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Goal of this and the next lectures

Proving the following two theorems, and some more

Theorem 3.8 (Ehrhart's Theorem)

P is an integral convex d-polytope =
Lp(t) is a polynomial in t of degree d

Theorem 3.23 (Ehrhart's Theorem for rational polytopes)

P is a rational convex d-polytope =

Lp(t) is a quasipolynomial in t of degree d;

Its period divides the least common multiple of the denominators of
the coordinates of the vertices of P
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Triangulations and Pointed Cones

Triangulation

P a convex d-polytope

Definition (Triangulation)
A triangulation of P is a finite collection T of d-simplices with the
following properties:

eP=JA

e VAL,A,e T: A;N A, is aface common to both A; and A,

vy

Q>
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Triangulations and Pointed Cones

Triangulation

P a convex d-polytope

Definition (Triangulation)
A triangulation of P is a finite collection T of d-simplices with the
following properties:

eP=JA

e VAL,A,e T: A;N A, is aface common to both A; and A,

vy

Tnot a triangulation

[m] = = =
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Triangulations and Pointed Cones

Triangulation using no new vertices

Definition (Triangulation using no new vertices)

P can be triangulated using no new vertices if 3 a triangulation T
s.t. the vertices of any A € T are vertices of P

Theorem 3.1
Every convex polytope can be triangulated using no new vertices J

Proof: See Appendix B in the textbook
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Triangulations and Pointed Cones

Pointed cones

Definition (Pointed cone)

A pointed cone KL C R is a set of the form
K={v+Aws +dowo+ -+ ApWp 0 A1, Aoy, Ay > 0}

where v, w1, Wo, ..., W, € R are such that 3 a hyperplane H for
which HN K = {v}; that is, K\ {v} lies strictly on one side of H
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Triangulations and Pointed Cones

Pointed cones: Glossary

A pointed cone
K= {V+)\1W1+)\2W2—|—“-—|—)\mwmi >\17>\27---7>\m 20} ng
Definition

e The vector v is called the apex of K

e The wy's are the generators of IC

e The dimension of K is the dimension of the affine space spanned
by IC; if K is of dimension d, we call it a d-cone

e The d-cone K is simplicial if IC has precisely d linearly
independent generators

e The cone is rational if v, wy,Ws, ..., w, € Q7 in which case we
may choose Wy, Ws, ..., W, € Z¢ by clearing denominators
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Triangulations and Pointed Cones

Coning over a polytope

P C RY a convex polytope with vertices vi,vs, ..., v,

Definition (Cone over a polytope)

The cone over P is defined as
cone(P) = {\wq + Aawo + -+ AWy, - A, Ao, ..., A, > 0} € RITH

where

wy = (vi,1), wyr = (vp,1), ..., w,=(v,,1)
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Triangulations and Pointed Cones

Properties of the cone over a polytope

e cone(P) has the origin as apex

e We can recover our original polytope P by cutting cone(P) with
the hyperplane xy,1 =1
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K C R? a pointed d-cone; a € R, b€ R
a-z<bforallze K

The inequality a - x < b is a valid inequality for I if
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K C R? a pointed cone

F is a face of K if 4 a valid inequality a - x < b for I s.t.

F=Kn{x:a-x=b}

e Every face of a pointed cone is also a pointed cone l

&2




Triangulations and Pointed Cones

Triangulation of a pointed cone: Analogous to polytopes

K a pointed d-cone

Definition (Triangulation)
A triangulation of IC is a collection T of simplicial d-cones that
satisfies the following:

eK={]JS

SeT
e V5,5 € T: §NS, is aface common to both &7 and S5
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K a pointed d-cone
IC is triangulated using no new generators if 3 a triangulation T s.t.
the generators of any S € T are generators of P

new generators

Any pointed cone can be triangulated into simplicial cones using no

«O» «F>»r «=)>r 4 » Q¥




e K a given pointed d-cone

e J a hyperplane H that intersects K only at the apex
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Triangulations and Pointed Cones

Proof of Theorem 3.2

e /C a given pointed d-cone
e 1 a hyperplane H that intersects K only at the apex

e Translate H “into” the cone, so that H N K consists of more
than just one point

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 15 / 39



Triangulations and Pointed Cones

Proof of Theorem 3.2

e /C a given pointed d-cone

d a hyperplane H that intersects I only at the apex

Translate H “into” the cone, so that H N KC consists of more
than just one point

This intersection is a (d — 1)-polytope P, whose vertices are
determined by the generators of I
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Triangulations and Pointed Cones

Proof of Theorem 3.2

e /C a given pointed d-cone

d a hyperplane H that intersects I only at the apex

Translate H “into” the cone, so that H N KC consists of more
than just one point

This intersection is a (d — 1)-polytope P, whose vertices are
determined by the generators of I

Triangulate P using no new vertices (by Thm 3.1)
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Triangulations and Pointed Cones

Proof of Theorem 3.2

e /C a given pointed d-cone

d a hyperplane H that intersects I only at the apex

e Translate H “into” the cone, so that H N K consists of more
than just one point

e This intersection is a (d — 1)-polytope P, whose vertices are
determined by the generators of I

e Triangulate P using no new vertices (by Thm 3.1)

e The cone over each simplex of the triangulation is a simplicial
cone

e These simplicial cones, by construction, triangulate IC ]
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The integer-point transform (or the moment generating function) of
SCRYis
0'5(2) = 0s ( oo
4 e
«O> «F>r «=» «E» = Q>
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Integer-Point Transforms for Rational Cones

Integer-point transforms

Definition (Integer-point transform)

The integer-point transform (or the moment generating function) of

= Z z"

SCRYis

0s(z) = 0s(z1, 22, - - -

y Zd

meSnzd

. m __ m mo my
Recall: z™ = z™ 2, - -+ z,
Example:
05(217 22)

Y. Okamoto (Tokyo Tech) DMCS'09 (3)
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K = [0, 00) the 1-dimensional cone
ox(z) =

P
me[0,00)NZ

1
1—=~z

m>0




Integer-Point Transforms for Rational Cones

Example (2)

K:={(1,1) +X(-2,3): A1, A2 >0} CR%
The fundamental parallelogram of K

Mi={A(11) + Ma(=2,3): 0 < A X < 1} C R?

tiles K if we translate 1 by nonnegative integer linear combinations
of the generators (1,1) and (—2,3)

®© 0000000

® 000000 00

®© 00000000 00
® 0 06060600000 00

N\
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Integer-Point Transforms for Rational Cones

Example (2)

K= {A(1,1) + Xo(—2,3) - A\, A2 >0} C R?;
The fundamental parallelogram of K

M= {A(L1) + de(~2.3): 0< A do < 1} C R

tiles K if we translate 1 by nonnegative integer linear combinations
of the generators (1,1) and (—2,3)

®© 0000000

® 000000 00

®© 00000000 00
® 0 06060600000 00

N\
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Integer-Point Transforms for Rational Cones

Example (2): List all vertices of the translates of [

These are nonnegative integer combinations of the generators (1, 1)
and (—2,3), so we can list them using geometric series:

Z(LD+K(-23) _ 1
Z ZZ (1 —2z2) (1—212 3)

m=j(1,1)+k(—2,3) j>0 k>0
j,k>0

0o 000
00000

9 0606006000000
©0 00000000

N
00000 0O0OGOOOINOIOS
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Integer-Point Transforms for Rational Cones

Example (2): Expressing the whole cone by translations

Let
E(m,n) = {(m, n) +_/(1, 1) + k(—27 3) . _j, k c Zzo} .
Then

KNnz? = U ,C(m,,,)

(m,n)ennz?

where M N Z? = {(0,

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 21 /39



Integer-Point Transforms for Rational Cones

Example (2): Conclusion

Hence

ox(2)=(1+n+Z+2 'z +2'2) Z z"

2, ,-1,2, -1.3
l+zn+2z54+2 'z +2 2

(1—2z120) (1 — 21—223)

®© 0000000000
® 0060060000000

N\
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Integer-Point Transforms for Rational Cones

Integer-point transform of a simplicial cone

Theorem 3.5
Let

]C:: {)\1W1+)\2W2+"'+)\dwd: A17)\27"'7>\C/20}

be a simplicial d-cone, where wi, Wy, ..., wy € Z9. Then for v € RY,
the integer-point transform o, of the shifted cone v + K is the
rational function

_ Uv+n(z)
O'v+]c(Z) = (1 — Zwl) (1 _ sz) c. (]_ — de) )

where [1 is the fundamental parallelepiped of K:

M= {\wy +dowo + -+ Agwg 0 0 < Ag, A, Ay < 1}

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 23 /39



B m ) )
® 0uic(2) = Xme(vik)nze 2T lists each integer point m € v + K
as the monomial z™
«O0>» «Fr «E» «E)» Q>
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5

® 0uixk(2) = D omevik)nze 2T lists each integer point m € v + K
as the monomial z™

e Such a lattice point can be written as (by definition)
m=v+ \wy + AoWo + - - + AgWy

for some numbers Ay, As, ..., Ay >0

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 24 / 39



Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5

® 0uixk(2) = D omevik)nze 2T lists each integer point m € v + K
as the monomial z™

e Such a lattice point can be written as (by definition)
m=v+ \wy + AoWo + - - + AgWy

for some numbers Ay, As, ..., Ay >0

e This representation is unique (. the wy's form a basis of R?)
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5

® 0uixk(2) = D omevik)nze 2T lists each integer point m € v + K
as the monomial z™

e Such a lattice point can be written as (by definition)
m=v+ \wy + AoWo + - - + AgWy

for some numbers Ay, As, ..., Ay >0
e This representation is unique (. the wy's form a basis of R?)
o Since A\ = [ A« + { A}, we get

m = v+ ({Adwr+ {ofwo+ -+ {Ag} wy)
+ [ Ar] wi + [Aafwa + -+ [Ag] wy

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 24 / 39



e Since 0 < {\} < 1,

p=v+{Atwi+{tw+- -+ {Agfwgev+TI

DA

a
u]
v
a
v
a
i
v
a
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (cont'd)

e Since 0 < {\«} <1,
p=v+{twi+{two+- -+ {A\gpwgev+T
e In fact, p € Z% (.- m and |\« ] wy are all integral)
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (cont'd)

e Since 0 < {\«} < 1,
p=v+{twi+{two+- -+ {A\gpwgev+T

e In fact, p € Z% (.- m and |\« ] wy are all integral)
e Again the representation of p in terms of the w's is unique
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (cont'd)

e Since 0 < {\«} < 1,
p=v+{Atwi+{}w+ -+ {Aglwgev+TI

e In fact, p € Z% (.- m and |\« ] wy are all integral)
e Again the representation of p in terms of the w's is unique
e -.any m € v+ K NZ9 can be uniquely written as

m:p+k1W1+k2W2—|—"'+ded
for some p € (v + M) N Z? and some ki, ko, ..., kg € Z>go
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (cont'd)

e Since 0 < {\«} < 1,
p=v+{Atwi+{}w+ -+ {Aglwgev+TI

In fact, p € Z9 (-.- m and |\, ] wy are all integral)
Again the representation of p in terms of the wy's is unique
e -.any m € v+ K NZ9 can be uniquely written as

m:p+k1W1+k2W2—|—"'+ded

for some p € (v + M) N Z? and some ki, ko, ..., kg € Z>go
Namely,

ovik(z) = Z ra

me(v+K)Nzd

— E E E ZPThawit - tkgwg

pe(uAMNZI ki>0  ky>0
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (further cont'd)

e On the other hand, the RHS of the theorem can be written as

ovin(2) _ p kawy kawad
(1—z%)- - (1-z%) >z >z N DI

pe(v+Mnzd k1>0 kq>0

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 26 / 39



Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (further cont'd)

e On the other hand, the RHS of the theorem can be written as

ovin(2) _ p kawy kawad
(1—z%)- - (1-z%) >z >z N DI

pe(v+Mnzd k1>0 kq>0

— § E E ZP+k1W1+---+ded []

pe(v+M)NZ9 k1 >0 kg=>0
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Integer-Point Transforms for Rational Cones

Proof of Theorem 3.5 (further cont'd)

e On the other hand, the RHS of the theorem can be written as

ovin(2) _ p kawy kawad
(1—z%)- - (1-z%) >z >z N DI

pe(v+Mnzd k1>0 kq>0

— § E E ZP+k1W1+---+ded []

pe(v+M)NZ9 k1 >0 kg=>0

Remarks

e Crucial geometric idea: v + I is tiled with the translates of
v + 1 by nonnegative integral combinations of the wy's

e Computational perspective: Difficulty lies in v + 1
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Integer-Point Transforms for Rational Cones

Corollary: Relaxing the assumption

Corollary 3.6
Let

IC = {/\1W1—|—/\2W2+"'+>\dwd: >\17>\27"'7)\d20}

be a simplicial d-cone, where wy,w>,...,wy € Z9, and v € RY, s.t.
the boundary of v + K contains no integer point. Then

_ Uv+ﬂ(z)
Uv+IC(Z) = (1 — zwl) (1 _ sz) - (]_ = de) )

where [1 is the open parallelepiped

MN:= {>\1W1+>\2W2+"'+)\dwd: 0<)\17)\27"‘7)‘d<1}'

Proof: Similar to Theorem 3.5 OJ
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Integer-Point Transforms for Rational Cones

Corollary: General pointed cones

Corollary 3.7
Given any pointed cone

]C:{V+>\1W1+>\2W2+"'+)\mwmi )\1,)\2,...,)\,” > 0}
with v € RY, wy,wo, ..., w,, € Z9 the integer-point transform

ox(z) evaluates to a rational function in the coordinates of z

Proof:
e K can be triangulated (Theorem 3.2)

e The intersection of simplicial cones in a triangulation is again a

simplicial cone (Exer. 3.2)

e The inclusion-exclusion principle does the job

Y. Okamoto (Tokyo Tech) DMCS'09 (3)
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Expanding and Counting Using Ehrhart’s Original Approach

©® Expanding and Counting Using Ehrhart's Original Approach
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Expanding and Counting Using Ehrhart’s Original Approach

Ehrhart's Theorem

The fundamental theorem concerning the lattice-point count in an

integral convex polytope

Theorem 3.8 (Ehrhart's Theorem)

P is an integral convex d-polytope =
Lp(t) is a polynomial in t of degree d

Y. Okamoto (Tokyo Tech) DMCS'09 (3)
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Expanding and Counting Using Ehrhart’s Original Approach

Ehrhart's Theorem

The fundamental theorem concerning the lattice-point count in an
integral convex polytope
Theorem 3.8 (Ehrhart's Theorem)

P is an integral convex d-polytope =
Lp(t) is a polynomial in t of degree d

Definition (Ehrhart polynomial)
Lp is called the Ehrhart polynomial of P when P is an integral
convex polytope

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 30/ 39



Expanding and Counting Using Ehrhart’s Original Approach

Proof Outline

e Enough to show for simplices A (by triangulation)
e See a relation between La and Ehra(z)

e See a relation between Ehra and ocone(a)

e Use Theorem 3.5 to conclude

Y. Okamoto (Tokyo Tech) DMCS'09 (3)

(Lem 3.9)
(Lem 3.10)
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Expanding and Counting Using Ehrhart’s Original Approach

Proof Outline

e Enough to show for simplices A (by triangulation)

e See a relation between La and Ehra(z) (Lem 3.9)
e See a relation between Ehra and ocone(a) (Lem 3.10)
e Use Theorem 3.5 to conclude

Lemma 3.9

Let

Z f (Z) '
(1-— Z)d+1

>0

Then f is a polynomial of degree d < g is a polynomial of degree at
most d and g(1) #0

Proof: Exercise 3.8

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 31/39



e Enough to show for simplices

(- Thm 3.1)



Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8

¢ Enough to show for simplices (. Thm 3.1)

e Note: The intersection of simplices in a triangulation is again a
simplex

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 32 /39



Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8

¢ Enough to show for simplices (. Thm 3.1)

e Note: The intersection of simplices in a triangulation is again a
simplex

e Enough to show for an integral d-simplex A

Ehra(z) =1+ Y La(t)2' = g(2)

(1—z)d+1
t>1

for some polynomial g of degree at most d with g(1) # 0
(.- Lem 3.9)

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 32 /39



P a convex d-polytope

Teone(p) (L, 1,...,1,2) =1+ Z Lp(t) 2t = Ehrp(2)
Proof:

t>1

Tcone(P) (21, 22;

: 7Zd+1)




P a convex d-polytope

0-cone('P) (la 1) ccog ]-a Z) =1 + Z Lp(t) Zt - EhrP(Z)
Proof:

t>1

O cone(P) (zl’ 22,

. 7zd+1)
=1+op (217

) 2d) Zd+1 + 02p (21,
:1—'—20'15’])(21, ~7zd)zct]+1
t>1

2
0 Zd)Zg



O cone(P) (Z, Zd+1) =1+op (Z) Zd41 + O2p (Z) 234_1 +-
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O cone(P) (Z, Zd+1) =1+op (Z) Zd41 + O2p (Z) 234_1 +-
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O cone(P) (Z, Zd+1) =1+op (Z) Zd41 + O2p (Z) 234_1 +-
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Ocone(P) (17 1a ceey

1,zg1) =14 oep(L,1,...,1) 25,

t>1



Since op (1,1,...,1) = # (PN Z7),
Ocone(P) (17 1a ety

1,zg1) =14+ oep(L,1,...,1) 25,

t>1

=1+ #(tPnz) 25,
t>1



Expanding and Counting Using Ehrhart’s Original Approach

Proof of Lemma 3.10 (cont'd)

Since op (1,1,...,1) = # (PN Z9),

Ocone(P) (]-7 17 cee ]-7 Zd+1) =1+ Z orp (1a 17 SR 1) th;—i-l

t>1

=1+ #(tPnz) 25,

t>1

= Ehrp(ZdH) ]

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07
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Expanding and Counting Using Ehrhart’s Original Approach

Back to Proof of Theorem 3.8

e Reminder: Enough to show for an integral d-simplex A

Ehra(z) =1+ Z La(t) 2" = &

for some polynomial g of degree at most d with g(1) # 0

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07
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Expanding and Counting Using Ehrhart’s Original Approach

Back to Proof of Theorem 3.8

e Reminder: Enough to show for an integral d-simplex A

Ehra(z) =1+ Z La(t) 2" = &

for some polynomial g of degree at most d with g(1) # 0
o Ehra(z) = ocone(n) (1,1,...,1,2) (Lem 3.10)
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Expanding and Counting Using Ehrhart’s Original Approach

Back to Proof of Theorem 3.8

e Reminder: Enough to show for an integral d-simplex A

Ehra(z) =1+ Z La(t) 2" = &

for some polynomial g of degree at most d with g(1) # 0

o Ehra(z) = ocone(n) (1,1,...,1,2) (Lem 3.10)
e Denote the d + 1 vertices of A by vi,vo, ... Vg1
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Expanding and Counting Using Ehrhart’s Original Approach

Back to Proof of Theorem 3.8

e Reminder: Enough to show for an integral d-simplex A

_ t_ g(2)
EhrA(Z) =1+ Z LA(t)Z = m
for some polynomial g of degree at most d with g(1) # 0
o Ehra(z) = ocone(n) (1,1,...,1,2) (Lem 3.10)
e Denote the d + 1 vertices of A by vi,vo, ... Vg1
e let's look at Ocone(A) (217 Zo, ... ,Zd+1)
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Expanding and Counting Using Ehrhart’s Original Approach

Back to Proof of Theorem 3.8

e Reminder: Enough to show for an integral d-simplex A

Ehra(z) =1+ Z La(t) 2" = &

for some polynomial g of degree at most d with g(1) # 0

o Ehra(z) = ocone(n) (1,1,...,1,2) (Lem 3.10)
e Denote the d + 1 vertices of A by vi,vo, ... Vg1
e Let's look at Ocone(a) (21, 22, - - - Zd41)
e cone(A) C R is simplicial, with apex the origin and
generators
wy = (vi,1), wo = (v2,1), ..., Wgy1 = (Vgp1,1) € Z9

Y. Okamoto (Tokyo Tech) DMCS'09 (3) 2009-05-07 36 / 39



e Then
Ocone(A) (21, s ,Zd—i—l) = (1

on (zla
where T = { A\ w1 + - + Agr1wgyr 0 0 < Aq,

H) zd+1)

_ zwl) ... (]_ _ sz+1) !

-,)\d—i—l < 1}

«O> «F>r «=» «E» = Q>



Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8 (cont'd)

e Then

on (217 cee ;Zd+1)
1— ZWI) ce (]_ — sz+1) ’

Ocone(A) (Zla s 7Zd+1) = (

where [1 = {)\1W1 + -4 )\d+1wd+1 0 < )\1, . '7)‘d+1 < 1}

e Note: o is a Laurent polynomial in z1, 2, ..., z441
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8 (cont'd)

e Then

on (217 cee ;Zd+1)
1—z%). .. (1 — zWar) ’

Ocone(A) (Zla s 7Zd+1) = (

where 1 = {)\1W1 + -+ )\d+1wd+1 0 < )\1, cey )‘d+1 < 1}
e Note: o is a Laurent polynomial in z1, 2, ..., z441

e Claim: The z,,i-degree of o is at most d
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e The xy1-coordinate of each wy is 1
«Or «Fr o« > < > a
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Proof of Claim

e The x4,1-coordinate of each wy is 1

e .. The x4;1-coodinate of each point in [Tis Ay + - 4+ Ayy1 for
some 0 < Ay, ..., Agy1 <1
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Proof of Claim

e The x4,1-coordinate of each wy is 1

e .. The x4;1-coodinate of each point in [Tis Ay + - 4+ Ayy1 for
some 0 < Ay, ..., Agy1 <1

o A H - Agyr < d+1
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Proof of Claim

e The x4,1-coordinate of each wy is 1

e .. The x4;1-coodinate of each point in [Tis Ay + - 4+ Ayy1 for
some 0 < Aq,..., Agy1 <1

o A H - Agyr < d+1
e "M+ F+ A1 < d (". the coord is an integer)
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Proof of Claim

e The x4,1-coordinate of each wy is 1

e .. The x4;1-coodinate of each point in [Tis Ay + - 4+ Ayy1 for
some 0 < Aq,..., Agy1 <1

o A H - Agyr < d+1
e "M+ F+ A1 < d (". the coord is an integer)
o . The xy;1-degree of o is < d O
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e ~on(l,...,1,z441) is a polynomial of deg < d

«O>» «Fr «=» «=)» DA



e ~on(l,...,1,z441) is a polynomial of deg < d
. ..c

Ocone(A) (13 ) 17 Zd+1) =

on (17 ) 17 zd+1)
(1—z441)

d+1



Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Finishing the proof

e ~on(1,...,1,2441) is a polynomial of deg < d

on (15 ) 17 Zd+1)
(1 _Zd+1)d+1

e . Enough to show that o (1,...,1,1) #40

Ocone(A) (17 SRR 17 Zd+1) =
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Finishing the proof

e ~on(1,...,1,2441) is a polynomial of deg < d

on(1,...,1,2441)
(1= 2400)""

e . Enough to show that o (1,...,1,1) #40

e Observation

Ocone(A) (17 SRR 17 Zd+1) =

mennzd+1
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Finishing the proof

e ~on(1,...,1,2441) is a polynomial of deg < d

on(1,...,1,2441)
(1= 2400)""

e . Enough to show that o (1,...,1,1) #40

e Observation

on(l,...,L,1)= > 1™=#Nnz)

mennzd+1

Ocone(A) (17 SRR 17 Zd+1) =
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Finishing the proof

e ~on(1,...,1,2441) is a polynomial of deg < d

. ...

on (15 ) 17Zd+1)
(1 - Zd+1)dJr1

e . Enough to show that o (1,...,1,1) #40

e Observation

on(l,...,L,1)= >  1m=#NnZ")#0

mennzd+1

Ocone(A) (17 SRR 17 Zd+1) =

(-0 e NNzt
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Expanding and Counting Using Ehrhart’s Original Approach

Proof of Theorem 3.8: Finishing the proof

e ~on(1,...,1,2441) is a polynomial of deg < d

. ...

on (15 ) 17Zd+1)
(1 - Zd+1)dJr1

.. Enough to show that o (1,...,1,1) #0

Observation

on(l,...,L,1)= >  1m=#NnZ")#0

mennzd+1

Ocone(A) (17 SRR 17 Zd+1) =

(-0 e NNzt
This finishes the proof n
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