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Lp(—t) = (=1)"Lpe(t)

This holds in general, also for rational polytopes

‘P a convex rational polytope = for any t € Z

Lp(—t) = (—1)"™PLps(t)

We're going to prove this theorem today

@ Generating Functions for Somewhat Irrational Cones

@® Stanley’s Reciprocity Theorem for Rational Cones

© Ehrhart—-Macdonald Reciprocity for Rational Polytopes

@ The Ehrhart Series of Reflexive Polytopes

Theorem 4.1 belongs to a class of famous reciprocity theorems

Begin with an interesting object P, and

@ define a counting function f(t) attached to P that makes
physical sense for positive integer values of t;

@® recognize the function f as a polynomial in t;

© substitute negative integral values of t into the counting function
f, and recognize f(—t) as a counting function of a new object Q

P a polytope; @ its interior




Generating Functions for Somewhat Irrational Cones Generating Functions for Somewhat Irrational Cones

Integer-point transforms of a somewhat irrational pointed cone

@ Generating Functions for Somewhat Irrational Cones Theorem 4.2
e K the simplicial cone generated by wy,wo, ..., wy € Z9
e v c RY s.t. the boundary of v + K contains no integer point

= Ouik (i) = (-1)%0 vk (2)

e Reminder: o5(z) = Z z"

meSNZd
. 1 11 1
e Notation: = = <,,...,> when z = (z1, 25, ..., z4)
z V4 ) Z4
Y. Okamoto (Tokyo Tech) DMCS'09 (5) 20000521 5 /29 Y. Okamoto (Tokyo Tech) DMCS'09 (5) 20000521 6 /29
Generating Functions for Somewhat Irrational Cones Generating Functions for Somewhat Irrational Cones
Theorem 4.2: Example Theorem 4.2: Example (continued)
wy = (1,1), wp = (=1,2), v=(0,-1/2) wi = (1,1), wp = (=1,2), v=(0,-1/2)
By Corollary 3.6 o et e .. o_vinl(z
y y . L] L] . L] 0—7V+’C(Z) = V+ ( ) _1 2 L] . L) L] L] .
(1—z12)(1 — z; "z5)
) ourn(2) __ ntB+3 .. .
Ov+K\Z) = - - —1
v (1-z2z)1- 7 1222) o« o o .« o (1—z120)(1 — z; ' 22) o« o e .
- 1+Z2+222 o o o e o o _ 22+222+Z§
(1-22)1-27"'%3) e & (1-22)(1 -2z '2)
(1) 1+2z 422 . . . . . % z° . . RERY.
ok |2 ) = — - P = tw—y
Y z (1—z 122 Ha - 212, 2) (z; "z3 " )=:1z3 %) . e Y.
L] . L] L] L] . _ 22_2 + Z2_1 + 1 . L] L] . .
@'z -1(az’-1) N

—oe(3)
= Ov+KC ;
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Generating Functions for Somewhat Irrational Cones

Proof of Thm 4.2 (1)

e By Corollary 3.6

Uv+|'|(z)
1—z™)(1—2z%)--- (1 —2z%4)’

UerlC(Z) = (
where
n= {)\1W1+)\2W2+"'+)\dwd 0< )\1,)\2,...7)\(1 < ].}

e Similarly, —v + K satisfies the assumption of Corollary 3.6 and
hence

) — va+ﬂ(z)
O-*V*FK:( ) (1_Zw1)(1_ZW2),,.(1_ZWd)
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Generating Functions for Somewhat Irrational Cones

Proof of Thm 4.2 (3)

Generating Functions for Somewhat Irrational Cones

Proof of Thm 4.2 (2)

Therefore, by Exer 3.6

ovin(z) = U_(—V+n)+W1+W2+“'+Wd(Z)
= 0 (—vm)(2) 212" - 2™

= 0_yin (%) ZWigW2 . ZWd

1
L Ouan (Z — U—v+|‘|(Z) z WigmW2 . Wy
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Exercise 4.2: v+ = —(—v+T) +w; +wy+ -+ wy J

L 4 e

—v -+ —(=v+M) —(—v+N)+w; +wp
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Generating Functions for Somewhat Irrational Cones

Proof of Thm 4.2 (4)

Therefore,

Otk <1> = Tu+n (;)
R\ z (1—zw)(1l—2zw) - (1—2z"W)
_ o_yin(z)zMz7"2 ... 27V
(1—zw)(1l—2zw) - (1—2z"W)

- O—varI'I(Z)
T D@ 1)@ D)
_ (_1)d U*V+”(z)
(1—2z"1)(1—2z%) - (1—2zW)
— (~1) 0 vixl2) =
Y. Okamoto (Tokyo Tech) DMCS'09 (5) 2009-05-21 12 /29



Stanley’s Reciprocity Theorem for Rational Cones

@® Stanley's Reciprocity Theorem for Rational Cones
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Stanley’s Reciprocity Theorem for Rational Cones

Proof of Theorem 4.3

Stanley's Reciprocity Theorem for Rational Cones

Stanley's reciprocity theorem

e Triangulate K into the simplicial cones Iy, K>, ..., K,
o From Exer 3.14, 3v € R s.t.
e K°NZ4=(v+K)nZI
e d(v+K)NZI=aforallj=1,....,m
e J(—v+K)NZ! =0 forall j=1,....,m
e Then KNZ4 = (—v+K)NZ? (Exer 4.3)
e Then by Theorem 4.1

m

7 (3) = s (1) = 20w (2) = 201 0w (2)

= (-1)%0u1x (2) = (1) oo (2) O
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Theorem 4.3 (Stanley reciprocity)
IC a rational d-cone with the origin as apex =

o (3) = (1 or 2
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Ehrhart-Macdonald Reciprocity for Rational Polytopes

© Ehrhart—-Macdonald Reciprocity for Rational Polytopes
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Ehrhart-Macdonald Reciprocity for Rational Polytopes

Definition (Ehrhart series of the interior of a rational polytope)
The Ehrhart series of the interior of a rational polytope P is

Ehrpe(2) = Y Lpe(t) 2*

£>1

Theorem 4.4
P a convex rational d-polytope =

Ehrp G) = (—1)4*! Ehrpo(2)
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Ehrhart—Macdonald Reciprocity for Rational Polytopes

Proof of Ehrhart—-Macdonald’s reciprocity (Thm 4.1)

Ehrhart—Macdonald Reciprocity for Rational Polytopes

Proof of Theorem 4.4

e By Lemma 3.10

Ehrp(z) = Y Lp(t) 2° = Ocone(r) (1,1, ., 1, 2)

t>0
o Similarly
EhrPO(z) = Z LPO(t) z' = O (cone(P))° (17 1,...,1, Z)
t>1

e By applying Stanley's reciprocity (Thm 4.3) to cone(P) we
obtain

1
U(Cone(P))o (17 17 R 17 Z) = (_1)d+1 Ocone(P) (17 17 R 1a Z)
O
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Ehrhart—-Macdonald Reciprocity for Rational Polytopes

Degression: the degree of an integral polytope

o By Exer 4.6
= Lp(—t)2f =D Lp(-t) 2
t>1 t<0
_ 1
- Z Lp(t)z~t = Ehrp (Z>
t>0

e Then by Theorem 4.4

D Lpo(t) 2 = (~1)" Ehrp C) = (1> Lp(-1t) 2

t>1 t>1

o Comparing the coefficients, we obtain the theorem O
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Definition (Degree of an integral polytope)
For an integral d-polytope P with Ehrhart series

hgz? 4+ hy_1z97 4+ hz+1
Ehrp(z) = (1= 7y )

the degree of P is the largest k s.t. hy # 0

Theorem 4.5

The degree of an integral d-polytope P is k <

(d — k + 1)P is the smallest integer dilate of P that contains an
interior lattice point
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Ehrhart—Macdonald Reciprocity for Rational Polytopes

Proof of Theorem 4.5

o We use Theorem 3.18

o The degree of P is k <
Lp(=1) = Lp(=2) = -+ = Lp (—(d — k)) = 0 and
Lp (—(d — k+1)) #0

o By the Ehrhart—Macdonald reciprocity, this is equivalent to
P°,(2P)°,...,((d—k)P)° contains no lattice point and
((d—k+1)P)° contains a lattice point O
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The Ehrhart Series of Reflexive Polytopes

Reflexive polytopes

Definition (Reflexive polytope)

A polytope P that contains the origin in its interior is reflexive if it is
integral and has the hyperplane description

P={xeR?: Ax<1},

where A is an integral matrix

Example: d-Crosspolytopes

Y. Okamoto (Tokyo Tech) DMCS'09 (5) 2009-05-21 23 /29

The Ehrhart Series of Reflexive Polytopes

@ The Ehrhart Series of Reflexive Polytopes

Y. Okamoto (Tokyo Tech) DMCS'09 (5) 2000-05-21 22 /29

The Ehrhart Series of Reflexive Polytopes
Palindromy of the Ehrhart series of a reflexive polytope

Theorem 4.6 (Hibi's palindromic theorem)
P an integral d-polytope that contains the origin in its interior and
that has the Ehrhart series

hdZd+hd_1Zd_1+“‘+h12+h0
Ehl’p(z) = (1 —Z)d+1

= P reflexive if and only if by = hg_x V0 < k < ¢

Ehro(z) = M’ <Z> B (d i k>
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Example:



The Ehrhart Series of Reflexive Polytopes

A lemma we use for the proof of Thm 4.6

The Ehrhart Series of Reflexive Polytopes

Proof of Thm 4.6

Lemma 4.7
ay, a,...,adq, b € Z satisfy ged (a1, a2,...,a4,b) =1 and b > 1
= dc,t €Z-p st

o th<c<(t+1)b,

o {(my,...,my) €Z%: aymy +---+agmyg=c} £

Proof:

o Let g =gcd(ay,an,...,a4)
e JkeZandteZgst. kg—th=1 (" ged(g, b) = 1)
o Let c = kg
e Thentb<c < (t+1)b (~kg—th=1,b>1)
e Since g = gcd(a1,a2,...,a4), A my, my,...,mg € Z s.t.

aymy + amy+---+agmyg=kg =c O
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The Ehrhart Series of Reflexive Polytopes

Proof of Thm 4.6 (cont'd)

Claim
P reflexive <
e P°NZ? = {0}
e (t+1)P°NZI=tPNZ forall t € Zsg

Proof of =: Exercise 4.12
Proof of «: Assume P satisfies the conditions on the RHS
o Let H= {xeRd: alx1+azx2+~-+adxd:b} define a
facet of P (wlog ged (a1, a2, ..., a4, b) = 1)

e J no lattice point between tH and (t + 1)H (by Exer 4.13)
e {XEZdZ tb<81X1+32X2+"'+adXd<(t+1)b} =
e . b=1 (by Lem 4.7)
O
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Summary
Summary

e By Theorem 4.4

Ehrpo(z) = (—1)™ Ehrp C)

hez?t iz hg 1 22 gz
- (1—z)d+1

e By Claim, P reflexive iff Ehrpo(z) is equal to

Y Lp(t—1)z' =2 Lp(t)z' = zEhrp(2)

t>1 t>0
_hdZd+1+hd712d+"'+h122+h02
- (]_ _ Z)d+1

O
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Theorem 4.1 (Ehrhart—-Macdonald reciprocity)
‘P a convex rational polytope = for any t € Z-g

Lp(—t) = (~1)"™P Lpa(2)

Theorem 4.6 (Hibi's palindromic theorem)

P an integral d-polytope that contains the origin in its interior and

that has the Ehrhart series

hdZd+hd_1Zd71+"'+h12+h0
(1—z)d+t

Ehrp(z) =

= P reflexive if and only if hy = hy_x V0 < k < g
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Summary

Rest of the course

e Dehn—Sommerville relations
e Relations among the face numbers of a polytope
e Ehrhart—Macdonald'’s reciprocity will be used as a tool
o Magic squares
o Concrete example of a lattice point counting
e Ehrhart—-Macdonald's reciprocity will be used as a tool
Finite Fourier series
e Study of periodic functions

Fourier—Dedekind sums

e Appeared in Ehrhart quasipolynomials
e Computational aspects

e Decomposition of a polytope into cones (Brion's theorem)
e A magical relation between a polytope and its vertex cones
e Computational aspects
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