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The Ehrhart Series of an Integral Polytope

From the proof of Ehrhart's theorem

A an integral d-simplex, I the fundamental parallelepiped of cone(A)

Consequence of the proof of Ehrhart's theorem
on(l,...,1,2)

EhrA(z) = (1 — Z)d+1

Corollary 3.11

If
hdZd—i-hd,lZd_l—F"'—l—hlZ—l—ho
EhrA(Z) = (1 _ Z)d+1 )

then
he = #(MN{x: xg41 = k} NZT)

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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The Ehrhart Series of an Integral Polytope

Comments to Corollary 3.11

Corollary 3.11

If
hgz9 + hg_1z9 1+ - -+ hz+ hy
EhrA(Z) = (1 _ Z)d+1 )

then
he = #(MN{x: xg01 = k}NZT)

e This enables us to compute Ehra(z) efficiently when d is
relatively small
e But not for a general integral polytope
e The hy are all nonnegative
e How about for a general integral polytope?

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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The Ehrhart Series of an Integral Polytope

Stanley’s nonnegativity theorem

Theorem 3.12 (Stanley’s nonnegativity theorem '80

P an integral convex d-polytope
If

hgz9 + hg_1 2971+ - + ho
Ehrp(z) = (1 — z)d+1

then ho,h17...,hd20

Remember the examples from Chapter 2!

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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e Triangulate cone(P) into simplicial cones /Cy, .

JKCm (Thm 3.1)
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12

e Triangulate cone(P) into simplicial cones Ky, ..., KCp,, (Thm 3.1)
e Javectorve R st (Exer 3.14)
e cone(P)NZI+ = (v + cone(P)) N Z+1 and
e Neither the facets of v + cone(P) nor the triangulation
hyperplanes contain any lattice points
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e ThenVx € (v+cone(P))NZIt 3 je{l,...,m} xev+K;



e ThenVx € (v+cone(P))NZIt 3 je{l,...,m} xev+K;
e . it holds

cone(P)NZ? = (v+cone(P))NZ?

(2)
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (cont'd)

e ThenV x € (v+cone(P))NZ4 3l je{1,...,m}: xev+K;
e . it holds as a disjoint union

cone(P)NZ? = (v+cone(P))NZ% = U (v+K;)NzZ7) (2)

j=1

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 8 /32



The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (cont'd)

e ThenV x € (v+cone(P))NZ4 3l je{1,...,m}: xev+K;
e . it holds as a disjoint union

cone(P)NZ? = (v+cone(P))NZ% = U (v+K;)NzZ7) (2)

j=1

m
O cone(P) (217227---7Zd+1): E Ov+K; (217227---7Zd+1)
j=1
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (cont'd)

e ThenV x € (v+cone(P))NZ4 3l je{1,...,m}: xev+K;

e . it holds as a disjoint union
cone(P)NZ? = (v+cone(P))NZ% = U (v+K;)NzZ7) (2)
j=1
[ J
O cone(P) (217 22y - 7Zd+1) = Z O-VJrICJ' (217 22, ... 7Zd+1)
j=1
[ ]

Oeone(@) (1.1, 1,2) = Y oyar, (1,1,...,1,2) (3)
j=1
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (cont'd)

e ThenV x € (v+cone(P))NZ4 3l je{1,...,m}: xev+K;

e . it holds as a disjoint union
cone(P)NZ? = (v+cone(P))NZ% = U (v+K;)NzZ7) (2)
j=1
[ J
O cone(P) (21722, e 7Zd+1) = ZUVHCJ- (21722; e 7Zd+1)
j=1
e . by Lemma 3.10

Ehrp(2) = Oeone(p) (1.1, 1,2) = Y oyar, (1,1,...,1,2) (3)
j=1

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 8 /32



e Enough to show that each o, x; (1,1,...,1,2) has a nonneg
numerator
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (further cont'd)

e Enough to show that each oy, (1,1,...,1,2) has a nonneg
numerator

e The numerator of oy, x;(1,...,1,2) is ovin(l,...,1,2), where
M is the (open) fundamental parallelepiped (Cor. 3.6)

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 9 /32



The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (further cont'd)

e Enough to show that each oy, (1,1,...,1,2) has a nonneg
numerator

e The numerator of oy, x;(1,...,1,2) is ovin(l,...,1,2), where
M is the (open) fundamental parallelepiped (Cor. 3.6)

e Each term in 0,,n(2) has a nonnegative exponent in z,1
o s (v+MNZIFLC(v+K;)NZItt =
(v + cone(P)) N Z9+1 = cone(P) N Z9+1
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The Ehrhart Series of an Integral Polytope

Proof of Thm 3.12 (further cont'd)

e Enough to show that each oy, (1,1,...,1,2) has a nonneg
numerator

e The numerator of oy, x;(1,...,1,2) is ovin(l,...,1,2), where
M is the (open) fundamental parallelepiped (Cor. 3.6)

e Each term in 0,,n(2) has a nonnegative exponent in z,1
o s (v+MNZIFLC(v+K;)NZItt =
(v + cone(P)) N Z9+1 = cone(P) N Z9+1
e .. The numerator of oy x;(1,...,1,2) has a nonnegative
exponent in z OJ
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P an integral convex d-polytope with Ehrhart series
h,z294+ h, z9"Y 4+ ... LA
Ehrp(z)z dZ° +hyg_12 ol + ho
= ho =1

(1—z)9+1
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(1= z)d+1
Proof:

e Asin Thm 3.12, consider Ky,

P an integral convex d-polytope with Ehrhart series
h,z294+ h, z9"Y 4+ ... LA
Ehrp(z)z dZ° +hyg_12 ol + ho
= ho =1
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The Ehrhart Series of an Integral Polytope

Corollary: A constant term

Lemma 3.13
P an integral convex d-polytope with Ehrhart series

hdZd—|—hd,12d_1 + -+ ho
Ehrp(z) = (1—z)d+1

:>h0:1

Proof:
e Asin Thm 3.12, consider ICy,...,K,, and v
e Jlje{l,....m}: 0ev+K;

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 10 / 32



The Ehrhart Series of an Integral Polytope

Corollary: A constant term

Lemma 3.13
P an integral convex d-polytope with Ehrhart series

hdZd—i-hd,lZd_l—l— -+ hg
Ehrp(z) = (1—z)d+1

:>h0:1

Proof:
e Asin Thm 3.12, consider ICy,...,K,, and v
e Jlje{l,....m}: 0ev+K;
e For such a j, the constant term of the numerator of
ovir;(1,...,1,2)is 1
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The Ehrhart Series of an Integral Polytope

Corollary: A constant term

Lemma 3.13
P an integral convex d-polytope with Ehrhart series

. hdZd—l-hd,lZd_l—l—"'—}—ho

Ehrp(Z) = (1 — Z)d+1
= ho =1
Proof:
e Asin Thm 3.12, consider ICy,...,K,, and v
e Jlje{l,....m}: 0ev+K;
e For such a j, the constant term of the numerator of
av+,gj(1, ., 1,z)is 1
e For the other j, the constant term of the numerator of
av+,gj(1,...,17z) is 0 O
Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 10 / 32



The Ehrhart Series of an Integral Polytope

How to extract the Ehrhart polynomial from the Ehrhart series

Lemma 3.14
P an integral convex d-polytope with Ehrhart series

hgz®+hg 1297+ -+ hz+1
Ehrp(z) = 1+ ) Lp(t)z' = e

t>1

(1) = (t;d>+hl<t+;l—1)+

t+1 t
hqg— h

A (unique) expression of Lp(t) by the basis (Hgd), (YL (0)
(Exer. 3.9)

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 11 / 32



(1 —z)d+t

d L
EhrP(Z):hdZ +hg 127 4z 41




Ehrp(z) =

hyzd 4 hy 29 4zt 1

(1 —z)d+t

= (hdZd+hd_12d_1—|—._'+hlz+1)z

GRE
d z
t>0
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The Ehrhart Series of an Integral Polytope

Proof of Lem 3.14

hdZd—th,lZd_l—F"'—}—hlZ—l—l
(1 z)d+

:(hdzd+hd1zd1+,,,+hlz+1)z(t+d>zt

t>0

Ehrp(Z) =

:hdz <t—;d)zt+d+hd_lz(t_;d>zt+d—1+”_

>0 >0
t+d\ . t+d\ ,
—i—hlZ( J )z +Z J zt [
t>0 t>0

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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The Ehrhart Series of an Integral Polytope

Proof of Lem 3.14 (cont'd)

Ehrp(z —hdz< )z +ha1 Y (tH)

t>d t>d—1

+hlz(t+3_1)zt+2(t—;d>zt

t>1

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 13 / 32



The Ehrhart Series of an Integral Polytope

Proof of Lem 3.14 (cont'd)

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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P an integral convex d-polytope = const Lp(t) =1 l
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P an integral convex d-polytope = const Lp(t) =1 '

Proof:

L R R St R

d
by Lemma 3.14
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P an integral convex d-polytope with Ehrhart series

hgz® + hy_1z9 1+ +hz+1
(1= z)d+ '

Ehl’p(Z) =

=h=Lp1)—-d-1=#(PnZ)-d-1

We may get similar expressions for hy, hs,... (Exer. 3.10)




The Ehrhart Series of an Integral Polytope

We know hg = 1. How about hq,...7

Corollary 3.16

P an integral convex d-polytope with Ehrhart series

hgz® + hy_1z9 1+ +hz+1
Ehrp(z) = (1 — z)d+1 '

=h=Lp(l)—d—1=#(PNZ') —d -1

Proof:

d+1 d 2 1
Lp(1) = h e+ hy_ h = 1+h
r(1) (d)+ 1(d)+ +d1<d)—|— d(d) d+1+h
by Lemma 3.14 [
Remark

We may get similar expressions for h,, hs, ... (Exer. 3.10)

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 15 / 32



P an integral polytope with Ehrhart polynomial
Lp(t)=cqgtd+cy 1t P+t gt +1
= dlc¢, € Z for all k
<Or <@ <=r» «Er» E HAX
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The Ehrhart Series of an Integral Polytope

How large the coefficients of Ehrhart polynomials are

Corollary 3.17

P an integral polytope with Ehrhart polynomial
Lp(t)=cqt?+ gyt =t +- -+ qt+1

= dlc, € Z for all k

Proof:
e By Thm 3.12 and Lem 3.14

t+d t+d—1 t+1 t
wu%=((1>+m( J )+~+m1<(j>+m(;»

where the hy are integers

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 16 / 32



The Ehrhart Series of an Integral Polytope

How large the coefficients of Ehrhart polynomials are

Corollary 3.17

P an integral polytope with Ehrhart polynomial
Lp(t)=cqt?+ gyt =t +- -+ qt+1

= dlc, € Z for all k

Proof:
e By Thm 3.12 and Lem 3.14

t+d t+d—1 t+1 t
wu%=((1)+m( J )+~+m1((j>+m(4)

where the hy are integers

e Expanding the binomial coefficients gives a polynomial in t and
the coefficient can be written as rational numbers with
denominator d! O

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 16 / 32



The Ehrhart Series of an Integral Polytope

This will be used in the next lecture

Theorem 3.18

Let p be a degree-d polynomial with the rational generating function

S p(e)ot = Pt b2 bzt by

= (1 _ Z)d+1 !
Then

hy = hg_1 = P(_l) = P(_Z) =

"':hk+1:O <:> '--:p—(d_k))zo

and h, #0 and p(—(d —k+1))#0

Proof: Omitted (see the textbook)

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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From the Discrete to the Continuous Volume of a Polytope

@® From the Discrete to the Continuous Volume of a Polytope
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counting

integration

19 / 32
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DMCS'09 (4)

From the Discrete to the Continuous Volume of a Polytope

What's discrete volume? (from the 1st lecture)

Y. Okamoto (Tokyo Tech)



From the Discrete to the Continuous Volume of a Polytope

From the discrete to the continuous volume

Since
1

d
Sn{=z) | =#(tSnz’
# ﬂ(t) # (SN2,
we obtain the following

Lemma 3.19
S c RY d-dimensional =

vol S = lim i-#(tSmZd) O

t—o00 td

Note: If S is not d-dimensional then vol S = 0 by definition

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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P C R? an integral convex d-polytope with Ehrhart polynomial
gt 4+ cg1t P+t t+1l=cy=volP
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P C R? an integral convex d-polytope with Ehrhart polynomial
gt 4+ cg1t P+t t+1l=cy=volP
Proof:

vol P = lim

t—oo

td

gt + gt o fat+ 1

Cd|:|
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From the Discrete to the Continuous Volume of a Polytope

Extracting the continuous volume from the Ehrhart series

Corollary 3.21
P C RY an integral convex d-polytope, and

hgz9+ hg_12z9 1+ -+ hz+1
Ehrp(z) = 1=z

1
:>V0|P:m(hd+hd—1+"'+h1+1)

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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From the Discrete to the Continuous Volume of a Polytope

Extracting the continuous volume from the Ehrhart series

Corollary 3.21
P C RY an integral convex d-polytope, and

hgz9+ hg_12z9 1+ -+ hz+1
Ehrp(z) = 1=z

1
:>VO|P:m(hd—i-hd,l—i—-'-—khl—i—l)

Proof: Lemma 3.14 gives

Lo(t) = (fj") +h1<t+3_1> +---+hd_1(fj;1) +hd@

and the coefficient of t? is the desired expression n

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 22 /32
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e We can make use of Ehrhart's theorem
«O» «Fr «Z» « > Q>
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e We can make use of Ehrhart's theorem
e Lp(t) is a degree-d polynomial in t
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Interpolation

A way to compute the Ehrhart polynomials

How can we compute Lp(t) of a given integral d-polytope P?
e We can make use of Ehrhart’s theorem
e Lp(t) is a degree-d polynomial in t
e A degree-d polynomial is uniquely determined by the values on
d + 1 points

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 24 /32



Interpolation

A way to compute the Ehrhart polynomials

How can we compute Lp(t) of a given integral d-polytope P?
e We can make use of Ehrhart’s theorem
e Lp(t) is a degree-d polynomial in t

e A degree-d polynomial is uniquely determined by the values on
d + 1 points

e Lagrange interpolation: Determining such a unique polynomial
from d + 1 values

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 24 /32



Interpolation

A way to compute the Ehrhart polynomials

How can we compute Lp(t) of a given integral d-polytope P?
e We can make use of Ehrhart’s theorem
e Lp(t) is a degree-d polynomial in t

e A degree-d polynomial is uniquely determined by the values on
d + 1 points

e Lagrange interpolation: Determining such a unique polynomial
from d + 1 values

e This involves a famous Vandermonde matrix

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 24 /32



Interpolation
Example: Reeve's tetrahedron
’]77 —

the tetrahedron with vertices (0,0,0), (1,0,0), (0,1,0),
(1,1, h), where h is a positive integer

777777777777777777

Y. Okamoto (Tokyo Tech)
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Let Lr,(t) = t3+at?+at+1; Then
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Let Lr,(t) = t3+at?+at+1; Then
L'Th(l)ZC3+C2+C1+1

«O» «Fr « =>»

« =




Let Lr,(t) = t3+at?+at+1; Then
4:L7;,(1):C3—|-C2+C1—|—1




Let Lr,(t) = t3+at?+at+1; Then
4:L7;,(1):C3—|-C2+C1—|—1

h+9=L7r(2)=c -2+ +¢c-2+1

21




By Cor 3.20,

C3 = vol (771)

%(base area) (height) = —

6
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Interpolation

Example: Reeve's tetrahedron (3)

By Cor 3.20,
1 , h
c; =vol (7,) = g(base area)(height) = 6
Therefore
h
d=agt+aotatl=-+at+ta+l

6
h
h+9:c3-23+c2-22+c1-2+1:8-6+4c2+2c1—|—1

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 27 / 32



Interpolation

Example: Reeve's tetrahedron (3)

By Cor 3.20,
1 , h
a3 =vol (7)) = g(base area)(height) = 6
Therefore

h
4=C3+C2+C1+1:6+C2—|—C1+1

h
h+9:c3-23+c2-22+c1-2+1:8-6+4c2+2c1—|—1

Hencecgzl,c1:2—’g1 O

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 27 / 32



Rational Polytopes and Ehrhart Quasipolynomials

@ Rational Polytopes and Ehrhart Quasipolynomials
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Rational Polytopes and Ehrhart Quasipolynomials

Ehrhart’s theorem for rational polytopes

Theorem 3.23 (Ehrhart's Theorem for rational polytopes)

P is a rational convex d-polytope =

Lp(t) is a quasipolynomial in t of degree d;

Its period divides the least common multiple of the denominators of
the coordinates of the vertices of P

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 29 /32



Rational Polytopes and Ehrhart Quasipolynomials

Ehrhart’s theorem for rational polytopes

Theorem 3.23 (Ehrhart's Theorem for rational polytopes)

P is a rational convex d-polytope =

Lp(t) is a quasipolynomial in t of degree d;

Its period divides the least common multiple of the denominators of
the coordinates of the vertices of P

Definition (Ehrhart quasipolynomial)

Lp is called the Ehrhart quasipolynomial of P when P is a rational
convex polytope

Definition (Denominator of a polytope)

The denominator of P is the least common multiple of the
denominators of the coordinates of the vertices of P

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 29 /32



Rational Polytopes and Ehrhart Quasipolynomials

Proof outline

Similar to Ehrhart’s theorem (Thm. 3.8)
e Enough to show for simplices A (by triangulation)
e See a relation between La and Ehra(z) (Lem 3.24)
e Go along the same way as in the proof of Thm. 3.8 (Exer 3.20)
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Rational Polytopes and Ehrhart Quasipolynomials

Proof outline

Similar to Ehrhart’s theorem (Thm. 3.8)
e Enough to show for simplices A (by triangulation)

e See a relation between L and Ehra(2) (Lem 3.24)
e Go along the same way as in the proof of Thm. 3.8 (Exer 3.20)
Lemma 3.24
Let

(2)

f(t)z' = g2) :

; h(z)

Then f is a quasipolynomial of degree d with period dividing p if and
only if g and h are polynomials s.t. deg(g) < deg(h), all roots of h
are pth roots of unity of multiplicity at most d + 1, and 3 a root of
multiplicity equal to d + 1 (all of this assuming that g/h has been
reduced to lowest terms)

Proof: Exercise 3.19

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14 30/ 32



Rational Polytopes and Ehrhart Quasipolynomials

Proof outline (cont'd)

*. Enough to prove the following

Claim
A a rational d-simplex with denominator p =

8(2)
Ehrp = 1 =+ Z L’p = T)dﬂ

t>1 1

for some polynomial g of degree less than p(d + 1)

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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Rational Polytopes and Ehrhart Quasipolynomials

Proof outline (cont'd)

*. Enough to prove the following

Claim
A a rational d-simplex with denominator p =
Ehrp(z) =1+ Z Lp(t) 2" = 42 d+1
t>1 (1—2r)

for some polynomial g of degree less than p(d + 1)

® Vi, Vo, ..., Vg1 € QF the vertices of A w/ denom p

o Consider cone(A) with generators

wi = (vi,1),wp = (v, 1), .., wgi1 = (Vgi1,1)

Y. Okamoto (Tokyo Tech) DMCS'09 (4) 2009-05-14
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Rational Polytopes and Ehrhart Quasipolynomials

Proof outline (further cont'd)

e We want to use Theorem 3.5
e But, Thm 3.5 is for integral pointed cones

e However, replacing w, € Q9*! by pwy € Z*! doesn’t change
cone(A)!

e Now the proof goes along the same line as we did for Thm 3.8
(Exer. 3.20)

O
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