Discrete Mathematics & Computational Structures Lattice-Point Counting in Convex Polytopes (3) Ehrhart Theory I

Yoshio Okamoto

Tokyo Institute of Technology

May 7, 2009

"Last updated: 2009/05/13 19:54"

- 1 Triangulations and Pointed Cones
- **2** Integer-Point Transforms for Rational Cones
- **3** Expanding and Counting Using Ehrhart's Original Approach

Y. Okamoto (Tokyo Tech)	DMCS'09 (3)	2009-05-07	1 / 39
Goal of this and the nex	rt lectures		
Proving the following tw	<i>v</i> o theorems, and some n	nore	
Theorem 3.8 (Ehrhart's	Theorem)		
${\mathcal P}$ is an integral convex	d -polytope \Rightarrow		
$L_{\mathcal{P}}(t)$ is a polynomial in	t of degree d		
Theorem 3.23 (Ehrhart'	s Theorem for rational n	olytopes)	
\mathcal{P} is a rational convex of	l -nolvtone \rightarrow	olytopes)	
$L_{\mathcal{P}}(t)$ is a quasipolynom	hial in t of degree d ;		
Its period divides the lea	ast common multiple of t	the denominators of	f
the coordinates of the v	ertices of \mathcal{P}		

DMCS'09 (3)

\mathcal{P} a convex *d*-polytope

Triangulations and Pointed Cones

Triangulations and Pointed Cones Triangulation using no new vertices

Definition (Triangulation using no new vertices)

 \mathcal{P} can be triangulated using no new vertices if \exists a triangulation T s.t. the vertices of any $\Delta \in T$ are vertices of \mathcal{P}

Theorem 3.1								
Every convex polytope can be triangulated using no new vertices								
Proof: See Appendix B in the textbook								
Y. Okamoto (Tokyo Tech)	DMCS'09 (3)	2009-05-07	6 / 39					

Triangulations and Pointed Cones

DMCS'09 (3)

Triangulations and Pointed Cones Pointed cones: Glossary

A pointed cone

 $\mathcal{K} = \{\mathbf{v} + \lambda_1 \mathbf{w}_1 + \lambda_2 \mathbf{w}_2 + \dots + \lambda_m \mathbf{w}_m : \lambda_1, \lambda_2, \dots, \lambda_m \ge \mathbf{0}\} \subseteq \mathbb{R}^d$

Definition

- The vector ${\bf v}$ is called the apex of ${\cal K}$
- The \mathbf{w}_k 's are the generators of \mathcal{K}
- The dimension of K is the dimension of the affine space spanned by K; if K is of dimension d, we call it a d-cone
- The *d*-cone \mathcal{K} is simplicial if \mathcal{K} has precisely *d* linearly independent generators
- The cone is rational if v, w₁, w₂,..., w_m ∈ Q^d, in which case we may choose w₁, w₂,..., w_m ∈ Z^d by clearing denominators

Y. Okamoto (Tokyo Tech)

Triangulations and Pointed Cones Coning over a polytope

$\mathcal{P} \subset \mathbb{R}^d$ a convex polytope with vertices $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$

DMCS'09 (3

Triangulations and Pointed Cones Properties of the cone over a polytope

- $\operatorname{cone}(\mathcal{P})$ has the origin as apex
- We can recover our original polytope \mathcal{P} by cutting cone(\mathcal{P}) with the hyperplane $x_{d+1} = 1$

Y. Okamoto (Tokyo Tech)	DMCS'09 (3)	2009-05-07	10 / 39

Triangulations and Pointed Cones Valid inequalities: Analogous to polytopes

 $\mathcal{K} \subseteq \mathbb{R}^d$ a pointed *d*-cone; $\mathbf{a} \in \mathbb{R}^d$, $b \in \mathbb{R}$

Definition (Valid inequality)

Y. Okamoto (Tokyo Tech)

The inequality $\mathbf{a} \cdot \mathbf{x} \leq b$ is a valid inequality for \mathcal{K} if $\mathbf{a} \cdot \mathbf{z} \leq b$ for all $\mathbf{z} \in \mathcal{K}$

DMCS'09 (3)

Triangulations and Pointed Cones Faces of a pointed cone: Analogous to polytopes

 $\mathcal{K} \subseteq \mathbb{R}^d$ a pointed cone

Definition (Face)

 \mathcal{F} is a face of \mathcal{K} if \exists a valid inequality $\mathbf{a} \cdot \mathbf{x} \leq b$ for \mathcal{K} s.t.

 $\mathcal{F} = \mathcal{K} \cap \{\mathbf{x} : \mathbf{a} \cdot \mathbf{x} = b\}$

DMCS'09 (3)

Remark

Y. Okamoto (Tokyo Tech)

• Every face of a pointed cone is also a pointed cone

2009-05-07 9 / 39

Triangulations and Pointed Cones Triangulation of a pointed cone: Analogous to polytopes

\mathcal{K} a pointed *d*-cone

Definition (Triangulation)

A triangulation of \mathcal{K} is a collection \mathcal{T} of simplicial *d*-cones that satisfies the following:

- $\mathcal{K} = \bigcup_{\mathcal{S} \in \mathcal{T}} \mathcal{S}$
- $\forall S_1, S_2 \in T: S_1 \cap S_2$ is a face common to both S_1 and S_2

Triangulations and Pointed Cones Triangulation using no new generators

\mathcal{K} a pointed *d*-cone

Definition

 \mathcal{K} is triangulated using no new generators if \exists a triangulation T s.t. the generators of any $S \in T$ are generators of \mathcal{P}

Theorem 3.2

Any pointed cone can be triangulated into simplicial cones using no new generators

Υ.	Okamoto	(Tokyo	1

DMCS'09 (3)

2009-05-07 14 / 39

Triangulations and Pointed Cones Proof of Theorem 3.2

- \mathcal{K} a given pointed *d*-cone
- \exists a hyperplane *H* that intersects \mathcal{K} only at the apex
- Translate H "into" the cone, so that $H \cap \mathcal{K}$ consists of more than just one point
- This intersection is a (d-1)-polytope \mathcal{P} , whose vertices are determined by the generators of \mathcal{K}
- Triangulate \mathcal{P} using no new vertices (by Thm 3.1)
- The cone over each simplex of the triangulation is a simplicial cone
- These simplicial cones, by construction, triangulate ${\cal K}$ \Box

DMCS'09 (3)

- Integer-Point Transforms for Rational Cones
- **1** Triangulations and Pointed Cones
- **2** Integer-Point Transforms for Rational Cones
- **③** Expanding and Counting Using Ehrhart's Original Approach

15 / 39

Integer-Point Transforms for Rational Cones

Integer-point transforms

Definition (Integer-point transform)

The integer-point transform (or the moment generating function) of $S \subseteq \mathbb{R}^d$ is

$$\sigma_{\mathcal{S}}(\mathbf{z}) = \sigma_{\mathcal{S}}(z_1, z_2, \dots, z_d) := \sum_{\mathbf{m} \in \mathcal{S} \cap \mathbb{Z}^d} \mathbf{z}^{\mathbf{n}}$$

Recall: $\mathbf{z}^{\mathbf{m}} = z_1^{m_1} z_2^{m_2} \cdots z_d^{m_d}$ Example: $\sigma_S(z_1, z_2) = z_1 z_2^2 + z_1 z_2 + z_1 + z_1 z_2^{-1} + z_2 + 1 + z_1^{-1}$ $\mathcal{K} = [0,\infty)$ the 1-dimensional cone

$$\sigma_{\mathcal{K}}(z) = \sum_{m \in [0,\infty) \cap \mathbb{Z}} z^m = \sum_{m \ge 0} z^m = rac{1}{1-z}$$

Y. Okamoto (Tokyo Tech) DMCS'09 (3)	2009-05-07 18 / 39

Integer-Point Transforms for Rational Cones Example (2)

 $\mathcal{K} := \{\lambda_1(1,1) + \lambda_2(-2,3) : \lambda_1, \lambda_2 \ge 0\} \subset \mathbb{R}^2;$ The fundamental parallelogram of \mathcal{K}

 $\Pi := \{\lambda_1(1,1) + \lambda_2(-2,3) : 0 \le \lambda_1, \lambda_2 < 1\} \subset \mathbb{R}^2$

tiles ${\cal K}$ if we translate Π by nonnegative integer linear combinations of the generators (1,1) and (-2,3)

Integer-Point Transforms for Rational Cones Example (2): List all vertices of the translates of Π

These are nonnegative integer combinations of the generators (1, 1) and (-2, 3), so we can list them using geometric series:

$$\sum_{\substack{\mathsf{m}=j(1,1)+k(-2,3)\\j,k\geq 0}} \mathsf{z}^{m} = \sum_{j\geq 0} \sum_{k\geq 0} \mathsf{z}^{j(1,1)+k(-2,3)} = \frac{1}{(1-z_{1}z_{2})\left(1-z_{1}^{-2}z_{2}^{3}\right)}$$

•••		•••	1	•••	•	•••
			11			
• •						
•• •			• •	• •	• •	• •
	• • •	• •	• •	• •	• •	• •
• • •	• •	• •	• •	• •	• •	• •
• • •	••	••	• •	• •	• •	• •
			• •			
			<u> I</u>		7	
			. .	¥ •		
•••			_•¥	7. .		

V Olympite	(Talaa Taala)
r. Okamoto	токуо тесп)

DMCS'09 (3)

Let

$$\mathcal{L}_{(m,n)} := \{(m,n) + j(1,1) + k(-2,3) : j,k \in \mathbb{Z}_{\geq 0}\}$$

Then

Integer-Point Transforms for Rational Cones Example (2): Conclusion

Hence

Integer-Point Transforms for Rational Cones Integer-point transform of a simplicial cone

Theorem 3.5

Let

$$\mathcal{K} := \{\lambda_1 \mathbf{w}_1 + \lambda_2 \mathbf{w}_2 + \dots + \lambda_d \mathbf{w}_d : \lambda_1, \lambda_2, \dots, \lambda_d \ge \mathbf{0}\}$$

be a simplicial *d*-cone, where $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_d \in \mathbb{Z}^d$. Then for $\mathbf{v} \in \mathbb{R}^d$, the integer-point transform $\sigma_{\mathbf{v}+\mathcal{K}}$ of the shifted cone $\mathbf{v} + \mathcal{K}$ is the rational function

$$\sigma_{\mathbf{v}+\mathcal{K}}(\mathbf{z}) = \frac{\sigma_{\mathbf{v}+\Pi}(\mathbf{z})}{(1-\mathbf{z}^{\mathbf{w}_1})(1-\mathbf{z}^{\mathbf{w}_2})\cdots(1-\mathbf{z}^{\mathbf{w}_d})},$$

where Π is the fundamental parallelepiped of \mathcal{K} :

$$\Pi := \left\{ \lambda_1 \mathbf{w}_1 + \lambda_2 \mathbf{w}_2 + \dots + \lambda_d \mathbf{w}_d : \ \mathbf{0} \le \lambda_1, \lambda_2, \dots, \lambda_d < \mathbf{1} \right\}.$$

DMCS'09 (3)

Y. Okamoto (Tokyo Tech)

2009-05-07 23 / 39

Integer-Point Transforms for Rational Cones Proof of Theorem 3.5

- $\sigma_{\mathbf{v}+\mathcal{K}}(\mathbf{z}) = \sum_{\mathbf{m}\in(\mathbf{v}+\mathcal{K})\cap\mathbb{Z}^d} \mathbf{z}^{\mathbf{m}}$ lists each integer point $\mathbf{m}\in\mathbf{v}+\mathcal{K}$ as the monomial $\mathbf{z}^{\mathbf{m}}$
- Such a lattice point can be written as (by definition)

$$\mathbf{m} = \mathbf{v} + \lambda_1 \mathbf{w}_1 + \lambda_2 \mathbf{w}_2 + \dots + \lambda_d \mathbf{w}_d$$

for some numbers $\lambda_1, \lambda_2, \ldots, \lambda_d \geq 0$

- This representation is unique (:: the \mathbf{w}_k 's form a basis of \mathbb{R}^d)
- Since $\lambda_k = \lfloor \lambda_k \rfloor + \{\lambda_k\}$, we get

$$\mathbf{m} = \mathbf{v} + (\{\lambda_1\} \mathbf{w}_1 + \{\lambda_2\} \mathbf{w}_2 + \dots + \{\lambda_d\} \mathbf{w}_d) + \lfloor \lambda_1 \rfloor \mathbf{w}_1 + \lfloor \lambda_2 \rfloor \mathbf{w}_2 + \dots + \lfloor \lambda_d \rfloor \mathbf{w}_d$$

Integer-Point Transforms for Rational Cones Proof of Theorem 3.5 (cont'd)

• Since $0 \le \{\lambda_k\} < 1$,

$$\mathbf{p} := \mathbf{v} + \{\lambda_1\} \, \mathbf{w}_1 + \{\lambda_2\} \, \mathbf{w}_2 + \dots + \{\lambda_d\} \, \mathbf{w}_d \in \mathbf{v} + \Pi$$

- In fact, $\mathbf{p} \in \mathbb{Z}^d$ (:: **m** and $|\lambda_k| \mathbf{w}_k$ are all integral)
- Again the representation of \mathbf{p} in terms of the \mathbf{w}_k 's is unique
- \therefore any $\mathbf{m} \in \mathbf{v} + \mathcal{K} \cap \mathbb{Z}^d$ can be uniquely written as

$$\mathbf{m} = \mathbf{p} + k_1 \mathbf{w}_1 + k_2 \mathbf{w}_2 + \dots + k_d \mathbf{w}_d$$

for some $\mathbf{p} \in (\mathbf{v} + \Pi) \cap \mathbb{Z}^d$ and some $k_1, k_2, \dots, k_d \in \mathbb{Z}_{\geq 0}$

• Namely,

$$\sigma_{\mathbf{v}+\mathcal{K}}(\mathbf{z}) = \sum_{\mathbf{m}\in(\mathbf{v}+\mathcal{K})\cap\mathbb{Z}^d} \mathbf{z}^{\mathbf{m}}$$
$$= \sum_{\mathbf{p}\in(\mathbf{v}+\Pi)\cap\mathbb{Z}^d} \sum_{k_1\geq 0} \cdots \sum_{k_d\geq 0} \mathbf{z}^{\mathbf{p}+k_1\mathbf{w}_1+\cdots+k_d\mathbf{w}_d}$$

DMCS'09 (3)

Y. Okamoto (Tokyo Tech)

```
2009-05-07 25 / 39
```

Integer-Point Transforms for Rational Cones Proof of Theorem 3.5 (further cont'd)

• On the other hand, the RHS of the theorem can be written as

$$\frac{\sigma_{\mathbf{v}+\Pi}(\mathbf{z})}{(1-\mathbf{z}^{\mathbf{w}_1})\cdots(1-\mathbf{z}^{\mathbf{w}_d})} = \left(\sum_{\mathbf{p}\in(\mathbf{v}+\Pi)\cap\mathbb{Z}^d} \mathbf{z}^{\mathbf{p}}\right) \left(\sum_{k_1\geq 0} \mathbf{z}^{k_1\mathbf{w}_1}\right)\cdots\left(\sum_{k_d\geq 0} \mathbf{z}^{k_d\mathbf{w}_d}\right)$$

$$= \sum_{\mathbf{p}\in(\mathbf{v}+\Pi)\cap\mathbb{Z}^d} \sum_{k_1\geq 0}\cdots\sum_{k_d\geq 0} \mathbf{z}^{\mathbf{p}+k_1\mathbf{w}_1+\cdots+k_d\mathbf{w}_d} \square$$

Remarks

 Crucial geometric idea: v + K is tiled with the translates of v + Π by nonnegative integral combinations of the w_k's

DMCS'09 (3)

• Computational perspective: Difficulty lies in $\boldsymbol{v}+\boldsymbol{\Pi}$

Integer-Point Transforms for Rational Cones Corollary: Relaxing the assumption

Corollary 3.6 Let $\mathcal{K} := \{\lambda_1 \mathbf{w}_1 + \lambda_2 \mathbf{w}_2 + \dots + \lambda_d \mathbf{w}_d : \lambda_1, \lambda_2, \dots, \lambda_d \ge 0\}$ be a simplicial *d*-cone, where $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_d \in \mathbb{Z}^d$, and $\mathbf{v} \in \mathbb{R}^d$, s.t. the boundary of $\mathbf{v} + \mathcal{K}$ contains no integer point. Then $\sigma_{\mathbf{v}+\mathcal{K}}(\mathbf{z}) = \frac{\sigma_{\mathbf{v}+\Pi}(\mathbf{z})}{(1 - \mathbf{z}^{\mathbf{w}_1})(1 - \mathbf{z}^{\mathbf{w}_2})\cdots(1 - \mathbf{z}^{\mathbf{w}_d})},$ where Π is the open parallelepiped $\Pi := \{\lambda_1 \mathbf{w}_1 + \lambda_2 \mathbf{w}_2 + \dots + \lambda_d \mathbf{w}_d : 0 < \lambda_1, \lambda_2, \dots, \lambda_d < 1\}.$ Proof: Similar to Theorem 3.5 Integer-Point Transforms for Rational Cones Corollary: General pointed cones

Corollary 3.7

Given any pointed cone

Y. Okamoto (Tokyo Tech)

 $\mathcal{K} = \{\mathbf{v} + \lambda_1 \mathbf{w}_1 + \lambda_2 \mathbf{w}_2 + \dots + \lambda_m \mathbf{w}_m : \lambda_1, \lambda_2, \dots, \lambda_m \ge \mathbf{0}\}$

with $\mathbf{v} \in \mathbb{R}^d$, $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m \in \mathbb{Z}^d$, the integer-point transform $\sigma_{\mathcal{K}}(\mathbf{z})$ evaluates to a rational function in the coordinates of \mathbf{z}

Proof:

- \mathcal{K} can be triangulated (Theorem 3.2)
- The intersection of simplicial cones in a triangulation is again a simplicial cone (Exer. 3.2)
- The inclusion-exclusion principle does the job

Y. Okamoto (Tokyo Tech)

2009-05-07

26 / 39

- **1** Triangulations and Pointed Cones
- **2** Integer-Point Transforms for Rational Cones

③ Expanding and Counting Using Ehrhart's Original Approach

Expanding and Counting Using Ehrhart's Original Approach Ehrhart's Theorem

The fundamental theorem concerning the lattice-point count in an integral convex polytope

Theorem 3.8 (Ehrhart's Theorem)

 \mathcal{P} is an integral convex *d*-polytope \Rightarrow $L_{\mathcal{P}}(t)$ is a polynomial in *t* of degree *d*

Definition (Ehrhart polynomial)

Y. Okamoto (Tokyo Tech)

 $L_{\mathcal{P}}$ is called the Ehrhart polynomial of $\mathcal P$ when $\mathcal P$ is an integral convex polytope

- Enough to show for simplices Δ (by triangulation)
- See a relation between L_{Δ} and $Ehr_{\Delta}(z)$ (Lem 3.9)

DMCS'09 (3)

- See a relation between Ehr_Δ and $\sigma_{\mathsf{cone}(\Delta)}$
- Use Theorem 3.5 to conclude

Lemma 3.9

Y. Okamoto (Tokyo Tech)

Let

$$\sum_{t\geq 0} f(t) z^{t} = \frac{g(z)}{(1-z)^{d+1}};$$

Then f is a polynomial of degree $d \Leftrightarrow g$ is a polynomial of degree at most d and $g(1) \neq 0$

DMCS'09 (3)

Proof: Exercise 3.8

Expanding and Counting Using Ehrhart's Original Approach Proof of Theorem 3.8

• Enough to show for simplices (:: Thm 3.1)

DMCS'09 (3)

- Note: The intersection of simplices in a triangulation is again a simplex
- Enough to show for an integral *d*-simplex Δ

$$\mathsf{Ehr}_\Delta(z) = 1 + \sum_{t \ge 1} L_\Delta(t) \, z^t = rac{g(z)}{(1-z)^{d+1}}$$

for some polynomial g of degree at most d with $g(1) \neq 0$ (:: Lem 3.9)

2009-05-07 29 / 39

(Lem 3.10)

2009-05-07

30 / 39

\mathcal{P} a convex *d*-polytope

Lemma 3.10

$$\sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, 1, z) = 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \operatorname{Ehr}_{\mathcal{P}}(z)$$

Proof:

$$\sigma_{\text{cone}(\mathcal{P})}(z_1, z_2, \dots, z_{d+1}) = 1 + \sigma_{\mathcal{P}}(z_1, \dots, z_d) z_{d+1} + \sigma_{2\mathcal{P}}(z_1, \dots, z_d) z_{d+1}^2 + \cdots$$
$$= 1 + \sum_{t \ge 1} \sigma_{t\mathcal{P}}(z_1, \dots, z_d) z_{d+1}^t$$

DMCS'09 (3)

Expanding and Counting Using Ehrhart's Original Approach Proof of Lemma 3.10 (cont'd)

$$\sigma_{\mathsf{cone}(\mathcal{P})}(\mathbf{z}, z_{d+1}) = 1 + \sigma_{\mathcal{P}}(\mathbf{z}) \, z_{d+1} + \sigma_{2\mathcal{P}}(\mathbf{z}) \, z_{d+1}^2 + \cdots$$

Y. Okamoto (Tokyo Tech)	DMCS'09 (3)	2009-05-07	34 / 39

Expanding and Counting Using Ehrhart's Original Approach Proof of Lemma 3.10 (cont'd)

Y. Okamoto (Tokyo Tech)

Since $\sigma_{\mathcal{P}}(1, 1, \ldots, 1) = \# (\mathcal{P} \cap \mathbb{Z}^d)$,

$$\sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, 1, z_{d+1}) = 1 + \sum_{t \ge 1} \sigma_{t\mathcal{P}}(1, 1, \dots, 1) z_{d+1}^t$$
$$= 1 + \sum_{t \ge 1} \# \left(t\mathcal{P} \cap \mathbb{Z}^d \right) z_{d+1}^t$$
$$= \operatorname{Ehr}_{\mathcal{P}}(z_{d+1}) \quad \Box$$

DMCS'09 (3)

Expanding and Counting Using Ehrhart's Original Approach Back to Proof of Theorem 3.8

• Reminder: Enough to show for an integral *d*-simplex Δ

$$\mathsf{Ehr}_\Delta(z) = 1 + \sum_{t \ge 1} L_\Delta(t) \, z^t = rac{g(z)}{(1-z)^{d+1}}$$

for some polynomial g of degree at most d with $g(1) \neq 0$

- $\mathsf{Ehr}_{\Delta}(z) = \sigma_{\mathsf{cone}(\Delta)}(1, 1, \dots, 1, z)$ (Lem 3.10)
- Denote the d+1 vertices of Δ by $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{d+1}$
- Let's look at $\sigma_{\operatorname{cone}(\Delta)}(z_1, z_2, \ldots, z_{d+1})$
- $\operatorname{cone}(\Delta) \subset \mathbb{R}^{d+1}$ is simplicial, with apex the origin and generators

$$\textbf{w}_1 = \left(\textbf{v}_1, 1\right), \ \textbf{w}_2 = \left(\textbf{v}_2, 1\right), \ \ldots, \ \textbf{w}_{d+1} = \left(\textbf{v}_{d+1}, 1\right) \in \mathbb{Z}^{d+1}$$

2009-05-07 33 / 39

• Then

$$\sigma_{\mathsf{cone}(\Delta)}(z_1,\ldots,z_{d+1}) = \frac{\sigma_{\Pi}(z_1,\ldots,z_{d+1})}{(1-\mathbf{z}^{\mathbf{w}_1})\cdots(1-\mathbf{z}^{\mathbf{w}_{d+1}})},$$

- where $\Pi = \{\lambda_1 \mathbf{w}_1 + \dots + \lambda_{d+1} \mathbf{w}_{d+1} : 0 \leq \lambda_1, \dots, \lambda_{d+1} < 1\}$
- Note: σ_{Π} is a Laurent polynomial in $z_1, z_2, \ldots, z_{d+1}$
- Claim: The z_{d+1} -degree of σ_{Π} is at most d

Expanding and Counting Using Ehrhart's Original Approach Proof of Theorem 3.8: Proof of Claim

- The x_{d+1} -coordinate of each \mathbf{w}_k is 1
- : The x_{d+1} -coodinate of each point in Π is $\lambda_1 + \cdots + \lambda_{d+1}$ for some $0 \leq \lambda_1, \ldots, \lambda_{d+1} < 1$
- $\therefore \lambda_1 + \cdots + \lambda_{d+1} < d+1$
- $\therefore \lambda_1 + \dots + \lambda_{d+1} \le d$ (: the coord is an integer)

• \therefore The x_{d+1} -degree of σ_{Π} is $\leq d$

Expanding and Counting Using Ehrhart's Original Approach Proof of Theorem 3.8: Finishing the proof

• $\therefore \sigma_{\Pi}(1, \dots, 1, z_{d+1})$ is a polynomial of deg $\leq d$

• .:.

$$\sigma_{\mathsf{cone}(\Delta)}\left(1,\ldots,1,z_{d+1}\right) = \frac{\sigma_{\Pi}\left(1,\ldots,1,z_{d+1}\right)}{\left(1-z_{d+1}\right)^{d+1}}$$

• \therefore Enough to show that $\sigma_{\Pi}(1,\ldots,1,1) \neq 0$

• Observation

$$\sigma_{\Pi}(1,\ldots,1,1) = \sum_{\mathbf{m}\in\Pi\cap\mathbb{Z}^{d+1}} \mathbf{1}^{\mathbf{m}} = \#(\Pi\cap\mathbb{Z}^{d+1}) \neq \mathbf{0}$$

 $(:: \mathbf{0} \in \Pi \cap \mathbb{Z}^{d+1})$

• This finishes the proof