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Goal of this and the next lectures

Proving the following two theorems, and some more

Theorem 3.8 (Ehrhart’s Theorem)

P is an integral convex d-polytope ⇒
LP(t) is a polynomial in t of degree d

Theorem 3.23 (Ehrhart’s Theorem for rational polytopes)

P is a rational convex d-polytope ⇒
LP(t) is a quasipolynomial in t of degree d ;
Its period divides the least common multiple of the denominators of
the coordinates of the vertices of P
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Triangulations and Pointed Cones

Triangulation

P a convex d-polytope

Definition (Triangulation)

A triangulation of P is a finite collection T of d-simplices with the
following properties:

• P =
⋃

∆∈T

∆

• ∀ ∆1,∆2 ∈ T : ∆1 ∩∆2 is a face common to both ∆1 and ∆2

↑not a triangulation
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Triangulations and Pointed Cones

Triangulation using no new vertices

Definition (Triangulation using no new vertices)

P can be triangulated using no new vertices if ∃ a triangulation T
s.t. the vertices of any ∆ ∈ T are vertices of P

Theorem 3.1

Every convex polytope can be triangulated using no new vertices

Proof: See Appendix B in the textbook
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Triangulations and Pointed Cones

Pointed cones

Definition (Pointed cone)

A pointed cone K ⊆ Rd is a set of the form

K = {v + λ1w1 + λ2w2 + · · ·+ λmwm : λ1, λ2, . . . , λm ≥ 0} ,

where v,w1,w2, . . . ,wm ∈ Rd are such that ∃ a hyperplane H for
which H ∩ K = {v}; that is, K \ {v} lies strictly on one side of H
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Triangulations and Pointed Cones

Pointed cones: Glossary

A pointed cone
K = {v + λ1w1 + λ2w2 + · · ·+ λmwm : λ1, λ2, . . . , λm ≥ 0} ⊆ Rd

Definition

• The vector v is called the apex of K
• The wk ’s are the generators of K
• The dimension of K is the dimension of the affine space spanned

by K; if K is of dimension d , we call it a d-cone

• The d-cone K is simplicial if K has precisely d linearly
independent generators

• The cone is rational if v,w1,w2, . . . ,wm ∈ Qd , in which case we
may choose w1,w2, . . . ,wm ∈ Zd by clearing denominators
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Triangulations and Pointed Cones

Coning over a polytope

P ⊂ Rd a convex polytope with vertices v1, v2, . . . , vn

Definition (Cone over a polytope)

The cone over P is defined as

cone(P) = {λ1w1 + λ2w2 + · · ·+ λnwn : λ1, λ2, . . . , λn ≥ 0} ⊂ Rd+1 ,

where
w1 = (v1, 1) , w2 = (v2, 1) , . . . , wn = (vn, 1)
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Triangulations and Pointed Cones

Properties of the cone over a polytope

• cone(P) has the origin as apex

• We can recover our original polytope P by cutting cone(P) with
the hyperplane xd+1 = 1
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Triangulations and Pointed Cones

Valid inequalities: Analogous to polytopes

K ⊆ Rd a pointed d-cone; a ∈ Rd , b ∈ R

Definition (Valid inequality)

The inequality a · x ≤ b is a valid inequality for K if
a · z ≤ b for all z ∈ K
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Triangulations and Pointed Cones

Faces of a pointed cone: Analogous to polytopes

K ⊆ Rd a pointed cone

Definition (Face)

F is a face of K if ∃ a valid inequality a · x ≤ b for K s.t.

F = K ∩ {x : a · x = b}

Remark

• Every face of a pointed cone is also a pointed cone
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Triangulations and Pointed Cones

Triangulation of a pointed cone: Analogous to polytopes

K a pointed d-cone

Definition (Triangulation)

A triangulation of K is a collection T of simplicial d-cones that
satisfies the following:

• K =
⋃
S∈T

S

• ∀ S1,S2 ∈ T : S1 ∩ S2 is a face common to both S1 and S2
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Triangulations and Pointed Cones

Triangulation using no new generators

K a pointed d-cone

Definition

K is triangulated using no new generators if ∃ a triangulation T s.t.
the generators of any S ∈ T are generators of P

Theorem 3.2

Any pointed cone can be triangulated into simplicial cones using no
new generators

Y. Okamoto (Tokyo Tech) DMCS’09 (3) 2009-05-07 14 / 39

Triangulations and Pointed Cones

Proof of Theorem 3.2

• K a given pointed d-cone

• ∃ a hyperplane H that intersects K only at the apex

• Translate H “into” the cone, so that H ∩ K consists of more
than just one point

• This intersection is a (d − 1)-polytope P , whose vertices are
determined by the generators of K

• Triangulate P using no new vertices (by Thm 3.1)

• The cone over each simplex of the triangulation is a simplicial
cone

• These simplicial cones, by construction, triangulate K
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Integer-Point Transforms for Rational Cones

Integer-point transforms

Definition (Integer-point transform)

The integer-point transform (or the moment generating function) of
S ⊆ Rd is

σS(z) = σS (z1, z2, . . . , zd) :=
∑

m∈S∩Zd

zm

Recall: zm = zm1
1 zm2

2 · · · zmd
d

Example:

σS(z1, z2) = z1z
2
2 + z1z2 + z1 + z1z

−1
2

+z2 + 1 + z−1
1
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Integer-Point Transforms for Rational Cones

Example (1)

K = [0,∞) the 1-dimensional cone

σK(z) =
∑

m∈[0,∞)∩Z

zm =
∑
m≥0

zm =
1

1− z
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Integer-Point Transforms for Rational Cones

Example (2)

K := {λ1(1, 1) + λ2(−2, 3) : λ1, λ2 ≥ 0} ⊂ R2;
The fundamental parallelogram of K

Π := {λ1(1, 1) + λ2(−2, 3) : 0 ≤ λ1, λ2 < 1} ⊂ R2

tiles K if we translate Π by nonnegative integer linear combinations
of the generators (1, 1) and (−2, 3)
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Integer-Point Transforms for Rational Cones

Example (2): List all vertices of the translates of Π

These are nonnegative integer combinations of the generators (1, 1)
and (−2, 3), so we can list them using geometric series:∑

m=j(1,1)+k(−2,3)
j,k≥0

zm =
∑
j≥0

∑
k≥0

zj(1,1)+k(−2,3) =
1

(1− z1z2)
(
1− z−2

1 z3
2

)
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Integer-Point Transforms for Rational Cones

Example (2): Expressing the whole cone by translations

Let
L(m,n) := {(m, n) + j(1, 1) + k(−2, 3) : j , k ∈ Z≥0} .

Then
K ∩ Z2 =

⋃
(m,n)∈Π∩Z2

L(m,n)

where Π ∩ Z2 = {(0, 0), (0, 1), (0, 2), (−1, 2), (−1, 3)}
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Integer-Point Transforms for Rational Cones

Example (2): Conclusion

Hence

σK(z) =
(
1 + z2 + z2

2 + z−1
1 z2

2 + z−1
1 z3

2

) ∑
m=j(1,1)+k(−2,3)

j,k≥0

zm

=
1 + z2 + z2

2 + z−1
1 z2

2 + z−1
1 z3

2

(1− z1z2)
(
1− z−2

1 z3
2

)
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Integer-Point Transforms for Rational Cones

Integer-point transform of a simplicial cone

Theorem 3.5

Let

K := {λ1w1 + λ2w2 + · · ·+ λdwd : λ1, λ2, . . . , λd ≥ 0}

be a simplicial d-cone, where w1,w2, . . . ,wd ∈ Zd . Then for v ∈ Rd ,
the integer-point transform σv+K of the shifted cone v +K is the
rational function

σv+K(z) =
σv+Π(z)

(1− zw1) (1− zw2) · · · (1− zwd )
,

where Π is the fundamental parallelepiped of K:

Π := {λ1w1 + λ2w2 + · · ·+ λdwd : 0 ≤ λ1, λ2, . . . , λd < 1} .
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5

• σv+K(z) =
∑

m∈(v+K)∩Zd zm lists each integer point m ∈ v +K
as the monomial zm

• Such a lattice point can be written as (by definition)

m = v + λ1w1 + λ2w2 + · · ·+ λdwd

for some numbers λ1, λ2, . . . , λd ≥ 0

• This representation is unique (∵ the wk ’s form a basis of Rd)

• Since λk = bλkc+ {λk}, we get

m = v +
(
{λ1}w1 + {λ2}w2 + · · ·+ {λd}wd

)
+ bλ1cw1 + bλ2cw2 + · · ·+ bλdcwd
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (cont’d)

• Since 0 ≤ {λk} < 1,

p := v + {λ1}w1 + {λ2}w2 + · · ·+ {λd}wd ∈ v + Π

• In fact, p ∈ Zd (∵ m and bλkcwk are all integral)
• Again the representation of p in terms of the wk ’s is unique
• ∴ any m ∈ v +K ∩ Zd can be uniquely written as

m = p + k1w1 + k2w2 + · · ·+ kdwd

for some p ∈ (v + Π) ∩ Zd and some k1, k2, . . . , kd ∈ Z≥0

• Namely,

σv+K(z) =
∑

m∈(v+K)∩Zd

zm

=
∑

p∈(v+Π)∩Zd

∑
k1≥0

· · ·
∑
kd≥0

zp+k1w1+···+kdwd
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (further cont’d)

• On the other hand, the RHS of the theorem can be written as

σv+Π(z)

(1−zw1) · · · (1−zwd )
=

 ∑
p∈(v+Π)∩Zd

zp

(∑
k1≥0

zk1w1

)
· · ·

(∑
kd≥0

zkdwd

)
=

∑
p∈(v+Π)∩Zd

∑
k1≥0

· · ·
∑
kd≥0

zp+k1w1+···+kdwd

Remarks

• Crucial geometric idea: v +K is tiled with the translates of
v + Π by nonnegative integral combinations of the wk ’s

• Computational perspective: Difficulty lies in v + Π
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Integer-Point Transforms for Rational Cones

Corollary: Relaxing the assumption

Corollary 3.6

Let

K := {λ1w1 + λ2w2 + · · ·+ λdwd : λ1, λ2, . . . , λd ≥ 0}

be a simplicial d-cone, where w1,w2, . . . ,wd ∈ Zd , and v ∈ Rd , s.t.
the boundary of v +K contains no integer point. Then

σv+K(z) =
σv+Π(z)

(1− zw1) (1− zw2) · · · (1− zwd )
,

where Π is the open parallelepiped

Π := {λ1w1 + λ2w2 + · · ·+ λdwd : 0 < λ1, λ2, . . . , λd < 1} .

Proof: Similar to Theorem 3.5
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Integer-Point Transforms for Rational Cones

Corollary: General pointed cones

Corollary 3.7

Given any pointed cone

K = {v + λ1w1 + λ2w2 + · · ·+ λmwm : λ1, λ2, . . . , λm ≥ 0}

with v ∈ Rd , w1,w2, . . . ,wm ∈ Zd , the integer-point transform
σK(z) evaluates to a rational function in the coordinates of z

Proof:

• K can be triangulated (Theorem 3.2)

• The intersection of simplicial cones in a triangulation is again a
simplicial cone (Exer. 3.2)

• The inclusion-exclusion principle does the job
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Expanding and Counting Using Ehrhart’s Original Approach
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Expanding and Counting Using Ehrhart’s Original Approach

Ehrhart’s Theorem

The fundamental theorem concerning the lattice-point count in an
integral convex polytope

Theorem 3.8 (Ehrhart’s Theorem)

P is an integral convex d-polytope ⇒
LP(t) is a polynomial in t of degree d

Definition (Ehrhart polynomial)

LP is called the Ehrhart polynomial of P when P is an integral
convex polytope
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Expanding and Counting Using Ehrhart’s Original Approach

Proof Outline

• Enough to show for simplices ∆ (by triangulation)

• See a relation between L∆ and Ehr∆(z) (Lem 3.9)

• See a relation between Ehr∆ and σcone(∆) (Lem 3.10)

• Use Theorem 3.5 to conclude

Lemma 3.9

Let ∑
t≥0

f (t) z t =
g(z)

(1− z)d+1
;

Then f is a polynomial of degree d ⇔ g is a polynomial of degree at
most d and g(1) 6= 0

Proof: Exercise 3.8
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8

• Enough to show for simplices (∵ Thm 3.1)
• Note: The intersection of simplices in a triangulation is again a

simplex

• Enough to show for an integral d-simplex ∆

Ehr∆(z) = 1 +
∑
t≥1

L∆(t) z t =
g(z)

(1− z)d+1

for some polynomial g of degree at most d with g(1) 6= 0
(∵ Lem 3.9)
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Lemma 3.10

P a convex d-polytope

Lemma 3.10

σcone(P) (1, 1, . . . , 1, z) = 1 +
∑
t≥1

LP(t) z t = EhrP(z)

Proof:

σcone(P) (z1, z2, . . . , zd+1)

= 1 + σP (z1, . . . , zd) zd+1 + σ2P (z1, . . . , zd) z2
d+1 + · · ·

= 1 +
∑
t≥1

σtP (z1, . . . , zd) z t
d+1
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Lemma 3.10 (cont’d)

σcone(P) (z, zd+1) = 1 + σP (z) zd+1 + σ2P (z) z2
d+1 + · · ·
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Lemma 3.10 (cont’d)

Since σP (1, 1, . . . , 1) = #
(
P ∩ Zd

)
,

σcone(P) (1, 1, . . . , 1, zd+1) = 1 +
∑
t≥1

σtP (1, 1, . . . , 1) z t
d+1

= 1 +
∑
t≥1

#
(
tP ∩ Zd

)
z t
d+1

= EhrP(zd+1)
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Expanding and Counting Using Ehrhart’s Original Approach

Back to Proof of Theorem 3.8

• Reminder: Enough to show for an integral d-simplex ∆

Ehr∆(z) = 1 +
∑
t≥1

L∆(t) z t =
g(z)

(1− z)d+1

for some polynomial g of degree at most d with g(1) 6= 0

• Ehr∆(z) = σcone(∆) (1, 1, . . . , 1, z) (Lem 3.10)

• Denote the d + 1 vertices of ∆ by v1, v2, . . . , vd+1

• Let’s look at σcone(∆) (z1, z2, . . . , zd+1)

• cone(∆) ⊂ Rd+1 is simplicial, with apex the origin and
generators

w1 = (v1, 1) , w2 = (v2, 1) , . . . , wd+1 = (vd+1, 1) ∈ Zd+1
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8 (cont’d)

• Then

σcone(∆) (z1, . . . , zd+1) =
σΠ (z1, . . . , zd+1)

(1− zw1) · · · (1− zwd+1)
,

where Π = {λ1w1 + · · ·+ λd+1wd+1 : 0 ≤ λ1, . . . , λd+1 < 1}
• Note: σΠ is a Laurent polynomial in z1, z2, . . . , zd+1

• Claim: The zd+1-degree of σΠ is at most d
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Proof of Claim

• The xd+1-coordinate of each wk is 1

• ∴ The xd+1-coodinate of each point in Π is λ1 + · · ·+ λd+1 for
some 0 ≤ λ1, . . . , λd+1 < 1

• ∴ λ1 + · · ·+ λd+1 < d+1

• ∴ λ1 + · · ·+ λd+1 ≤ d (∵ the coord is an integer)

• ∴ The xd+1-degree of σΠ is ≤ d
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Finishing the proof

• ∴ σΠ (1, . . . , 1, zd+1) is a polynomial of deg ≤ d

• ∴

σcone(∆) (1, . . . , 1, zd+1) =
σΠ (1, . . . , 1, zd+1)

(1− zd+1)d+1

• ∴ Enough to show that σΠ (1, . . . , 1, 1) 6= 0

• Observation

σΠ (1, . . . , 1, 1) =
∑

m∈Π∩Zd+1

1m = #(Π ∩ Zd+1) 6= 0

(∵ 0 ∈ Π ∩ Zd+1)

• This finishes the proof
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