytope ⇒ for any t ∈ Z>0

LP(−t) = (−1)dimPLP◦(t)

We’re going to prove this theorem today
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Reciprocity in combinatorics

Theorem 4.1 belongs to a class of famous reciprocity theorems

A common theme in combinatorics

Begin with an interesting object P , and

1 define a counting function f (t) attached to P that makes
physical sense for positive integer values of t;

2 recognize the function f as a polynomial in t;

3 substitute negative integral values of t into the counting function
f , and recognize f (−t) as a counting function of a new object Q

In this course

P a polytope; Q its interior
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Generating Functions for Somewhat Irrational Cones

Integer-point transforms of a somewhat irrational pointed cone

Theorem 4.2

• K the simplicial cone generated by w1,w2, . . . ,wd ∈ Zd

• v ∈ Rd s.t. the boundary of v +K contains no integer point

⇒ σv+K

(
1

z

)
= (−1)d σ−v+K (z)

• Reminder: σS(z) =
∑

m∈S∩Zd

zm

• Notation:
1

z
=

(
1

z1
,

1

z2
, . . . ,

1

zd

)
when z = (z1, z2, . . . , zd)
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Generating Functions for Somewhat Irrational Cones

Theorem 4.2: Example

w1 = (1, 1), w2 = (−1, 2), v = (0,−1/2)

By Corollary 3.6

σv+K(z) =
σv+Π(z)

(1− z1z2)(1− z−1
1 z2

2 )

=
1 + z2 + z2

2

(1− z1z2)(1− z−1
1 z2

2 )

σv+K

(
1

z

)
=

1 + z−1
2 + z−2

2

(1− z−1
1 z−1

2 )(1− z1z
−2
2 )
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Generating Functions for Somewhat Irrational Cones

Theorem 4.2: Example (continued)

w1 = (1, 1), w2 = (−1, 2), v = (0,−1/2)

σ−v+K(z) =
σ−v+Π(z)

(1− z1z2)(1− z−1
1 z2

2 )

=
z2 + z2

2 + z3
2

(1− z1z2)(1− z−1
1 z2

2 )

=
z2 + z2

2 + z3
2

(1− z1z2)(1− z−1
1 z2

2 )

×
z−3

2

(z−1
1 z−1

2 )(z1z
−2
2 )

=
z−2

2 + z−1
2 + 1

(z−1
1 z−1

2 − 1)(z1z
−2
2 − 1)

= σv+K

(
1

z

)
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Generating Functions for Somewhat Irrational Cones

Proof of Thm 4.2 (1)

• By Corollary 3.6

σv+K(z) =
σv+Π(z)

(1− zw1) (1− zw2) · · · (1− zwd )
,

where

Π = {λ1w1 + λ2w2 + · · ·+ λdwd : 0 < λ1, λ2, . . . , λd < 1}

• Similarly, −v +K satisfies the assumption of Corollary 3.6 and
hence

σ−v+K(z) =
σ−v+Π(z)

(1− zw1) (1− zw2) · · · (1− zwd )
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Generating Functions for Somewhat Irrational Cones

Proof of Thm 4.2 (2)

Exercise 4.2: v + Π = −(−v + Π) + w1 + w2 + · · ·+ wd

v w1

w2

v + Π

−v + Π − (−v + Π) − (−v + Π) + w1 + w2
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Generating Functions for Somewhat Irrational Cones

Proof of Thm 4.2 (3)

Therefore, by Exer 3.6

σv+Π(z) = σ−(−v+Π)+w1+w2+···+wd
(z)

= σ−(−v+Π)(z) zw1zw2 · · · zwd

= σ−v+Π

(
1
z

)
zw1zw2 · · · zwd

∴ σv+Π

(
1

z

)
= σ−v+Π(z) z−w1z−w2 · · · z−wd
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Generating Functions for Somewhat Irrational Cones

Proof of Thm 4.2 (4)

Therefore,

σv+K

(
1

z

)
=

σv+Π

(
1
z

)
(1− z−w1) (1− z−w2) · · · (1− z−wd )

=
σ−v+Π(z) z−w1z−w2 · · · z−wd

(1− z−w1) (1− z−w2) · · · (1− z−wd )

=
σ−v+Π(z)

(zw1 − 1) (zw2 − 1) · · · (zwd − 1)

= (−1)d σ−v+Π(z)

(1− zw1) (1− zw2) · · · (1− zwd )

= (−1)d σ−v+K(z)
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Stanley’s Reciprocity Theorem for Rational Cones

Stanley’s reciprocity theorem

Theorem 4.3 (Stanley reciprocity)

K a rational d-cone with the origin as apex ⇒

σK

(
1

z

)
= (−1)d σK◦ (z)
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Stanley’s Reciprocity Theorem for Rational Cones

Proof of Theorem 4.3

• Triangulate K into the simplicial cones K1,K2, . . . ,Km

• From Exer 3.14, ∃ v ∈ Rd s.t.
• K◦ ∩ Zd = (v +K) ∩ Zd

• ∂ (v +Kj) ∩ Zd = ∅ for all j = 1, . . . ,m
• ∂ (−v +Kj) ∩ Zd = ∅ for all j = 1, . . . ,m

• Then K ∩ Zd = (−v +K) ∩ Zd (Exer 4.3)

• Then by Theorem 4.1

σK
(

1
z

)
= σ−v+K

(
1
z

)
=

m∑
j=1

σ−v+Kj

(
1
z

)
=

m∑
j=1

(−1)d σv+Kj
(z)

= (−1)d σv+K (z) = (−1)d σK◦ (z)
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Ehrhart–Macdonald Reciprocity for Rational Polytopes

Definition (Ehrhart series of the interior of a rational polytope)

The Ehrhart series of the interior of a rational polytope P is

EhrP◦(z) :=
∑
t≥1

LP◦(t) z t

Theorem 4.4

P a convex rational d-polytope ⇒

EhrP

(
1

z

)
= (−1)d+1 EhrP◦(z)
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Ehrhart–Macdonald Reciprocity for Rational Polytopes

Proof of Theorem 4.4

• By Lemma 3.10

EhrP(z) =
∑
t≥0

LP(t) z t = σcone(P) (1, 1, . . . , 1, z)

• Similarly

EhrP◦(z) =
∑
t≥1

LP◦(t) z t = σ(cone(P))◦ (1, 1, . . . , 1, z)

• By applying Stanley’s reciprocity (Thm 4.3) to cone(P) we
obtain

σ(cone(P))◦ (1, 1, . . . , 1, z) = (−1)d+1 σcone(P)

(
1, 1, . . . , 1,

1

z

)
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Ehrhart–Macdonald Reciprocity for Rational Polytopes

Proof of Ehrhart–Macdonald’s reciprocity (Thm 4.1)

• By Exer 4.6

−
∑
t≥1

LP(−t) z t =
∑
t≤0

LP(−t) z t

=
∑
t≥0

LP(t) z−t = EhrP

(
1

z

)
• Then by Theorem 4.4∑

t≥1

LP◦(t) z t = (−1)d+1 EhrP

(
1

z

)
= (−1)d

∑
t≥1

LP(−t) z t

• Comparing the coefficients, we obtain the theorem
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Ehrhart–Macdonald Reciprocity for Rational Polytopes

Degression: the degree of an integral polytope

Definition (Degree of an integral polytope)

For an integral d-polytope P with Ehrhart series

EhrP(z) =
hd zd + hd−1 zd−1 + · · ·+ h1 z + 1

(1− z)d+1
,

the degree of P is the largest k s.t. hk 6= 0

Theorem 4.5

The degree of an integral d-polytope P is k ⇔
(d − k + 1)P is the smallest integer dilate of P that contains an
interior lattice point
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Ehrhart–Macdonald Reciprocity for Rational Polytopes

Proof of Theorem 4.5

• We use Theorem 3.18

• The degree of P is k ⇔
LP(−1) = LP(−2) = · · · = LP (−(d − k)) = 0 and
LP (−(d − k + 1)) 6= 0

• By the Ehrhart–Macdonald reciprocity, this is equivalent to
P◦, (2P)◦, . . . , ((d−k)P)◦ contains no lattice point and
((d−k+1)P)◦ contains a lattice point
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The Ehrhart Series of Reflexive Polytopes

Reflexive polytopes

Definition (Reflexive polytope)

A polytope P that contains the origin in its interior is reflexive if it is
integral and has the hyperplane description

P =
{
x ∈ Rd : Ax ≤ 1

}
,

where A is an integral matrix

Example: d-Crosspolytopes

Y. Okamoto (Tokyo Tech) DMCS’09 (5) 2009-05-21 23 / 29

The Ehrhart Series of Reflexive Polytopes

Palindromy of the Ehrhart series of a reflexive polytope

Theorem 4.6 (Hibi’s palindromic theorem)

P an integral d-polytope that contains the origin in its interior and
that has the Ehrhart series

EhrP(z) =
hd zd + hd−1 zd−1 + · · ·+ h1 z + h0

(1− z)d+1

⇒ P reflexive if and only if hk = hd−k ∀ 0 ≤ k ≤ d
2

Example:

Ehr♦(z) =

∑d
k=0

(
d
k

)
zk

(1− z)d+1
,

(
d

k

)
=

(
d

d − k

)
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The Ehrhart Series of Reflexive Polytopes

A lemma we use for the proof of Thm 4.6

Lemma 4.7

a1, a2, . . . , ad , b ∈ Z satisfy gcd (a1, a2, . . . , ad , b) = 1 and b > 1
⇒ ∃ c , t ∈ Z>0 s.t.

• tb < c < (t + 1)b,

•
{

(m1, . . . ,md) ∈ Zd : a1m1 + · · ·+ admd = c
}
6= ∅

Proof:
• Let g = gcd (a1, a2, . . . , ad)
• ∃ k ∈ Z and t ∈ Z>0 s.t. kg − tb = 1 (∵ gcd(g , b) = 1)
• Let c = kg
• Then tb < c < (t + 1)b (∵ kg − tb = 1, b > 1)
• Since g = gcd (a1, a2, . . . , ad), ∃ m1,m2, . . . ,md ∈ Z s.t.

a1m1 + a2m2 + · · ·+ admd = kg = c
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The Ehrhart Series of Reflexive Polytopes

Proof of Thm 4.6

Claim

P reflexive ⇔
• P◦ ∩ Zd = {0}
• (t + 1)P◦ ∩ Zd = tP ∩ Zd for all t ∈ Z>0

Proof of ⇒: Exercise 4.12
Proof of ⇐: Assume P satisfies the conditions on the RHS

• Let H =
{
x ∈ Rd : a1x1 + a2x2 + · · ·+ adxd = b

}
define a

facet of P (wlog gcd (a1, a2, . . . , ad , b) = 1)

• ∃ no lattice point between tH and (t + 1)H (by Exer 4.13)

• ∴
{
x ∈ Zd : tb < a1x1 + a2x2 + · · ·+ adxd < (t + 1)b

}
= ∅

• ∴ b = 1 (by Lem 4.7)
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The Ehrhart Series of Reflexive Polytopes

Proof of Thm 4.6 (cont’d)

• By Theorem 4.4

EhrP◦(z) = (−1)d+1 EhrP

(
1

z

)
=

h0 zd+1 + h1 zd + · · ·+ hd−1 z2 + hd z

(1− z)d+1

• By Claim, P reflexive iff EhrP◦(z) is equal to∑
t≥1

LP(t − 1) z t = z
∑
t≥0

LP(t) z t = z EhrP(z)

=
hd zd+1 + hd−1 zd + · · ·+ h1 z2 + h0 z

(1− z)d+1
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Summary

Summary

Theorem 4.1 (Ehrhart–Macdonald reciprocity)

P a convex rational polytope ⇒ for any t ∈ Z>0

LP(−t) = (−1)dimPLP◦(t)

Theorem 4.6 (Hibi’s palindromic theorem)

P an integral d-polytope that contains the origin in its interior and
that has the Ehrhart series

EhrP(z) =
hd zd + hd−1 zd−1 + · · ·+ h1 z + h0

(1− z)d+1

⇒ P reflexive if and only if hk = hd−k ∀ 0 ≤ k ≤ d
2
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Summary

Rest of the course

• Dehn–Sommerville relations
• Relations among the face numbers of a polytope
• Ehrhart–Macdonald’s reciprocity will be used as a tool

• Magic squares
• Concrete example of a lattice point counting
• Ehrhart–Macdonald’s reciprocity will be used as a tool

• Finite Fourier series
• Study of periodic functions

• Fourier–Dedekind sums
• Appeared in Ehrhart quasipolynomials
• Computational aspects

• Decomposition of a polytope into cones (Brion’s theorem)
• A magical relation between a polytope and its vertex cones
• Computational aspects
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