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The Ehrhart Series of an Integral Polytope

From the proof of Ehrhart’s theorem

∆ an integral d-simplex, Π the fundamental parallelepiped of cone(∆)

Consequence of the proof of Ehrhart’s theorem

Ehr∆(z) =
σΠ(1, . . . , 1, z)

(1− z)d+1

Corollary 3.11

If

Ehr∆(z) =
hd zd + hd−1 zd−1 + · · ·+ h1 z + h0

(1− z)d+1
,

then
hk = #(Π ∩ {x : xd+1 = k} ∩ Zd+1)
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The Ehrhart Series of an Integral Polytope

Comments to Corollary 3.11

Corollary 3.11

If

Ehr∆(z) =
hd zd + hd−1 zd−1 + · · ·+ h1 z + h0

(1− z)d+1
,

then
hk = #(Π ∩ {x : xd+1 = k} ∩ Zd+1)

• This enables us to compute Ehr∆(z) efficiently when d is
relatively small
• But not for a general integral polytope

• The hk are all nonnegative
• How about for a general integral polytope?
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The Ehrhart Series of an Integral Polytope

Stanley’s nonnegativity theorem

Theorem 3.12 (Stanley’s nonnegativity theorem ’80

P an integral convex d-polytope
If

EhrP(z) =
hd zd + hd−1 zd−1 + · · ·+ h0

(1− z)d+1

then h0, h1, . . . , hd ≥ 0

Remember the examples from Chapter 2!
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12

• Triangulate cone(P) into simplicial cones K1, . . . ,Km (Thm 3.1)

• ∃ a vector v ∈ Rd+1 s.t. (Exer 3.14)

• cone(P) ∩ Zd+1 = (v + cone(P)) ∩ Zd+1 and
• Neither the facets of v + cone(P) nor the triangulation

hyperplanes contain any lattice points
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (cont’d)

• Then ∀ x ∈ (v + cone(P))∩Zd+1 ∃! j ∈ {1, . . . ,m}: x ∈ v +Kj

• ∴ it holds

as a disjoint union

cone(P)∩Zd = (v+ cone(P))∩Zd

=
m⋃

j=1

(
(v +Kj) ∩ Zd

)

(2)

• ∴

σcone(P) (z1, z2, . . . , zd+1) =
m∑

j=1

σv+Kj
(z1, z2, . . . , zd+1)

• ∴

by Lemma 3.10

EhrP(z) =

σcone(P) (1, 1, . . . , 1, z) =
m∑

j=1

σv+Kj
(1, 1, . . . , 1, z) (3)
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The Ehrhart Series of an Integral Polytope
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (further cont’d)

• Enough to show that each σv+Kj
(1, 1, . . . , 1, z) has a nonneg

numerator

• The numerator of σv+Kj
(1, . . . , 1, z) is σv+Π(1, . . . , 1, z), where

Π is the (open) fundamental parallelepiped (Cor. 3.6)

• Each term in σv+Π(z) has a nonnegative exponent in zd+1

• ∵ (v + Π) ∩ Zd+1 ⊆ (v +Kj) ∩ Zd+1 =
(v + cone(P)) ∩ Zd+1 = cone(P) ∩ Zd+1

• ∴ The numerator of σv+Kj
(1, . . . , 1, z) has a nonnegative

exponent in z
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The Ehrhart Series of an Integral Polytope

Corollary: A constant term

Lemma 3.13

P an integral convex d-polytope with Ehrhart series

EhrP(z) =
hd zd + hd−1 zd−1 + · · ·+ h0

(1− z)d+1

⇒ h0 = 1

Proof:

• As in Thm 3.12, consider K1, . . . ,Km and v

• ∃! j ∈ {1, . . . ,m}: 0 ∈ v +Kj

• For such a j , the constant term of the numerator of
σv+Kj

(1, . . . , 1, z) is 1

• For the other j , the constant term of the numerator of
σv+Kj

(1, . . . , 1, z) is 0

Y. Okamoto (Tokyo Tech) DMCS’09 (4) 2009-05-14 10 / 32
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The Ehrhart Series of an Integral Polytope

How to extract the Ehrhart polynomial from the Ehrhart series

Lemma 3.14

P an integral convex d-polytope with Ehrhart series

EhrP(z) = 1 +
∑
t≥1

LP(t) z t =
hd zd + hd−1 zd−1 + · · ·+ h1 z + 1

(1− z)d+1

⇒ LP(t) =

(
t + d

d

)
+ h1

(
t + d − 1

d

)
+

· · ·+ hd−1

(
t + 1

d

)
+ hd

(
t

d

)
A (unique) expression of LP(t) by the basis

(
t+d
d

)
, . . . ,

(
t+1
d

)
,
(

t
d

)
(Exer. 3.9)
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The Ehrhart Series of an Integral Polytope

Proof of Lem 3.14

EhrP(z) =
hd zd + hd−1 zd−1 + · · ·+ h1 z + 1

(1− z)d+1

=
(
hd zd + hd−1 zd−1 + · · ·+ h1 z + 1

)∑
t≥0

(
t + d

d

)
z t

= hd

∑
t≥0

(
t + d

d

)
z t+d + hd−1

∑
t≥0

(
t + d

d

)
z t+d−1 + · · ·

+ h1

∑
t≥0

(
t + d

d

)
z t+1 +

∑
t≥0

(
t + d

d

)
z t
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The Ehrhart Series of an Integral Polytope

Proof of Lem 3.14 (cont’d)

EhrP(z) = hd

∑
t≥d

(
t

d

)
z t + hd−1

∑
t≥d−1

(
t + 1

d

)
z t + · · ·

+ h1

∑
t≥1

(
t + d − 1

d

)
z t +

∑
t≥0

(
t + d

d

)
z t

=
∑
t≥0

(
hd

(
t

d

)
+ hd−1

(
t + 1

d

)
+ . . .

+h1

(
t + d − 1

d

)
+

(
t + d

d

))
z t
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The Ehrhart Series of an Integral Polytope

Proof of Lem 3.14 (cont’d)
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The Ehrhart Series of an Integral Polytope

Constant term of an Ehrhart polynomial

Corollary 3.15

P an integral convex d-polytope ⇒ const LP(t) = 1

Proof:

LP(0) =

(
d

d

)
+ h1

(
d − 1

d

)
+ · · ·+ hd−1

(
1

d

)
+ hd

(
0

d

)
=

(
d

d

)
= 1

by Lemma 3.14
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The Ehrhart Series of an Integral Polytope

We know h0 = 1. How about h1, ...?

Corollary 3.16

P an integral convex d-polytope with Ehrhart series

EhrP(z) =
hd zd + hd−1 zd−1 + · · ·+ h1 z + 1

(1− z)d+1
.

⇒ h1 = LP(1)− d − 1 = #
(
P ∩ Zd

)
− d − 1

Proof:

LP(1) =

(
d + 1

d

)
+ h1

(
d

d

)
+ · · ·+ hd−1

(
2

d

)
+ hd

(
1

d

)
= d + 1 + h1

by Lemma 3.14

Remark

We may get similar expressions for h2, h3, . . . (Exer. 3.10)
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The Ehrhart Series of an Integral Polytope

How large the coefficients of Ehrhart polynomials are

Corollary 3.17

P an integral polytope with Ehrhart polynomial
LP(t) = cd td + cd−1 td−1 + · · ·+ c1 t + 1
⇒ d ! ck ∈ Z for all k

Proof:

• By Thm 3.12 and Lem 3.14

LP(t) =

(
t + d

d

)
+h1

(
t + d − 1

d

)
+· · ·+hd−1

(
t + 1

d

)
+hd

(
t

d

)
,

where the hk are integers

• Expanding the binomial coefficients gives a polynomial in t and
the coefficient can be written as rational numbers with
denominator d !
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The Ehrhart Series of an Integral Polytope

This will be used in the next lecture

Theorem 3.18

Let p be a degree-d polynomial with the rational generating function∑
t≥0

p(t) z t =
hd zd + hd−1 zd−1 + · · ·+ h1 z + h0

(1− z)d+1
;

Then

hd = hd−1 = p(−1) = p(−2) =
· · · = hk+1 = 0 ⇔ · · · = p (−(d − k)) = 0
and hk 6= 0 and p (−(d − k + 1)) 6= 0

Proof: Omitted (see the textbook)
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From the Discrete to the Continuous Volume of a Polytope

1 The Ehrhart Series of an Integral Polytope

2 From the Discrete to the Continuous Volume of a Polytope

3 Interpolation

4 Rational Polytopes and Ehrhart Quasipolynomials
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From the Discrete to the Continuous Volume of a Polytope

What’s discrete volume? (from the 1st lecture)

vol S = lim
t→∞

#

(
S ∩ 1

t
Zd

)
1

td

integration counting
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From the Discrete to the Continuous Volume of a Polytope

From the discrete to the continuous volume

Since

#

(
S ∩

(
1

t
Z
)d
)

= #
(
tS ∩ Zd

)
,

we obtain the following

Lemma 3.19

S ⊂ Rd d-dimensional ⇒

vol S = lim
t→∞

1

td
·#
(
tS ∩ Zd

)
Note: If S is not d-dimensional then vol S = 0 by definition

Y. Okamoto (Tokyo Tech) DMCS’09 (4) 2009-05-14 20 / 32



From the Discrete to the Continuous Volume of a Polytope

A nice consequence of Ehrhart’s theorem

Corollary 3.20

P ⊂ Rd an integral convex d-polytope with Ehrhart polynomial
cd td + cd−1 td−1 + · · ·+ c1 t + 1 ⇒ cd = volP

Proof:

volP = lim
t→∞

cd td + cd−1 td−1 + · · ·+ c1 t + 1

td
= cd
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From the Discrete to the Continuous Volume of a Polytope

Extracting the continuous volume from the Ehrhart series

Corollary 3.21

P ⊂ Rd an integral convex d-polytope, and

EhrP(z) =
hd zd + hd−1 zd−1 + · · ·+ h1 z + 1

(1− z)d+1

⇒ volP =
1

d !
(hd + hd−1 + · · ·+ h1 + 1)

Proof: Lemma 3.14 gives

LP(t) =

(
t + d

d

)
+ h1

(
t + d − 1

d

)
+ · · ·+ hd−1

(
t + 1

d

)
+ hd

(
t

d

)
and the coefficient of td is the desired expression
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Interpolation

1 The Ehrhart Series of an Integral Polytope

2 From the Discrete to the Continuous Volume of a Polytope

3 Interpolation

4 Rational Polytopes and Ehrhart Quasipolynomials
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Interpolation

A way to compute the Ehrhart polynomials

How can we compute LP(t) of a given integral d-polytope P?

• We can make use of Ehrhart’s theorem

• LP(t) is a degree-d polynomial in t

• A degree-d polynomial is uniquely determined by the values on
d + 1 points

• Lagrange interpolation: Determining such a unique polynomial
from d + 1 values

• This involves a famous Vandermonde matrix
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Interpolation

Example: Reeve’s tetrahedron

Th = the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0),
(1, 1, h), where h is a positive integer

2h

h

(2, 2, 2h)

(1, 1, h)

1

2

1 2

x

y

z
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Interpolation

Example: Reeve’s tetrahedron (2)

Let LTh(t) = c3 t3 + c2 t2 + c1 t + 1; Then

4 = LTh(1) = c3 + c2 + c1 + 1

h + 9 = LTh(2) = c3 · 23 + c2 · 22 + c1 · 2 + 1

2h

h

(2, 2, 2h)

(1, 1, h)

1

2

1 2

x

y

z
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Interpolation

Example: Reeve’s tetrahedron (3)

By Cor 3.20,

c3 = vol (Th) =
1

3
(base area)(height) =

h

6

Therefore

4 = c3 + c2 + c1 + 1 =
h

6
+ c2 + c1 + 1

h + 9 = c3 · 23 + c2 · 22 + c1 · 2 + 1 = 8 · h
6

+ 4 c2 + 2 c1 + 1

Hence c2 = 1, c1 = 2− h
6
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Rational Polytopes and Ehrhart Quasipolynomials
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2 From the Discrete to the Continuous Volume of a Polytope
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4 Rational Polytopes and Ehrhart Quasipolynomials

Y. Okamoto (Tokyo Tech) DMCS’09 (4) 2009-05-14 28 / 32



Rational Polytopes and Ehrhart Quasipolynomials

Ehrhart’s theorem for rational polytopes

Theorem 3.23 (Ehrhart’s Theorem for rational polytopes)

P is a rational convex d-polytope ⇒
LP(t) is a quasipolynomial in t of degree d ;
Its period divides the least common multiple of the denominators of
the coordinates of the vertices of P

Definition (Ehrhart quasipolynomial)

LP is called the Ehrhart quasipolynomial of P when P is a rational
convex polytope

Definition (Denominator of a polytope)

The denominator of P is the least common multiple of the
denominators of the coordinates of the vertices of P
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Rational Polytopes and Ehrhart Quasipolynomials

Proof outline

Similar to Ehrhart’s theorem (Thm. 3.8)
• Enough to show for simplices ∆ (by triangulation)
• See a relation between L∆ and Ehr∆(z) (Lem 3.24)
• Go along the same way as in the proof of Thm. 3.8 (Exer 3.20)

Lemma 3.24

Let ∑
t≥0

f (t) z t =
g(z)

h(z)
;

Then f is a quasipolynomial of degree d with period dividing p if and
only if g and h are polynomials s.t. deg(g) < deg(h), all roots of h
are pth roots of unity of multiplicity at most d + 1, and ∃ a root of
multiplicity equal to d + 1 (all of this assuming that g/h has been
reduced to lowest terms)

Proof: Exercise 3.19
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Rational Polytopes and Ehrhart Quasipolynomials

Proof outline (cont’d)

∴ Enough to prove the following

Claim

∆ a rational d-simplex with denominator p ⇒

EhrP(z) = 1 +
∑
t≥1

LP(t) z t =
g(z)

(1− zp)d+1

for some polynomial g of degree less than p(d + 1)

• v1, v2, . . . , vd+1 ∈ Qd the vertices of ∆ w/ denom p

• Consider cone(∆) with generators

w1 = (v1, 1) ,w2 = (v2, 1) , . . . ,wd+1 = (vd+1, 1)
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Rational Polytopes and Ehrhart Quasipolynomials

Proof outline (further cont’d)

• We want to use Theorem 3.5
• But, Thm 3.5 is for integral pointed cones

• However, replacing wk ∈ Qd+1 by pwk ∈ Zd+1 doesn’t change
cone(∆)!

• Now the proof goes along the same line as we did for Thm 3.8
(Exer. 3.20)
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