Discrete Mathematics \& Computational Structures Lattice-Point Counting in Convex Polytopes
(3) Ehrhart Theory I

Yoshio Okamoto

Tokyo Institute of Technology
May 7, 2009
"Last updated: 2009/05/13 19:54"

Goal of this and the next lectures

Proving the following two theorems, and some more
Theorem 3.8 (Ehrhart's Theorem)
\mathcal{P} is an integral convex d-polytope \Rightarrow
$L_{\mathcal{P}}(t)$ is a polynomial in t of degree d

Theorem 3.23 (Ehrhart's Theorem for rational polytopes)

\mathcal{P} is a rational convex d-polytope \Rightarrow
$L_{\mathcal{P}}(t)$ is a quasipolynomial in t of degree d;
Its period divides the least common multiple of the denominators of the coordinates of the vertices of \mathcal{P}
(1) Triangulations and Pointed ConesInteger-Point Transforms for Rational Cones
(3) Expanding and Counting Using Ehrhart's Original Approach
(1) Triangulations and Pointed Cones
(2) Integer-Point Transforms for Rational Cones
(3) Expanding and Counting Using Ehrhart's Original Approach
\mathcal{P} a convex d-polytope

Definition (Triangulation)

A triangulation of \mathcal{P} is a finite collection T of d-simplices with the following properties:

- $\mathcal{P}=\bigcup_{\Delta \in T} \Delta$
- $\forall \Delta_{1}, \Delta_{2} \in T: \Delta_{1} \cap \Delta_{2}$ is a face common to both Δ_{1} and Δ_{2}

\uparrow not a triangulation

Pointed cones

Definition (Pointed cone)

A pointed cone $\mathcal{K} \subseteq \mathbb{R}^{d}$ is a set of the form

$$
\mathcal{K}=\left\{\mathbf{v}+\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\cdots+\lambda_{m} \mathbf{w}_{m}: \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0\right\}
$$

where $\mathbf{v}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m} \in \mathbb{R}^{d}$ are such that \exists a hyperplane H for which $H \cap \mathcal{K}=\{\mathbf{v}\}$; that is, $\mathcal{K} \backslash\{\mathbf{v}\}$ lies strictly on one side of H

Triangulation using no new vertices

Definition (Triangulation using no new vertices)

\mathcal{P} can be triangulated using no new vertices if \exists a triangulation T s.t. the vertices of any $\Delta \in T$ are vertices of \mathcal{P}

Theorem 3.1

Every convex polytope can be triangulated using no new vertices
Proof: See Appendix B in the textbook

| Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 | 6/39 |
| :--- | :--- | :--- | :--- |

Pointed cones: Glossary

A pointed cone
$\mathcal{K}=\left\{\mathbf{v}+\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\cdots+\lambda_{m} \mathbf{w}_{m}: \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0\right\} \subseteq \mathbb{R}^{\boldsymbol{d}}$

Definition

- The vector \mathbf{v} is called the apex of \mathcal{K}
- The \mathbf{w}_{k} 's are the generators of \mathcal{K}
- The dimension of \mathcal{K} is the dimension of the affine space spanned by \mathcal{K}; if \mathcal{K} is of dimension d, we call it a d-cone
- The d-cone \mathcal{K} is simplicial if \mathcal{K} has precisely d linearly independent generators
- The cone is rational if $\mathbf{v}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m} \in \mathbb{Q}^{d}$, in which case we may choose $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m} \in \mathbb{Z}^{d}$ by clearing denominators
$\mathcal{P} \subset \mathbb{R}^{d}$ a convex polytope with vertices $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$
Definition (Cone over a polytope)
The cone over \mathcal{P} is defined as
$\operatorname{cone}(\mathcal{P})=\left\{\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\cdots+\lambda_{n} \mathbf{w}_{n}: \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \geq 0\right\} \subset \mathbb{R}^{d+1}$
where

$$
\mathbf{w}_{1}=\left(\mathbf{v}_{1}, 1\right), \mathbf{w}_{2}=\left(\mathbf{v}_{2}, 1\right), \ldots, \mathbf{w}_{n}=\left(\mathbf{v}_{n}, 1\right)
$$

- cone (\mathcal{P}) has the origin as apex the hyperplane $x_{d+1}=1$

Valid inequalities: Analogous to polytopes
$\mathcal{K} \subseteq \mathbb{R}^{d}$ a pointed d-cone; $\mathbf{a} \in \mathbb{R}^{d}, b \in \mathbb{R}$

Definition (Valid inequality)

The inequality $\mathbf{a} \cdot \mathbf{x} \leq b$ is a valid inequality for \mathcal{K} if $\mathbf{a} \cdot \mathbf{z} \leq b$ for all $\mathbf{z} \in \overline{\mathcal{K}}$

- We can recover our original polytope \mathcal{P} by cutting cone (\mathcal{P}) with

Faces of a pointed cone: Analogous to polytopes

$\mathcal{K} \subseteq \mathbb{R}^{d}$ a pointed cone

Definition (Face)

\mathcal{F} is a face of \mathcal{K} if \exists a valid inequality $\mathbf{a} \cdot \mathbf{x} \leq b$ for \mathcal{K} s.t.

$$
\mathcal{F}=\mathcal{K} \cap\{\mathbf{x}: \mathbf{a} \cdot \mathbf{x}=b\}
$$

Remark

- Every face of a pointed cone is also a pointed cone Y. Okamoto (Tokyo Tech) DMCS'09 (3)

Triangulation of a pointed cone: Analogous to polytopes

\mathcal{K} a pointed d-cone

Definition (Triangulation)

A triangulation of \mathcal{K} is a collection T of simplicial d-cones that satisfies the following:

- $\mathcal{K}=\bigcup_{\mathcal{S} \in T} \mathcal{S}$
- $\forall \mathcal{S}_{1}, \mathcal{S}_{2} \in T: \mathcal{S}_{1} \cap \mathcal{S}_{2}$ is a face common to both \mathcal{S}_{1} and \mathcal{S}_{2}

Proof of Theorem 3.2

- \mathcal{K} a given pointed d-cone
- \exists a hyperplane H that intersects \mathcal{K} only at the apex
- Translate H "into" the cone, so that $H \cap \mathcal{K}$ consists of more than just one point
- This intersection is a $(d-1)$-polytope \mathcal{P}, whose vertices are determined by the generators of \mathcal{K}
- Triangulate \mathcal{P} using no new vertices (by Thm 3.1)
- The cone over each simplex of the triangulation is a simplicial cone
- These simplicial cones, by construction, triangulate \mathcal{K}

Triangulation using no new generators

\mathcal{K} a pointed d-cone

Definition

\mathcal{K} is triangulated using no new generators if \exists a triangulation T s.t. the generators of any $\mathcal{S} \in T$ are generators of \mathcal{P}

Theorem 3.2

Any pointed cone can be triangulated into simplicial cones using no new generators
(1) Triangulations and Pointed Cones
(2) Integer-Point Transforms for Rational Cones

[^0]
Definition (Integer-point transform)

The integer-point transform (or the moment generating function) of $S \subseteq \mathbb{R}^{d}$ is

$$
\sigma_{S}(\mathbf{z})=\sigma_{S}\left(z_{1}, z_{2}, \ldots, z_{d}\right):=\sum_{\mathbf{m} \in S \cap \mathbb{Z}^{d}} \mathbf{z}^{\mathbf{m}}
$$

Recall: $\mathbf{z}^{\mathbf{m}}=z_{1}^{m_{1}} z_{2}^{m_{2}} \cdots z_{d}^{m_{d}}$

Example:

$$
\begin{aligned}
\sigma_{S}\left(z_{1}, z_{2}\right)= & z_{1} z_{2}^{2}+z_{1} z_{2}+z_{1}+z_{1} z_{2}^{-1} \\
& +z_{2}+1+z_{1}^{-1}
\end{aligned}
$$

Example (2)

$\mathcal{K}:=\left\{\lambda_{1}(1,1)+\lambda_{2}(-2,3): \lambda_{1}, \lambda_{2} \geq 0\right\} \subset \mathbb{R}^{2} ;$
The fundamental parallelogram of \mathcal{K}

$$
\Pi:=\left\{\lambda_{1}(1,1)+\lambda_{2}(-2,3): 0 \leq \lambda_{1}, \lambda_{2}<1\right\} \subset \mathbb{R}^{2}
$$

tiles \mathcal{K} if we translate Π by nonnegative integer linear combinations of the generators $(1,1)$ and $(-2,3)$

Example (1)

$\mathcal{K}=[0, \infty)$ the 1 -dimensional cone

$$
\sigma_{\mathcal{K}}(z)=\sum_{m \in[0, \infty) \cap \mathbb{Z}} z^{m}=\sum_{m \geq 0} z^{m}=\frac{1}{1-z}
$$

Example (2): List all vertices of the translates of Π

These are nonnegative integer combinations of the generators $(1,1)$ and $(-2,3)$, so we can list them using geometric series:

$$
\sum_{\substack{m=j(1,1)+k(-2,3) \\ j, k \geq 0}} \mathbf{z}^{m}=\sum_{j \geq 0} \sum_{k \geq 0} \mathbf{z}^{j(1,1)+k(-2,3)}=\frac{1}{\left(1-z_{1} z_{2}\right)\left(1-z_{1}^{-2} z_{2}^{3}\right)}
$$

$\left.\begin{array}{c}\bullet \bullet: \bullet \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet\end{array}\right)$

DMCS'09 (3)

Example (2): Expressing the whole cone by translations
Let

$$
\mathcal{L}_{(m, n)}:=\left\{(m, n)+j(1,1)+k(-2,3): j, k \in \mathbb{Z}_{\geq 0}\right\}
$$

Then

$$
\mathcal{K} \cap \mathbb{Z}^{2}=\bigcup_{(m, n) \in \Pi \cap \mathbb{Z}^{2}} \mathcal{L}_{(m, n)}
$$

where $\Pi \cap \mathbb{Z}^{2}=\{(0,0),(0,1),(0,2),(-1,2),(-1,3)\}$

Integer-point transform of a simplicial cone

Theorem 3.5

Let

$$
\mathcal{K}:=\left\{\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\cdots+\lambda_{d} \mathbf{w}_{d}: \lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \geq 0\right\}
$$

be a simplicial d-cone, where $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{d} \in \mathbb{Z}^{d}$. Then for $\mathbf{v} \in \mathbb{R}^{d}$, the integer-point transform $\sigma_{\mathbf{v}+\mathcal{K}}$ of the shifted cone $\mathbf{v}+\mathcal{K}$ is the rational function

$$
\sigma_{\mathbf{v}+\mathcal{K}}(\mathbf{z})=\frac{\sigma_{\mathbf{v}+\boldsymbol{\Pi}}(\mathbf{z})}{\left(1-\mathbf{z}^{\mathbf{w}_{\mathbf{1}}}\right)\left(1-\mathbf{z}^{\mathbf{w}_{\mathbf{2}}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{w}_{d}}\right)},
$$

where Π is the fundamental parallelepiped of \mathcal{K} :

$$
\Pi:=\left\{\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\cdots+\lambda_{d} \mathbf{w}_{d}: 0 \leq \lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}<1\right\}
$$

Example (2): Conclusion

Hence

$$
\begin{aligned}
\sigma_{\mathcal{K}}(\mathbf{z}) & =\left(1+z_{2}+z_{2}^{2}+z_{1}^{-1} z_{2}^{2}+z_{1}^{-1} z_{2}^{3}\right) \sum_{\substack{\mathrm{m}=j(1,1)+k(-2,3) \\
j, k \geq 0}} \mathbf{z}^{m} \\
& =\frac{1+z_{2}+z_{2}^{2}+z_{1}^{-1} z_{2}^{2}+z_{1}^{-1} z_{2}^{3}}{\left(1-z_{1} z_{2}\right)\left(1-z_{1}^{-2} z_{2}^{3}\right)} \square
\end{aligned}
$$

Proof of Theorem 3.5

- $\sigma_{\mathbf{v}+\mathcal{K}}(\mathbf{z})=\sum_{\mathbf{m} \in(\mathbf{v}+\mathcal{K}) \cap \mathbb{Z}^{d}} \mathbf{z}^{\mathbf{m}}$ lists each integer point $\mathbf{m} \in \mathbf{v}+\mathcal{K}$ as the monomial $\mathbf{z}^{\mathbf{m}}$
- Such a lattice point can be written as (by definition)

$$
\mathbf{m}=\mathbf{v}+\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\cdots+\lambda_{d} \mathbf{w}_{d}
$$

for some numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \geq 0$

- This representation is unique (\because the \mathbf{w}_{k} 's form a basis of \mathbb{R}^{d})
- Since $\lambda_{k}=\left\lfloor\lambda_{k}\right\rfloor+\left\{\lambda_{k}\right\}$, we get

$$
\begin{aligned}
\mathbf{m}=\mathbf{v}+ & \left(\left\{\lambda_{1}\right\} \mathbf{w}_{1}+\left\{\lambda_{2}\right\} \mathbf{w}_{2}+\cdots+\left\{\lambda_{d}\right\} \mathbf{w}_{d}\right) \\
& +\left\lfloor\lambda_{1}\right\rfloor \mathbf{w}_{1}+\left\lfloor\lambda_{2}\right\rfloor \mathbf{w}_{2}+\cdots+\left\lfloor\lambda_{d}\right\rfloor \mathbf{w}_{d}
\end{aligned}
$$

Proof of Theorem 3.5 (cont'd)

- Since $0 \leq\left\{\lambda_{k}\right\}<1$,

$$
\mathbf{p}:=\mathbf{v}+\left\{\lambda_{1}\right\} \mathbf{w}_{1}+\left\{\lambda_{2}\right\} \mathbf{w}_{2}+\cdots+\left\{\lambda_{d}\right\} \mathbf{w}_{d} \in \mathbf{v}+\Pi
$$

- In fact, $\mathbf{p} \in \mathbb{Z}^{d}\left(\because \mathbf{m}\right.$ and $\left\lfloor\lambda_{k}\right\rfloor \mathbf{w}_{k}$ are all integral)
- Again the representation of \mathbf{p} in terms of the \mathbf{w}_{k} 's is unique
- \therefore any $\mathbf{m} \in \mathbf{v}+\mathcal{K} \cap \mathbb{Z}^{d}$ can be uniquely written as

$$
\mathbf{m}=\mathbf{p}+k_{1} \mathbf{w}_{1}+k_{2} \mathbf{w}_{2}+\cdots+k_{d} \mathbf{w}_{d}
$$

for some $\mathbf{p} \in(\mathbf{v}+\Pi) \cap \mathbb{Z}^{d}$ and some $k_{1}, k_{2}, \ldots, k_{d} \in \mathbb{Z}_{>0}$

- Namely,

$$
\begin{aligned}
\sigma_{\mathbf{v}+\mathcal{K}}(\mathbf{z}) & =\sum_{\mathbf{m} \in(\mathbf{v}+\mathcal{K}) \cap \mathbb{Z}^{d}} \mathbf{z}^{\mathbf{m}} \\
& =\sum_{\mathbf{p} \in(\mathbf{v}+\boldsymbol{\Pi}) \cap \mathbb{Z}^{d}} \sum_{k_{1} \geq 0} \cdots \sum_{k_{d} \geq 0} \mathbf{z}^{\mathbf{p}+k_{1} \mathbf{w}_{1}+\cdots+k_{d} \mathbf{w}_{d}}
\end{aligned}
$$

Corollary: Relaxing the assumption

Corollary 3.6

Let

$$
\mathcal{K}:=\left\{\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\cdots+\lambda_{d} \mathbf{w}_{d}: \lambda_{1}, \lambda_{2}, \ldots, \lambda_{d} \geq 0\right\}
$$

be a simplicial d-cone, where $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{d} \in \mathbb{Z}^{d}$, and $\mathbf{v} \in \mathbb{R}^{d}$, s.t. the boundary of $\mathbf{v}+\mathcal{K}$ contains no integer point. Then

$$
\sigma_{\mathbf{v}+\mathcal{K}}(\mathbf{z})=\frac{\sigma_{\mathbf{v}+\boldsymbol{\Pi}}(\mathbf{z})}{\left(1-\mathbf{z}^{\mathbf{w}_{1}}\right)\left(1-\mathbf{z}^{\mathbf{w}_{2}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{w}_{d}}\right)},
$$

where Π is the open parallelepiped

$$
\Pi:=\left\{\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\cdots+\lambda_{d} \mathbf{w}_{d}: 0<\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}<1\right\}
$$

[^1]
Proof of Theorem 3.5 (further cont'd)

- On the other hand, the RHS of the theorem can be written as

$$
\begin{aligned}
\frac{\sigma_{\mathbf{v}+\Pi}(\mathbf{z})}{\left(1-\mathbf{z}^{\mathbf{w}_{1}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{w}_{d}}\right)} & =\left(\sum_{\mathbf{p} \in(\mathbf{v}+\boldsymbol{\Pi}) \cap \mathbb{Z}^{d}} \mathbf{z}^{\mathbf{p}}\right)\left(\sum_{k_{1} \geq 0} \mathbf{z}^{k_{1} \mathbf{w}_{1}}\right) \cdots\left(\sum_{k_{d} \geq 0} \mathbf{z}^{k_{d} \mathbf{w}_{d}}\right) \\
& =\sum_{\mathbf{p} \in(\mathbf{v}+\Pi) \cap \mathbb{Z}^{d}} \sum_{k_{1} \geq 0} \cdots \sum_{k_{d} \geq 0} \mathbf{z}^{\mathbf{p}+k_{1} \mathbf{w}_{1}+\cdots+k_{d} \mathbf{w}_{d}} \square
\end{aligned}
$$

Remarks

- Crucial geometric idea: $\mathbf{v}+\mathcal{K}$ is tiled with the translates of $\mathbf{v}+\Pi$ by nonnegative integral combinations of the \mathbf{w}_{k} 's
- Computational perspective: Difficulty lies in $\mathbf{v}+\Pi$

Corollary: General pointed cones

Corollary 3.7

Given any pointed cone

$$
\mathcal{K}=\left\{\mathbf{v}+\lambda_{1} \mathbf{w}_{1}+\lambda_{2} \mathbf{w}_{2}+\cdots+\lambda_{m} \mathbf{w}_{m}: \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0\right\}
$$

with $\mathbf{v} \in \mathbb{R}^{d}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m} \in \mathbb{Z}^{d}$, the integer-point transform $\sigma_{\mathcal{K}}(\mathbf{z})$ evaluates to a rational function in the coordinates of \mathbf{z}

Proof:

- \mathcal{K} can be triangulated (Theorem 3.2)
- The intersection of simplicial cones in a triangulation is again a simplicial cone (Exer. 3.2)
- The inclusion-exclusion principle does the job

Expanding and Counting Using Ehrhart's Original Approach

(1) Triangulations and Pointed Cones
(2) Integer-Point Transforms for Rational Cones
(3 Expanding and Counting Using Ehrhart's Original Approach

Proof Outline

- Enough to show for simplices Δ (by triangulation)
- See a relation between L_{Δ} and $E h r_{\Delta}(z)$
- See a relation between Ehr ${ }_{\Delta}$ and $\sigma_{\text {cone(}(\Delta)}$
- Use Theorem 3.5 to conclude

Lemma 3.9

Let

$$
\sum_{t \geq 0} f(t) z^{t}=\frac{g(z)}{(1-z)^{d+1}}
$$

Then f is a polynomial of degree $d \Leftrightarrow g$ is a polynomial of degree at most d and $g(1) \neq 0$

[^2]
Expanding and Counting Using Ehrhart's Original Approach

The fundamental theorem concerning the lattice-point count in an integral convex polytope
Theorem 3.8 (Ehrhart's Theorem)
\mathcal{P} is an integral convex d-polytope \Rightarrow
$L_{\mathcal{P}}(t)$ is a polynomial in t of degree d

Definition (Ehrhart polynomial)

$L_{\mathcal{P}}$ is called the Ehrhart polynomial of \mathcal{P} when \mathcal{P} is an integral convex polytope

Expanding and Counting Using Ehrhart's Original Approach

Proof of Theorem 3.8

- Enough to show for simplices
(\because Thm 3.1)
- Note: The intersection of simplices in a triangulation is again a simplex
- Enough to show for an integral d-simplex Δ

$$
\operatorname{Ehr}_{\Delta}(z)=1+\sum_{t \geq 1} L_{\Delta}(t) z^{t}=\frac{g(z)}{(1-z)^{d+1}}
$$

for some polynomial g of degree at most d with $g(1) \neq 0$

\mathcal{P} a convex d-polytope

Lemma 3.10

$\sigma_{\text {cone }(\mathcal{P})}(1,1, \ldots, 1, z)=1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}=\operatorname{Ehr}_{\mathcal{P}}(z)$
Proof:

$$
\begin{aligned}
& \sigma_{\text {cone }(\mathcal{P})}\left(z_{1}, z_{2}, \ldots, z_{d+1}\right) \\
& \quad=1+\sigma_{\mathcal{P}}\left(z_{1}, \ldots, z_{d}\right) z_{d+1}+\sigma_{2 \mathcal{P}}\left(z_{1}, \ldots, z_{d}\right) z_{d+1}^{2}+\cdots \\
& \quad=1+\sum_{t \geq 1} \sigma_{t \mathcal{P}}\left(z_{1}, \ldots, z_{d}\right) z_{d+1}^{t}
\end{aligned}
$$

Expanding and Counting Using Ehrhart's Original Approach

Proof of Lemma 3.10 (cont'd)
Since $\sigma_{\mathcal{P}}(1,1, \ldots, 1)=\#\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)$,

$$
\begin{aligned}
\sigma_{\text {cone }(\mathcal{P})}\left(1,1, \ldots, 1, z_{d+1}\right) & =1+\sum_{t \geq 1} \sigma_{t \mathcal{P}}(1,1, \ldots, 1) z_{d+1}^{t} \\
& =1+\sum_{t \geq 1} \#\left(t \mathcal{P} \cap \mathbb{Z}^{d}\right) z_{d+1}^{t} \\
& =\operatorname{Ehr}_{\mathcal{P}}\left(z_{d+1}\right)
\end{aligned}
$$

$$
\sigma_{\text {cone }(\mathcal{P})}\left(\mathbf{z}, z_{d+1}\right)=1+\sigma_{\mathcal{P}}(\mathbf{z}) z_{d+1}+\sigma_{2 \mathcal{P}}(\mathbf{z}) z_{d+1}^{2}+\cdots
$$

Back to Proof of Theorem 3.8

- Reminder: Enough to show for an integral d-simplex Δ

$$
\operatorname{Ehr}_{\Delta}(z)=1+\sum_{t \geq 1} L_{\Delta}(t) z^{t}=\frac{g(z)}{(1-z)^{d+1}}
$$

for some polynomial g of degree at most d with $g(1) \neq 0$

- $\operatorname{Ehr}_{\Delta}(z)=\sigma_{\text {cone }(\Delta)}(1,1, \ldots, 1, z)$
- Denote the $d+1$ vertices of Δ by $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d+1}$
- Let's look at $\sigma_{\text {cone }(\Delta)}\left(z_{1}, z_{2}, \ldots, z_{d+1}\right)$
- cone $(\Delta) \subset \mathbb{R}^{d+1}$ is simplicial, with apex the origin and generators

$$
\mathbf{w}_{1}=\left(\mathbf{v}_{1}, 1\right), \mathbf{w}_{2}=\left(\mathbf{v}_{2}, 1\right), \ldots, \mathbf{w}_{d+1}=\left(\mathbf{v}_{d+1}, 1\right) \in \mathbb{Z}^{d+1}
$$

- Then

$$
\sigma_{\text {cone }(\Delta)}\left(z_{1}, \ldots, z_{d+1}\right)=\frac{\sigma_{\Pi}\left(z_{1}, \ldots, z_{d+1}\right)}{\left(1-\mathbf{z}^{\mathbf{w}_{1}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{w}_{d+1}}\right)}
$$

where $\Pi=\left\{\lambda_{1} \mathbf{w}_{1}+\cdots+\lambda_{d+1} \mathbf{w}_{d+1}: 0 \leq \lambda_{1}, \ldots, \lambda_{d+1}<1\right\}$

- Note: σ_{Π} is a Laurent polynomial in $z_{1}, z_{2}, \ldots, z_{d+1}$
- Claim: The z_{d+1}-degree of σ_{Π} is at most d

Expanding and Counting Using Ehrhart's Original Approac

Proof of Theorem 3.8: Finishing the proof

- $\therefore \sigma_{\Pi}\left(1, \ldots, 1, z_{d+1}\right)$ is a polynomial of deg $\leq d$
- $\therefore \quad \sigma_{\text {cone }(\Delta)}\left(1, \ldots, 1, z_{d+1}\right)=\frac{\sigma_{\Pi}\left(1, \ldots, 1, z_{d+1}\right)}{\left(1-z_{d+1}\right)^{d+1}}$
- \therefore Enough to show that $\sigma_{\Pi}(1, \ldots, 1,1) \neq 0$
- Observation

$$
\sigma_{\Pi}(1, \ldots, 1,1)=\sum_{m \in \Pi \cap \mathbb{Z}^{d+1}} 1^{m}=\#\left(\Pi \cap \mathbb{Z}^{d+1}\right) \neq 0
$$

$$
\left(\because \mathbf{0} \in \Pi \cap \mathbb{Z}^{d+1}\right)
$$

- This finishes the proof

[^0]: (3) Expanding and Counting Using Ehrhart's Original Approach

[^1]: Proof: Similar to Theorem 3.5

[^2]: Proof: Exercise 3.8

