Discrete Mathematics \& Computational Structures Lattice-Point Counting in Convex Polytopes
(4) Ehrhart Theory II

Yoshio Okamoto
Tokyo Institute of Technology
May 14, 2009
"Last updated: 2009/05/13 20:40"

The Ehrhart Series of an Integral Poolytope

(1) The Ehrhart Series of an Integral Polytope
(2) From the Discrete to the Continuous Volume of a Polytope
(3) Interpolation
(4) Rational Polytopes and Ehrhart Quasipolynomials
(1) The Ehrhart Series of an Integral PolytopeFrom the Discrete to the Continuous Volume of a Polytope
(3) Interpolation
(4) Rational Polytopes and Ehrhart Quasipolynomials

From the proof of Ehrhart's theorem

Δ an integral d-simplex, Π the fundamental parallelepiped of cone (Δ)

Consequence of the proof of Ehrhart's theorem

$$
\operatorname{Ehr}_{\Delta}(z)=\frac{\sigma_{\Pi}(1, \ldots, 1, z)}{(1-z)^{d+1}}
$$

Corollary 3.11

If

$$
\operatorname{Ehr}_{\Delta}(z)=\frac{h_{d} z^{d}+h_{d-1} z^{d-1}+\cdots+h_{1} z+h_{0}}{(1-z)^{d+1}}
$$

then

$$
h_{k}=\#\left(\Pi \cap\left\{\mathbf{x}: x_{d+1}=k\right\} \cap \mathbb{Z}^{d+1}\right)
$$

Comments to Corollary 3.11

Corollary 3.11

If

$$
\operatorname{Ehr}_{\Delta}(z)=\frac{h_{d} z^{d}+h_{d-1} z^{d-1}+\cdots+h_{1} z+h_{0}}{(1-z)^{d+1}}
$$

then

$$
h_{k}=\#\left(\Pi \cap\left\{\mathbf{x}: x_{d+1}=k\right\} \cap \mathbb{Z}^{d+1}\right)
$$

- This enables us to compute $\operatorname{Ehr}_{\Delta}(z)$ efficiently when d is relatively small
- But not for a general integral polytope
- The h_{k} are all nonnegative
- How about for a general integral polytope?

Proof of Thm 3.12

- Triangulate cone (\mathcal{P}) into simplicial cones $\mathcal{K}_{1}, \ldots, \mathcal{K}_{m}$ (Thm 3.1)
- \exists a vector $\mathbf{v} \in \mathbb{R}^{d+1}$ s.t.
- $\operatorname{cone}(\mathcal{P}) \cap \mathbb{Z}^{d+1}=(\mathbf{v}+\operatorname{cone}(\mathcal{P})) \cap \mathbb{Z}^{d+1}$ and
- Neither the facets of $\mathbf{v}+\operatorname{cone}(\mathcal{P})$ nor the triangulation hyperplanes contain any lattice points

Stanley's nonnegativity theorem

Theorem 3.12 (Stanley's nonnegativity theorem '80

\mathcal{P} an integral convex d-polytope
If

$$
\operatorname{Ehr}_{\mathcal{P}}(z)=\frac{h_{d} z^{d}+h_{d-1} z^{d-1}+\cdots+h_{0}}{(1-z)^{d+1}}
$$

then $h_{0}, h_{1}, \ldots, h_{d} \geq 0$
Remember the examples from Chapter 2 !

Proof of Thm 3.12 (cont'd)

- Then $\forall \mathbf{x} \in(\mathbf{v}+\operatorname{cone}(\mathcal{P})) \cap \mathbb{Z}^{d+1} \exists!j \in\{1, \ldots, m\}: \mathbf{x} \in \mathbf{v}+\mathcal{K}_{j}$
- \therefore it holds as a disjoint union

$$
\begin{equation*}
\operatorname{cone}(\mathcal{P}) \cap \mathbb{Z}^{d}=(\mathbf{v}+\operatorname{cone}(\mathcal{P})) \cap \mathbb{Z}^{d}=\bigcup_{j=1}^{m}\left(\left(\mathbf{v}+\mathcal{K}_{j}\right) \cap \mathbb{Z}^{d}\right) \tag{2}
\end{equation*}
$$

- \therefore

$$
\sigma_{\text {cone }(\mathcal{P})}\left(z_{1}, z_{2}, \ldots, z_{d+1}\right)=\sum_{j=1}^{m} \sigma_{\mathbf{v}+\mathcal{K}_{j}}\left(z_{1}, z_{2}, \ldots, z_{d+1}\right)
$$

- \therefore by Lemma 3.10

$$
\begin{equation*}
\operatorname{Ehr}_{\mathcal{P}}(z)=\sigma_{\text {cone }(\mathcal{P})}(1,1, \ldots, 1, z)=\sum_{j=1}^{m} \sigma_{\mathbf{v}+\mathcal{K}_{j}}(1,1, \ldots, 1, z) \tag{3}
\end{equation*}
$$

Corollary: A constant term

- Enough to show that each $\sigma_{\mathbf{v}+\mathcal{K}_{j}}(1,1, \ldots, 1, z)$ has a nonneg numerator
- The numerator of $\sigma_{\mathbf{v}+\mathcal{K}_{j}}(1, \ldots, 1, z)$ is $\sigma_{\mathbf{v}+\boldsymbol{\Pi}}(1, \ldots, 1, z)$, where Π is the (open) fundamental parallelepiped (Cor. 3.6)
- Each term in $\sigma_{\mathbf{v}+\boldsymbol{\Pi}}(\mathbf{z})$ has a nonnegative exponent in z_{d+1}
$\cdot \because(\mathbf{v}+\Pi) \cap \mathbb{Z}^{d+1} \subseteq\left(\mathbf{v}+\mathcal{K}_{j}\right) \cap \mathbb{Z}^{d+1}=$

$$
(\mathbf{v}+\operatorname{cone}(\mathcal{P})) \cap \mathbb{Z}^{d+1}=\operatorname{cone}(\mathcal{P}) \cap \mathbb{Z}^{d+1}
$$

- \therefore The numerator of $\sigma_{v+\mathcal{K}_{j}}(1, \ldots, 1, z)$ has a nonnegative exponent in z

The Ehrhart Series of an Integral Polytope

How to extract the Ehrhart polynomial from the Ehrhart series

Lemma 3.14

\mathcal{P} an integral convex d-polytope with Ehrhart series

$$
\begin{aligned}
\operatorname{Ehr}_{\mathcal{P}}(z)= & 1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}=\frac{h_{d} z^{d}+h_{d-1} z^{d-1}+\cdots+h_{1} z+1}{(1-z)^{d+1}} \\
\Rightarrow L_{\mathcal{P}}(t)= & \binom{t+d}{d}+h_{1}\binom{t+d-1}{d}+ \\
& \cdots+h_{d-1}\binom{t+1}{d}+h_{d}\binom{t}{d}
\end{aligned}
$$

A (unique) expression of $L_{\mathcal{P}}(t)$ by the basis $\binom{t+d}{d}, \ldots,\binom{t+1}{d},\binom{t}{d}$ (Exer. 3.9)

Lemma 3.13

\mathcal{P} an integral convex d-polytope with Ehrhart series

$$
\operatorname{Ehr}_{\mathcal{P}}(z)=\frac{h_{d} z^{d}+h_{d-1} z^{d-1}+\cdots+h_{0}}{(1-z)^{d+1}}
$$

$\Rightarrow h_{0}=1$
Proof:

- As in Thm 3.12, consider $\mathcal{K}_{1}, \ldots, \mathcal{K}_{m}$ and \mathbf{v}
- $\exists!j \in\{1, \ldots, m\}: \mathbf{0} \in \mathbf{v}+\mathcal{K}_{j}$
- For such a j, the constant term of the numerator of $\sigma_{\mathbf{v}+\mathcal{K}_{j}}(1, \ldots, 1, z)$ is 1
- For the other j, the constant term of the numerator of $\sigma_{\mathbf{v}+\mathcal{K}_{j}}(1, \ldots, 1, z)$ is 0

Proof of Lem 3.14

$$
\begin{aligned}
\operatorname{Ehr}_{\mathcal{P}}(z)= & \frac{h_{d} z^{d}+h_{d-1} z^{d-1}+\cdots+h_{1} z+1}{(1-z)^{d+1}} \\
= & \left(h_{d} z^{d}+h_{d-1} z^{d-1}+\cdots+h_{1} z+1\right) \sum_{t \geq 0}\binom{t+d}{d} z^{t} \\
= & h_{d} \sum_{t \geq 0}\binom{t+d}{d} z^{t+d}+h_{d-1} \sum_{t \geq 0}\binom{t+d}{d} z^{t+d-1}+\cdots \\
& \quad+h_{1} \sum_{t \geq 0}\binom{t+d}{d} z^{t+1}+\sum_{t \geq 0}\binom{t+d}{d} z^{t} \square
\end{aligned}
$$

$$
\begin{array}{r}
\operatorname{Ehr}_{\mathcal{P}}(z)=h_{d} \sum_{t \geq d}\binom{t}{d} z^{t}+h_{d-1} \sum_{t \geq d-1}\binom{t+1}{d} z^{t}+\cdots \\
+h_{1} \sum_{t \geq 1}\binom{t+d-1}{d} z^{t}+\sum_{t \geq 0}\binom{t+d}{d} z^{t} \\
=\sum_{t \geq 0}\left(h_{d}\binom{t}{d}+h_{d-1}\binom{t+1}{d}+\ldots\right. \\
\left.\quad+h_{1}\binom{t+d-1}{d}+\binom{t+d}{d}\right) z^{t} \square
\end{array}
$$

Constant term of an Ehrhart polynomial

Corollary 3.15

\mathcal{P} an integral convex d-polytope \Rightarrow const $L_{\mathcal{P}}(t)=1$

Proof:

$L_{\mathcal{P}}(0)=\binom{d}{d}+h_{1}\binom{d-1}{d}+\cdots+h_{d-1}\binom{1}{d}+h_{d}\binom{0}{d}=\binom{d}{d}=1$
by Lemma 3.14

We know $h_{0}=1$. How about h_{1}, \ldots ?

Corollary 3.16

\mathcal{P} an integral convex d-polytope with Ehrhart series

$$
\operatorname{Ehr}_{\mathcal{P}}(z)=\frac{h_{d} z^{d}+h_{d-1} z^{d-1}+\cdots+h_{1} z+1}{(1-z)^{d+1}}
$$

$$
\Rightarrow h_{1}=L_{\mathcal{P}}(1)-d-1=\#\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)-d-1
$$

Proof:
$L_{\mathcal{P}}(1)=\binom{d+1}{d}+h_{1}\binom{d}{d}+\cdots+h_{d-1}\binom{2}{d}+h_{d}\binom{1}{d}=d+1+h_{1}$
by Lemma 3.14

Remark

We may get similar expressions for h_{2}, h_{3}, \ldots (Exer. 3.10)

How large the coefficients of Ehrhart polynomials are

Corollary 3.17

\mathcal{P} an integral polytope with Ehrhart polynomial
$L_{\mathcal{P}}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+1$
$\Rightarrow d!c_{k} \in \mathbb{Z}$ for all k
Proof:

- By Thm 3.12 and Lem 3.14

$$
L_{\mathcal{P}}(t)=\binom{t+d}{d}+h_{1}\binom{t+d-1}{d}+\cdots+h_{d-1}\binom{t+1}{d}+h_{d}\binom{t}{d}
$$

where the h_{k} are integers

- Expanding the binomial coefficients gives a polynomial in t and the coefficient can be written as rational numbers with denominator d !

The Ehrhart Series of an Interal Polltope
This will be used in the next lecture

Theorem 3.18

Let p be a degree- d polynomial with the rational generating function

$$
\sum_{t \geq 0} p(t) z^{t}=\frac{h_{d} z^{d}+h_{d-1} z^{d-1}+\cdots+h_{1} z+h_{0}}{(1-z)^{d+1}}
$$

Then

$$
\begin{aligned}
& h_{d}=h_{d-1}= \\
& \cdots=h_{k+1}=0 \quad \Leftrightarrow \\
& \text { and } h_{k} \neq 0
\end{aligned} \quad \begin{aligned}
& \quad(-1)=p(-2)=p(-(d-k))=0 \\
& \\
& \text { and } p(-(d-k+1)) \neq 0
\end{aligned}
$$

Proof: Omitted (see the textbook)

What's discrete volume? (from the 1st lecture)

$$
\operatorname{vol} S=\lim _{t \rightarrow \infty} \#\left(S \cap \frac{1}{t} \mathbb{Z}^{d}\right) \frac{1}{t^{d}}
$$

integration counting
(1) The Ehrhart Series of an Integral Polytope(2) From the Discrete to the Continuous Volume of a Polytope
(3) Interpolation
(4) Rational Polytopes and Ehrhart Quasipolynomials

From the Discrete to the Continuous Volume of a Polytope

From the discrete to the continuous volume

Since

$$
\#\left(S \cap\left(\frac{1}{t} \mathbb{Z}\right)^{d}\right)=\#\left(t S \cap \mathbb{Z}^{d}\right)
$$

we obtain the following

Lemma 3.19

$S \subset \mathbb{R}^{d}$ d-dimensional \Rightarrow

$$
\operatorname{vol} S=\lim _{t \rightarrow \infty} \frac{1}{t^{d}} \cdot \#\left(t S \cap \mathbb{Z}^{d}\right)
$$

Note: If S is not d-dimensional then vol $S=0$ by definition

Corollary 3.20

$\mathcal{P} \subset \mathbb{R}^{d}$ an integral convex d-polytope with Ehrhart polynomial $c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+1 \Rightarrow c_{d}=\operatorname{vol} \mathcal{P}$

Proof:

$$
\operatorname{vol} \mathcal{P}=\lim _{t \rightarrow \infty} \frac{c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+1}{t^{d}}=c_{d}
$$

Interpolation

(1) The Ehrhart Series of an Integral Polytope
(2) From the Discrete to the Continuous Volume of a Polytope
(3) Interpolation
(4) Rational Polytopes and Ehrhart Quasipolynomials

Extracting the continuous volume from the Ehrhart series

Corollary 3.21

$\mathcal{P} \subset \mathbb{R}^{d}$ an integral convex d-polytope, and

$$
\operatorname{Ehr}_{\mathcal{P}}(z)=\frac{h_{d} z^{d}+h_{d-1} z^{d-1}+\cdots+h_{1} z+1}{(1-z)^{d+1}}
$$

$$
\Rightarrow \operatorname{vol} \mathcal{P}=\frac{1}{d!}\left(h_{d}+h_{d-1}+\cdots+h_{1}+1\right)
$$

Proof: Lemma 3.14 gives
$L_{\mathcal{P}}(t)=\binom{t+d}{d}+h_{1}\binom{t+d-1}{d}+\cdots+h_{d-1}\binom{t+1}{d}+h_{d}\binom{t}{d}$
and the coefficient of t^{d} is the desired expression

A way to compute the Ehrhart polynomials

How can we compute $L_{\mathcal{P}}(t)$ of a given integral d-polytope \mathcal{P} ?

- We can make use of Ehrhart's theorem
- $\mathcal{L}_{\mathcal{P}}(t)$ is a degree- d polynomial in t
- A degree- d polynomial is uniquely determined by the values on $d+1$ points
- Lagrange interpolation: Determining such a unique polynomial from $d+1$ values
- This involves a famous Vandermonde matrix

Example: Reeve's tetrahedron

$\mathcal{T}_{h}=$ the tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$, $(1,1, h)$, where h is a positive integer

Example: Reeve's tetrahedron (3)

By Cor 3.20,

$$
c_{3}=\operatorname{vol}\left(\mathcal{T}_{h}\right)=\frac{1}{3}(\text { base area })(\text { height })=\frac{h}{6}
$$

Therefore

$$
\begin{aligned}
4 & =c_{3}+c_{2}+c_{1}+1=\frac{h}{6}+c_{2}+c_{1}+1 \\
h+9 & =c_{3} \cdot 2^{3}+c_{2} \cdot 2^{2}+c_{1} \cdot 2+1=8 \cdot \frac{h}{6}+4 c_{2}+2 c_{1}+1
\end{aligned}
$$

Hence $c_{2}=1, c_{1}=2-\frac{h}{6}$

Example: Reeve's tetrahedron (2)

Let $L_{\tau_{h}}(t)=c_{3} t^{3}+c_{2} t^{2}+c_{1} t+1$; Then

$$
4=L_{T_{h}}(1)=c_{3}+c_{2}+c_{1}+1
$$

$$
h+9=L_{\mathcal{T}_{h}}(2)=c_{3} \cdot 2^{3}+c_{2} \cdot 2^{2}+c_{1} \cdot 2+1
$$

DMCS'09 (4)
(2) From the Discrete to the Continuous Volume of a Polytope
(3) Interpolation
(4) Rational Polytopes and Ehrhart Quasipolynomials

Theorem 3.23 (Ehrhart's Theorem for rational polytopes)

\mathcal{P} is a rational convex d-polytope \Rightarrow
$L_{\mathcal{P}}(t)$ is a quasipolynomial in t of degree d;
Its period divides the least common multiple of the denominators of the coordinates of the vertices of \mathcal{P}

Definition (Ehrhart quasipolynomial)

$L_{\mathcal{P}}$ is called the Ehrhart quasipolynomial of \mathcal{P} when \mathcal{P} is a rational convex polytope

Definition (Denominator of a polytope)

The denominator of \mathcal{P} is the least common multiple of the denominators of the coordinates of the vertices of \mathcal{P}

Proof outline (cont'd)
\therefore Enough to prove the following

Claim

Δ a rational d-simplex with denominator $p \Rightarrow$

$$
\operatorname{Ehr}_{\mathcal{P}}(z)=1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}=\frac{g(z)}{\left(1-z^{p}\right)^{d+1}}
$$

for some polynomial g of degree less than $p(d+1)$

- $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d+1} \in \mathbb{Q}^{d}$ the vertices of $\Delta \mathrm{w} /$ denom p
- Consider cone(Δ) with generators

$$
\mathbf{w}_{1}=\left(\mathbf{v}_{1}, 1\right), \mathbf{w}_{2}=\left(\mathbf{v}_{2}, 1\right), \ldots, \mathbf{w}_{d+1}=\left(\mathbf{v}_{d+1}, 1\right)
$$

Proof outline

Similar to Ehrhart's theorem (Thm. 3.8)

- Enough to show for simplices Δ (by triangulation)
- See a relation between L_{Δ} and $\operatorname{Ehr}_{\Delta}(z)$
- Go along the same way as in the proof of Thm. 3.8 (Exer 3.20)

Lemma 3.24

Let

$$
\sum_{t \geq 0} f(t) z^{t}=\frac{g(z)}{h(z)}
$$

Then f is a quasipolynomial of degree d with period dividing p if and only if g and h are polynomials s.t. $\operatorname{deg}(g)<\operatorname{deg}(h)$, all roots of h are p th roots of unity of multiplicity at most $d+1$, and \exists a root of multiplicity equal to $d+1$ (all of this assuming that g / h has been reduced to lowest terms)

Proof outline (further cont'd)

- We want to use Theorem 3.5
- But, Thm 3.5 is for integral pointed cones
- However, replacing $\mathbf{w}_{k} \in \mathbb{Q}^{d+1}$ by $p \mathbf{w}_{k} \in \mathbb{Z}^{d+1}$ doesn't change cone (Δ) !
- Now the proof goes along the same line as we did for Thm 3.8 (Exer. 3.20)

