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Proving the following two theorems, and some more

‘P is an integral convex d-polytope =
Lp(t) is a polynomial in t of degree d

‘P is a rational convex d-polytope =

Lp(t) is a quasipolynomial in t of degree d;

Its period divides the least common multiple of the denominators of
the coordinates of the vertices of P
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Triangulations and Pointed Cones

Triangulation

‘P a convex d-polytope

Definition (Triangulation)
A triangulation of P is a finite collection T of d-simplices with the
following properties:

«P=JA

AeT
e VA, Ay e T: A;N A, is aface common to both A; and A,

V.

Tnot a triangulation
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Triangulations and Pointed Cones

Pointed cones

Triangulations and Pointed Cones

Triangulation using no new vertices

Definition (Pointed cone)

A pointed cone K C R? is a set of the form
K= {v+)\1w1+/\2w2+~~+/\mwm: )\1,)\2,...7)\,.,, 20},

where v, wy, W», ..., w,, € R? are such that 3 a hyperplane H for
which HN IC = {v}; that is, K \ {v} lies strictly on one side of H
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Definition (Triangulation using no new vertices)

‘P can be triangulated using no new vertices if 3 a triangulation T
s.t. the vertices of any A € T are vertices of P

Theorem 3.1
Every convex polytope can be triangulated using no new vertices J

Proof: See Appendix B in the textbook
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Triangulations and Pointed Cones

Pointed cones: Glossary

A pointed cone
K= {V+)\1W1+)\2W2+"‘+)\mwmi AL, Ay ey A > 0} ng
Definition

e The vector v is called the apex of K

e The wy's are the generators of IC

e The dimension of K is the dimension of the affine space spanned
by IC; if K is of dimension d, we call it a d-cone

e The d-cone K is simplicial if /C has precisely d linearly
independent generators

e The cone is rational if v, wy,Ws, ..., w,, € Q7 in which case we
may choose W1, W», ..., W, € Z9 by clearing denominators
o
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P C RY a convex polytope with vertices vy, va, ..., v,

The cone over P is defined as
cone(P) = {\wy + dowy + -+ 4+ AW, 0 Ap, Ag, ..., A, > 0F € RITE

where

wi = (vi,1), wp = (vp,1), ..., w, =(v,,1)

K C R? a pointed d-cone; a € RY, b€ R

The inequality a - x < b is a valid inequality for K if
a-z<bforallze K

e cone(P) has the origin as apex

e We can recover our original polytope P by cutting cone(P) with
the hyperplane xz.1 =1

K C R? a pointed cone

F is a face of K if 3 a valid inequality a - x < b for K s.t.

F=KN{x:a-x=b}

o Every face of a pointed cone is also a pointed cone




Triangulations and Pointed Cones

Triangulation of a pointed cone: Analogous to polytopes

Triangulations and Pointed Cones

Triangulation using no new generators

KC a pointed d-cone

Definition (Triangulation)
A triangulation of K is a collection T of simplicial d-cones that
satisfies the following:

ek={JSs

SeT
e VS5,5 € T: §:NS, is aface common to both §; and S,
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Triangulations and Pointed Cones

Proof of Theorem 3.2

e /C a given pointed d-cone

3 a hyperplane H that intersects IC only at the apex

e Translate H “into” the cone, so that H N K consists of more
than just one point

e This intersection is a (d — 1)-polytope P, whose vertices are
determined by the generators of K

e Triangulate P using no new vertices (by Thm 3.1)

e The cone over each simplex of the triangulation is a simplicial
cone

e These simplicial cones, by construction, triangulate K O
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KC a pointed d-cone

Definition
IC is triangulated using no new generators if 3 a triangulation T s.t.
the generators of any S € T are generators of P

Theorem 3.2
Any pointed cone can be triangulated into simplicial cones using no
new generators
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Integer-Point Transforms for Rational Cones

Integer-point transforms

Integer-Point Transforms for Rational Cones

Example (1)

Definition (Integer-point transform)

The integer-point transform (or the moment generating function) of
SCRYis

05(2)205(21,22,...,Zd) = Z ZzM

meSnzd
.oom . _mi _m my
Recall: z™ =z 2, -+ z4
Example:
_ 2 —1
0s(z1,20) = znzs+z2z0+2z1+ 712,
+z+1+2z"
L[] L] L] L] L]
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Integer-Point Transforms for Rational Cones

Example (2)

K = [0, 00) the 1-dimensional cone

1
ox(z) = Z zm:Zz’"zl_z

mée[0,00)NZ m>0
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Integer-Point Transforms for Rational Cones

Example (2): List all vertices of the translates of I1

K= {/\1(17 1) + /\2(—2, 3) DAL A > O} C Rz;
The fundamental parallelogram of KC

M= {\(1,1) +X(-2,3): 0< A, o <1} CR?

tiles IC if we translate 1 by nonnegative integer linear combinations
of the generators (1,1) and (—2,3)

B
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These are nonnegative integer combinations of the generators (1, 1)
and (—2,3), so we can list them using geometric series:

. 1
m __ J(1L,1)+k(=2,3) _
Z z ZZZ (1—z2) (1 —Zf2223)

m=j(1,1)+k(-2.3)  j>0 k>0
Jik>0

©0 000 00O0OOOOS

L]
(]
[ ]
(]
[ ]
]
[ ]
(]
[ ]
(]
'Y
L]

©0 0000600600000
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Example (2): Expressing the whole cone by translations Example (2): Conclusion
Let Hence
Limny = {(m,n)+j(1,1) + k(=2,3) : j, k € Z>o} . ox(2) = (14 2o+ 22 + 2722 + 772 20) 2m
Then m=(L1)+h(-23)
2 J:k=0
KNZ = U £(m,n) 3

2, 1,2, -1
_ 1+ zn+2z5+2 25+ 2z

(1—2z12) (1 — 21_2223) =

(m,n)ennz?

where NN Z2 = {(0,0),(0,1), (0,2), (~1,2), (~1,3)}
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Integer-Point Transforms for Rational Cones Integer-Point Transforms for Rational Cones
Integer-point transform of a simplicial cone Proof of Theorem 3.5
_ m . .
Theorem 3.5 e 0y.x(2) = ere(erlC)ﬁZd z™ lists each integer point m e v+ IC
as the monomial z™
Let

e Such a lattice point can be written as (by definition)

K= {awi + dowo + -+ AgWg : Ag, Ao, ..., Ag > 0}
m=v-+ \w; + oWy + -+ + Agwy

be a simplicial d-cone, where wi,w>, ..., wy € Z9. Then for v € RY,

the integer-point transform o, of the shifted cone v + K is the for some numbers Ay, Az, ..., Ag = 0

rational function e This representation is unique (*." the wy's form a basis of R9)
vin(2) e Since Ay = [ Ax] + { Ak}, we get

ovik(z) = (1—z%)(1—2z%)- (1 —z%)’ m = v+ ({)\1}W1 +{ w4+ {)\d}Wd)

where 1 is the fundamental parallelepiped of K: + [ A wy 4 [ Ao wo 4o [ A wy

HZ:{)\1W1+)\2W2+"'+)\deZ 0§)\1,)\2,...,)\d<1}.
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (cont'd)

Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (further cont'd)

e Since 0 < {\} <1,
p=v+{A}wi+{fwr+ -+ { A }wyev+TI

In fact, p € Z¢ (.- m and [\«] wy are all integral)
Again the representation of p in terms of the wy's is unique
e .any m € v+ K NZ? can be uniquely written as

m:p+k1W1+k2W2+"'+ded
for some p € (v + M) NZ? and some ki, ko, ..., kg € Z>g

e On the other hand, the RHS of the theorem can be written as

O'V+|-|(Z) o p kiwi kagwg
(1—z™).- (1_z%) >, 2 (Zz )(Zz )

pe(v+MN)Nzd ki1>0 kqg>0

— § } § ZP+k1W1+~--+ded ]

pe(v+M)Nzd k1 >0 ky>0

Remarks

e Crucial geometric idea: v + K is tiled with the translates of
v + 1 by nonnegative integral combinations of the wy's

e Computational perspective: Difficulty lies in v + Il
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Integer-Point Transforms for Rational Cones

Corollary: General pointed cones

o Namely,
ovik(z) = Z ra
me(v+K)nzd
— Z Z . Z ZP+k1W1+~--+ded
pe(v+M)NZd k1>0 kqg>0
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Integer-Point Transforms for Rational Cones
Corollary: Relaxing the assumption
Corollary 3.6
Let
K= {)\1W1+)\2W2+"'+)\dwd DAL A, Ay ZO}
be a simplicial d-cone, where wi,w», ..., wy € Z9, and v € RY, s.t.
the boundary of v + C contains no integer point. Then
JV+|'|(Z)
o z) =
vik(2) (I—z%)(1—2%)- (1 —2%)’
where [1 is the open parallelepiped
.= {/\1W1+)\2W2+"'+)\dwdi 0< )\1,)\2,...,)\(1 < 1}

Proof: Similar to Theorem 3.5 O
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Corollary 3.7
Given any pointed cone

IC:{V+)\1W1+>\2W2+“'+)\meI )\1,/\2,...,)\,,,20}

with v € R wy,wo, ..., w,, € Z9 the integer-point transform
ox(z) evaluates to a rational function in the coordinates of z

Proof:
e C can be triangulated (Theorem 3.2)

e The intersection of simplicial cones in a triangulation is again a
simplicial cone (Exer. 3.2)

e The inclusion-exclusion principle does the job O
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Expanding and Counting Using Ehrhart’s Original Approach

©® Expanding and Counting Using Ehrhart's Original Approach
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Expanding and Counting Using Ehrhart's Original Approach

Proof Outline

Expanding and Counting Using Ehrhart's Original Approach

Ehrhart's Theorem

The fundamental theorem concerning the lattice-point count in an
integral convex polytope
Theorem 3.8 (Ehrhart's Theorem)

P is an integral convex d-polytope =
Lp(t) is a polynomial in t of degree d

Definition (Ehrhart polynomial)

Lp is called the Ehrhart polynomial of P when P is an integral
convex polytope
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Expanding and Counting Using Ehrhart's Original Approach

Proof of Theorem 3.8

e Enough to show for simplices A (by triangulation)
e See a relation between La and Ehra(2) (Lem 3.9)
e See a relation between Ehra and ocone(a) (Lem 3.10)

e Use Theorem 3.5 to conclude

Lemma 3.9

Let )
g\z .

> f(t)zt = et

>0

Then f is a polynomial of degree d < g is a polynomial of degree at
most d and g(1) #0

Proof: Exercise 3.8
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e Enough to show for simplices (. Thm 3.1)
o Note: The intersection of simplices in a triangulation is again a
simplex

e Enough to show for an integral d-simplex A

Ehra(z) =1+ Z La(t) 2" = uf(j))zjﬂ

>1

for some polynomial g of degree at most d with g(1) # 0
(. Lem 3.9)
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Expanding and Counting Using Ehrhart's Original Approach

Proof of Theorem 3.8: Lemma 3.10

Expanding and Counting Using Ehrhart's Original Approach

Proof of Lemma 3.10 (cont'd)

‘P a convex d-polytope

Ocone(P) (2, 2d+1) = 1+ 0p (2) Zas1 + 02p (2) Z5 g + -+

Lemma 3.10
_ t_
Ocone(P) (17 loeeos Z) =1+ Z L'P(t) z = Ehl"p(Z)
t>1
Proof:
O cone(P) (21, 225 .- ,Zd+1)

=1+4+o0p(z1,...,24) 2441 + 02p (21, - -

t
=1+ g owp (21,0, 24) 241
t>1

2009-05-07
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Expanding and Counting Using Ehrhart's Original Approach

Proof of Lemma 3.10 (cont'd)

2
.,Zd)zd+1+"'

Since 0p (1,1,...,1) = # (PN ZY),

Ocone(P) (17 1,...,1, Zd+1) =1+ Z Owp (17 L., 1) Zg+1
>1

=1+ #(tPnz9) 2,
>1

= Ehrp(z441) O

2009-05-07
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Expanding and Counting Using Ehrhart's Original Approach
Back to Proof of Theorem 3.8
o Reminder: Enough to show for an integral d-simplex A
_ t_ g(2)
t>1
for some polynomial g of degree at most d with g(1) # 0
e Ehra(z) = 0cone(a) (1,1,...,1,2) (Lem 3.10)
e Denote the d + 1 vertices of A by vi,vs,...,Vgi1
e Let's look at Ucone(A) (Zl7 Z,. .. ,Zd+1)
e cone(A) C R¥*1 is simplicial, with apex the origin and
generators
wW; = (Vl, 1), Wy = (Vg, 1), ooy Wy = (Vd+1, 1) S Zd+1
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Expanding and Counting Using Ehrhart's Original Approach

Proof of Theorem 3.8 (cont'd)

e Then

an (217 ce ,Zd+1)
1— ZWI). .. (1 _ ZWd+1) ’

Ocone(A) (Zla s azd+1) = (

where I = {A\wy + -+ + AgraWay1 0 0 < Ag, .o, Agr < 1}
o Note: op is a Laurent polynomial in z, 2, ..., z411

e Claim: The z,1-degree of oy is at most d
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Proof of Theorem 3.8: Finishing the proof
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Expanding and Counting Using Ehrhart's Original Approach

Proof of Theorem 3.8: Proof of Claim

e ~on(l,...,1,2z441) is a polynomial of deg < d

. -.-
O'n(l,...,]_,Zd 1)
Ucone(A) (17"'7172d+1) == (1 2 )CI+;_F
— Z441
e . Enough to show that o (1,...,1,1) #0
e Observation

on(l,...,1,1)= > 1m=#NNZ"")#0

mennzd+1

(-0 enNnztt)

This finishes the proof
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e The xy,1-coordinate of each wy is 1

e . The x4,1-coodinate of each point in IMis Ay + - 4+ Agyq for

some 0 < Aq,. .0, Agyr <
AL A < d+l
o A+ + A1 <d

1

o . The x4,1-degree of o is < d
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