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A an integral d-simplex, 1 the fundamental parallelepiped of cone(A)

on(l,...,1,z
Ehra(z) = n((l — z)d+ )

If
hdZd+hd_1Zd_1 oo +h12+h0
EhrA(z) = (1 — Z)d+1 )

then

he = #(MN{x: xq41 = k} NZ%)




The Ehrhart Series of an Integral Polytope

Comments to Corollary 3.11

The Ehrhart Series of an Integral Polytope

Stanley’s nonnegativity theorem

Corollary 3.11

If
hgz9 +hg_12z97 4+ -+ hiz+ hy

(1—z)#H ’

Ehra(z) =

then
hk = #(I'I N {X P Xd+1 = k} N Zd-H)

e This enables us to compute Ehra(z) efficiently when d is
relatively small
e But not for a general integral polytope
e The hy are all nonnegative
e How about for a general integral polytope?
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12
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Theorem 3.12 (Stanley's nonnegativity theorem '80

‘P an integral convex d-polytope
If
hgz? + hy_1 297+ + hy

Ehrp(z) = 1—2)

then ho,hl,...,hdzo

Remember the examples from Chapter 2!
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (cont'd)
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e Triangulate cone(P) into simplicial cones Ky, ..., Cp (Thm 3.1)

e Javector ve R st
e cone(P) N Z4*! = (v + cone(P)) N Z9*! and
o Neither the facets of v + cone(P) nor the triangulation
hyperplanes contain any lattice points
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(Exer 3.14)
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e ThenV x € (v+cone(P))NZ* 3l je{1,...,m}: x eEv+K;

e . it holds as a disjoint union

m

cone(P)NZ? = (v+cone(P))NZ¢ = | J ((v+ K;) N Z%) (2)

j=1

m

Ocone(P) (Zl, 22y - 7Zd+1) = E Ov+K; (217 22y - 7Zd+1)
j=1

.. by Lemma 3.10

Ehrp(2) = Oconep) (1,1, .., 1,2) = > _ovir, (1,1,...,1,2) (3)
j=1

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14

8/32



The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (further cont'd)

e Enough to show that each o, ; (1,1,...,1,2) has a nonneg
numerator

e The numerator of oy x,(1,...,1,2) is oyin(1,...,1,2), where
M is the (open) fundamental parallelepiped (Cor. 3.6)

e Each term in o,,n(z) has a nonnegative exponent in zy;
. - (v+ |—|) ﬂZdJrl C (V+/Cj) mZdJrl —
(v + cone(P)) N Z9*! = cone(P) N ZI+1
e .. The numerator of oy x,(1,...,1,2) has a nonnegative
exponent in z ]
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The Ehrhart Series of an Integral Polytope

How to extract the Ehrhart polynomial from the Ehrhart series

The Ehrhart Series of an Integral Polytope

Corollary: A constant term
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Lemma 3.14
P an integral convex d-polytope with Ehrhart series

hgz?+hy_1z9 P+ 4 hz+1

Ehrp(z) = 1+;Lp(t)zt: 1=z
= Lp(t) = <t3d> +hl<t+j_1> +

t+1 t
+hd_1< d >+hd<d>

Lemma 3.13
‘P an integral convex d-polytope with Ehrhart series

hdZd+hd,12d_l+"'+h0
(1 z)r

Ehrp(z) =

= h=1

Proof:
e Asin Thm 3.12, consider Iy, ..., K, and v
e Jlje{l,....mi: 0ev+K;
e For such a j, the constant term of the numerator of
ok, (1,...,1,2)is 1
e For the other j, the constant term of the numerator of
ouik;(1,...,1,2)is 0
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The Ehrhart Series of an Integral Polytope

Proof of Lem 3.14
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A (unique) expression of Lp(t) by the basis (“9),..., (“3"), (})
(Exer. 3.9)
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hgzd +hg 1297 4+ hz+1

Ehrp(Z) = (1iz)d+1
t+d
— (hdzd+hd1Zd1+...+h12+1)z< Z >Zt
t>0
t+d t+d
:hdZ( J )Zt+d+hd—lz< J )Zt+d_1+"'
t>0 t>0
t+d\ 11 t+d\ ,
+ h Z ( d )z + Z d zt O
t>0 t>0
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The Ehrhart Series of an Integral Polytope

Proof of Lem 3.14 (cont'd)

The Ehrhart Series of an Integral Polytope

Constant term of an Ehrhart polynomial
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The Ehrhart Series of an Integral Polytope

We know hy = 1. How about hq,...7

Corollary 3.15
P an integral convex d-polytope = const Lp(t) =1 J
Proof:
d d—1 1 0 d
L = h w4 hg_ h = =1
0= (g en(®y ) ena(g) o(e) - ()
by Lemma 3.14 0
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The Ehrhart Series of an Integral Polytope

How large the coefficients of Ehrhart polynomials are

Corollary 3.16
P an integral convex d-polytope with Ehrhart series

hgz? +hg_129 4+ +hz+1
(1= z)d+t '

Ehrp(z) =

=h=Lp(l)—d—1=#(PNZ)—d—1

Proof:
d+1 d 2 1
Lr(1) = h s hy_ h =d+1+h
r(1) <d>+ 1(d>+ +d1<d)+ d(d) +1+h
by Lemma 3.14 L]
Remark
We may get similar expressions for hy, hs,... (Exer. 3.10) J

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 15 / 32

Corollary 3.17

P an integral polytope with Ehrhart polynomial
Lp(t)=cgt?+cg 1t 4+ +at+1

= dlc, € Z for all k

Proof:
e By Thm 3.12 and Lem 3.14

t+d t+d-1 t+1 t
L’[J(t):( J >+h1< d >+~-~+hd1< d >+hd<d),

where the hy are integers

o Expanding the binomial coefficients gives a polynomial in t and
the coefficient can be written as rational numbers with
denominator d! O
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The Ehrhart Series of an Integral Polytope

This will be used in the next lecture

Theorem 3.18

Let p be a degree-d polynomial with the rational generating function

Zp(t)zt— hdZd+hd_1Zd_1+"‘+h12+h0.

— (1= z)dH :
Then

hg = hg—1 = p(—1) = p(-2) =

co=hy1=0 & ---=p(—(d—k))=0

and hy #0 and p(—(d —k+1))#0

Proof: Omitted (see the textbook)
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From the Discrete to the Continuous Volume of a Polytope

What's discrete volume? (from the 1st lecture)
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From the Discrete to the Continuous Volume of a Polytope

@® From the Discrete to the Continuous Volume of a Polytope

o 1, 1
vol§S = tIer;O#<5ﬂtZ>ﬁ

integration counting

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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From the Discrete to the Continuous Volume of a Polytope
From the discrete to the continuous volume
Since
1 \?
#Sn (tz) =#(tSnZ7),
we obtain the following
Lemma 3.19
S c RY d-dimensional =
vol S = lim l-#(tSmZd) O
t—o00 td
Note: If S is not d-dimensional then vol S = 0 by definition
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From the Discrete to the Continuous Volume of a Polytope

A nice consequence of Ehrhart’s theorem

Corollary 3.20

P C RY an integral convex d-polytope with Ehrhart polynomial
at?+cy 1t agt+l=cy=volP

From the Discrete to the Continuous Volume of a Polytope

Extracting the continuous volume from the Ehrhart series

Corollary 3.21
P C RY an integral convex d-polytope, and

_hgzf+hg 2 4zt

Proof: Ehrp(z) = (1—2z)o*t
. gttt g+l 1
voIP:tllm d a1 d ! =c O évoIP:m(hd+hd,1+---+h1+1)
Proof: Lemma 3.14 gives
t+d t+d—-1 t+1 t

Lp(t) = h cee ot hg_ h

»(t) <d>+1( d )—I— +d1(d>+d<d)
and the coefficient of t? is the desired expression O
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Interpolation Interpolation

A way to compute the Ehrhart polynomials

How can we compute Lp(t) of a given integral d-polytope P?
o We can make use of Ehrhart’s theorem
e Lp(t) is a degree-d polynomial in t
o A degree-d polynomial is uniquely determined by the values on
d + 1 points

e Lagrange interpolation: Determining such a unique polynomial

© Interpolation from d + 1 values

e This involves a famous Vandermonde matrix
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Interpolation

Example: Reeve's tetrahedron

7, = the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0),
(1,1, h), where h is a positive integer
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Interpolation

Example: Reeve's tetrahedron (3)

Interpolation

Example: Reeve's tetrahedron (2)

By Cor 3.20,
1 _ h
¢ =vol (7p) = §(base area)(height) = 6
Therefore
h
4:C3+C2+C1+1=6+C2+C1—|—1
h
h+9:c3-23—|—c2~22—|—c1~2+1:8~6+4C2+2c1+1

Hencec2:1,c1:2—g ]
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Let Lr,(t) = st +cat? + a1t + 1; Then
4=Llp(l)=ca+tota+l
h+9=Lr2)=c-22+c-2°+c-2+1

z

21
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Rational Polytopes and Ehrhart Quasipolynomials

@ Rational Polytopes and Ehrhart Quasipolynomials
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Rational Polytopes and Ehrhart Quasipolynomials

Ehrhart’s theorem for rational polytopes

Rational Polytopes and Ehrhart Quasipolynomials

Proof outline

Theorem 3.23 (Ehrhart’s Theorem for rational polytopes)

P is a rational convex d-polytope =

Lp(t) is a quasipolynomial in t of degree d;

Its period divides the least common multiple of the denominators of
the coordinates of the vertices of P

Definition (Ehrhart quasipolynomial)
Lp is called the Ehrhart quasipolynomial of P when P is a rational
convex polytope

Definition (Denominator of a polytope)

The denominator of P is the least common multiple of the
denominators of the coordinates of the vertices of P
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Rational Polytopes and Ehrhart Quasipolynomials

Proof outline (cont'd)

Similar to Ehrhart’s theorem (Thm. 3.8)
e Enough to show for simplices A (by triangulation)

e See a relation between La and Ehra(2) (Lem 3.24)
e Go along the same way as in the proof of Thm. 3.8 (Exer 3.20)
Lemma 3.24
Let

. 8&(2)
D f(t)zt = ok
£>0
Then f is a quasipolynomial of degree d with period dividing p if and
only if g and h are polynomials s.t. deg(g) < deg(h), all roots of h
are pth roots of unity of multiplicity at most d + 1, and 3 a root of
multiplicity equal to d + 1 (all of this assuming that g/h has been
reduced to lowest terms)

Proof: Exercise 3.19
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Rational Polytopes and Ehrhart Quasipolynomials

Proof outline (further cont'd)

.. Enough to prove the following

Claim
A a rational d-simplex with denominator p =

Ehrp(z) = 1+ Y Lp(t) 2* = 5(2)

= (1 . Zp)d+1

for some polynomial g of degree less than p(d + 1)

® Vi,V ..., Vg € QY the vertices of A w/ denom p
e Consider cone(A) with generators

wi = (vi,1),wo = (v2,1), ..., Wgy1 = (Vgq1, 1)
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e \We want to use Theorem 3.5
e But, Thm 3.5 is for integral pointed cones

e However, replacing wi € Q9*! by pw, € Z*! doesn't change
cone(A)!

o Now the proof goes along the same line as we did for Thm 3.8
(Exer. 3.20)

O
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