Discrete Mathematics \& Computational Structures Lattice-Point Counting in Convex Polytopes
(2) A garelly of discrete volumes

Yoshio Okamoto
Tokyo Institute of Technology
April 30, 2009
"Last updated: 2009/05/01 15:49"

The language of polytopes

(1) The language of polytopes
(2) The unit cube
(3) The standard simplex
(4) The Bernoulli polynomials as lattice-point enumerators of pyramids
(5) The lattice-point enumerators of the cross-polytopes
© Pick's theorem
(7) Polygons with rational vertices
(8) Euler's generating function for general rational polytopes
(1) The language of polytopes
(2) The unit cubeThe standard simplex(4) The Bernoulli polynomials as lattice-point enumerators of pyramids
(5) The lattice-point enumerators of the cross-polytopes
© Pick's theorem
(2) Polygons with rational vertices

8 Euler's generating function for general rational polytopes

```
Convex polytopes in dimension 1
```


Convex polytopes in dimension 1

$=$ straight line segments

- Integral segment $[a, b], a, b \in \mathbb{Z}, a<b$

$$
\#([a, b] \cap \mathbb{Z})=b-a+1
$$

- Rational segment $[a / b, c / d], a, b, c, d \in \mathbb{Z}, a / b<c / d$

$$
\#([a / b, c / d] \cap \mathbb{Z})=\lfloor c / d\rfloor-\lfloor(a-1) / b\rfloor
$$

Convex polytopes in dimension 2

= convex polygons

Lattice-point counting is a topic of Sect. 2.6 and 2.7

Convex polytopes in dimension d, another point of view

Convex polytopes in dimension d

= bounded intersections of finitely many half-spaces
For $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{d}$ and $b_{1}, b_{2}, \ldots, b_{m} \in \mathbb{R}$

$$
\mathcal{P}=\left\{\mathbf{x}: \mathbf{a}_{i} \cdot \mathbf{x} \leq b_{i} \text { for all } i=1,2, \ldots, m\right\}
$$


```
Convex polytopes in dimension d
```


Convex polytopes in dimension d
 $$
=\text { convex hulls of a finite set of points }
$$

$$
\text { For }\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\} \subset \mathbb{R}^{d}
$$

$$
\mathcal{P}=\left\{\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}+\cdots+\lambda_{n} \mathbf{v}_{n}: \begin{array}{l}
\text { all } \lambda_{k} \geq 0 \text { and } \\
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=1
\end{array}\right\}
$$

that is, the smallest convex set containing $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$

Convex polytopes

Convex polytopes are

- convex hulls of a finite set of points
(vertex description, v-polytopes)
or
- bounded intersections of finitely many half-spaces
(hyperplane description, h-polytopes)

Theorem (Main theorem for polytopes, Minkowski-Weyl Theorem)

- Every v-polytope is an h-polytope
- Every h-polytope is a v-polytope

[^0]Dimension of convex polytopes
\mathcal{P} a convex polytope

Definition (Dimension)

The dimension of \mathcal{P} is the dimension of the span of \mathcal{P}, where

$$
\operatorname{span} \mathcal{P}:=\{\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x}): \mathbf{x}, \mathbf{y} \in \mathcal{P}, \lambda \in \mathbb{R}\}
$$

Definition (d-Polytope)

If the dimension of \mathcal{P} is d, then we write

- $\operatorname{dim} \mathcal{P}=d$
- \mathcal{P} is a d-polytope

Faces of a convex polytope

$\mathcal{P} \subseteq \mathbb{R}^{d}$ a convex polytope

Definition (Face)

\mathcal{F} is a face of \mathcal{P} if \exists a valid inequality $\mathbf{a} \cdot \mathbf{x} \leq b$ for \mathcal{P} s.t

$$
\mathcal{F}=\mathcal{P} \cap\{\mathbf{x}: \mathbf{a} \cdot \mathbf{x}=b\}
$$

Remark

- Every face of a convex polytope is also a convex polytope
- \mathcal{P} and \varnothing are faces of \mathcal{P}

Names of faces
$\mathcal{P} \subseteq \mathbb{R}^{d}$ a convex polytope

Definition

0 -dimensional face vertex of \mathcal{P}
1-dimensional face edge of \mathcal{P}
$(d-1)$-dimensional face facet of \mathcal{P}

Fact

Every convex d-polytope has at least $d+1$ vertices

Definition (Simplex)

A convex d-polytope is a d-simplex if it has exactly $d+1$ vertices

The unit cube

(1) The language of polytopes
(2) The unit cube
(3) The standard simplex
(4) The Bernoulli polynomials as lattice-point enumerators of pyramids
5) The lattice-point enumerators of the cross-polytopes

6 Pick's theorem
(7) Polygons with rational vertices
(8) Euler's generating function for general rational polytopes

Definition (Integral polytope)

A convex polytope is integral if all of its vertices have integer coordinates

Definition (Rational polytope)

A convex polytope is rational if all of its vertices have rational coordinates

Unit cubes

Definition (Unit d-cube \square)

- Vertices

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right): \text { all } x_{k}=0 \text { or } 1\right\}
$$

- Hyperplane description

$$
\square=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: 0 \leq x_{k} \leq 1 \text { for all } k\right\} .
$$

What's the number of integer points in $t \square\left(t \in \mathbb{Z}_{>0}\right)$?

Y. Okamoto (Tokyo Tech)

DMCS'09 (2)

$(t+1)^{d}$ is the generating function of

$$
(t+1)^{d}=\sum_{k=0}^{d}\binom{d}{k} t^{k},
$$

where $\binom{d}{k}$ is a binomial coefficient defined as follows
Definition (Binomial coefficient)

$$
\binom{m}{n}:=\frac{m(m-1)(m-2) \cdots(m-n+1)}{n!}
$$

Lattice-point enumerators

$\mathcal{P} \subseteq \mathbb{R}^{d}$ not necessarily a convex polytope

Definition (Lattice-point enumerator)

The lattice-point enumerator fot $t \mathcal{P}$ is defined as

$$
\iota_{\mathcal{P}}(t):=\#\left(t \mathcal{P} \cap \mathbb{Z}^{d}\right)
$$

Remarks

$$
\text { - } L_{\mathcal{P}}(t)=\#\left(\mathcal{P} \cap \frac{1}{t} \mathbb{Z}^{d}\right)
$$

$$
\text { - } L_{\square}(t)=(t+1)^{d}
$$

$$
L_{\square}(t)=\#\left(t \square^{\circ} \cap \mathbb{Z}^{d}\right)=\#\left((0, t)^{d} \cap \mathbb{Z}^{d}\right)=(t-1)^{d}
$$

$$
\begin{aligned}
& \text { Remark } \\
& L_{\square \circ}(t)=(-1)^{d} L_{\square}(-t)
\end{aligned}
$$

$\mathcal{P} \subseteq \mathbb{R}^{d}$

Definition (Ehrhart series)

The Ehrhart series of \mathcal{P} is the generating fn of $L_{\mathcal{P}}(t)$:

$$
\operatorname{Ehr}_{\mathcal{P}}(z):=1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t}
$$

Namely,

$$
\operatorname{Ehr}_{\square}(z)=1+\sum_{t \geq 1}(t+1)^{d} z^{t}
$$

The unit cube

What's an Eulerian number?

Fact

$A(d, k)=\#$ permutations of $\{1, \ldots, d\}$ with $k-1$ ascents

$$
d=6, k=3: 1 \quad 4|2 \quad 5 \quad 6| 3
$$

$$
\begin{align*}
& \text { Properties (Exercise 2.8) } \quad 1 \leq k \leq d \mid \\
& A(d, k)=A(d, d+1-k), \\
& A(d, k)=(d-k+1) A(d-1, k-1)+k A(d-1, k), \tag{3}\\
& \sum_{k=0}^{d} A(d, k)=d!, \\
& A(d, k)=\sum_{j=0}^{k}(-1)^{j}\binom{d+1}{j}(k-j)^{d}
\end{align*}
$$

Eulerian numbers

Definition (Eulerian number)

For $0 \leq k \leq d$, the Eulerian number $A(d, k)$ is defined through

$$
\begin{equation*}
\sum_{j \geq 0} j^{d} z^{j}=\frac{\sum_{k=0}^{d} A(d, k) z^{k}}{(1-z)^{d+1}} \tag{2}
\end{equation*}
$$

Then,

$$
\begin{aligned}
\operatorname{Ehr}_{\square}(z) & =1+\sum_{t \geq 1}(t+1)^{d} z^{t}=\sum_{t \geq 0}(t+1)^{d} z^{t}=\frac{1}{z} \sum_{t \geq 1} t^{d} z^{t} \\
& =\frac{\sum_{k=1}^{d} A(d, k) z^{k-1}}{(1-z)^{d+1}}
\end{aligned}
$$

Summary: The unit cube

Theorem 2.1

(a) The lattice-point enumerator of \square is the polynomial

$$
L_{\square}(t)=(t+1)^{d}=\sum_{k=0}^{d}\binom{d}{k} t^{k}
$$

(b) Its evaluation at negative integers yields the relation

$$
(-1)^{d} L_{\square}(-t)=L_{\square \bullet}(t)
$$

(c) The Ehrhart series of \square is $\operatorname{Ehr}_{\square}(z)=\frac{\sum_{k=1}^{d} A(d, k) z^{k-1}}{(1-z)^{d+1}}$
(1) The language of polytopes
(2) The unit cube
(3) The standard simplex
(4) The Bernoulli polynomials as lattice-point enumerators of pyramids
(5) The lattice-point enumerators of the cross-polytopes
(6) Pick's theorem
(7) Polygons with rational vertices
(8) Euler's generating function for general rational polytopes

The standard simplex

Example: Standard 3 -simplex

Standard simplices

Definition (Standard d-simplex)

- Vertices
$\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{d}$ and $\mathbf{0}$, where
\mathbf{e}_{j} is the unit vector $(0, \ldots, 1, \ldots, 0)$ with a 1 in the j-th position
- Hyperplane description

$$
\Delta=\left\{\left(x_{1}, x_{2} \ldots, x_{d}\right) \in \mathbb{R}^{d}: \begin{array}{l}
x_{1}+x_{2}+\cdots+x_{d} \leq 1 \\
\text { all } x_{k} \geq 0
\end{array}\right\}
$$

The dilated standard simplex $t \Delta$

$$
t \Delta=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: \begin{array}{l}
x_{1}+x_{2}+\cdots+x_{d} \leq t \\
\text { all } x_{k} \geq 0
\end{array}\right\}
$$

Let's compute the discrete volume and the Ehrhard series!

We need a trick

- Δ involves an inequality
- The example from Lecture 1 involves equalities only

Trick \rightarrow Transform an inequality to equalities by introducing an extra coordinate

- Want to count all integer solutions $\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}_{\geq 0}^{d}$ to

$$
\begin{equation*}
m_{1}+m_{2}+\cdots+m_{d} \leq t \tag{4}
\end{equation*}
$$

- Let $m_{d+1}=$ RHS - LHS ≥ 0
- Then

$$
\begin{gathered}
\begin{array}{c}
\# \text { integer solutions }\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}_{\geq 0}^{d} \text { to } \\
m_{1}+m_{2}+\cdots+m_{d} \leq t
\end{array} \\
\| \\
\hline \# \text { integer solutions }\left(m_{1}, m_{2}, \ldots, m_{d+1}\right) \in \mathbb{Z}_{\geq 0}^{d+1} \text { to } \\
m_{1}+m_{2}+\cdots+m_{d+1}=t
\end{gathered}
$$

Such a variable m_{d+1} is called a slack variable

- Similarly to Lecture 1

$$
\begin{align*}
& \#\left(t \Delta \cap \mathbb{Z}^{d}\right) \\
& \quad=\operatorname{const}\left(\left(\sum_{m_{1} \geq 0} z^{m_{1}}\right)\left(\sum_{m_{2} \geq 0} z^{m_{2}}\right) \cdots\left(\sum_{m_{d+1} \geq 0} z^{m_{d+1}}\right) z^{-t}\right) \\
& \quad=\operatorname{const}\left(\frac{1}{(1-z)^{d+1} z^{t}}\right) \tag{5}
\end{align*}
$$

- Now use the binomial series

$$
\begin{equation*}
\frac{1}{(1-z)^{d+1}}=\sum_{k \geq 0}\binom{d+k}{d} z^{k} \quad \text { for } d \geq 0 \tag{6}
\end{equation*}
$$

- That gives $L_{\Delta}(t):=\#\left(t \Delta \cap \mathbb{Z}^{d}\right)=\binom{d+t}{d}$

Summary: The standard d-simplex

Theorem 2.2

(a) The lattice-point enumerator of Δ is the polynomial

$$
L_{\Delta}(t)=\binom{d+t}{d}
$$

(b) Its evaluation at negative integers yields

$$
(-1)^{d} L_{\Delta}(-t)=L_{\Delta^{\circ}}(t)
$$

(c) The Ehrhart series of Δ is $\operatorname{Ehr}_{\Delta}(z)=\frac{1}{(1-z)^{d+1}}$

$$
\begin{aligned}
& L_{\Delta^{\circ}}(t) \\
& \quad=\#\left\{\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}_{>0}^{d}: m_{1}+m_{2}+\cdots+m_{d}<t\right\} \\
& \quad=\#\left\{\left(m_{1}, m_{2}, \ldots, m_{d+1}\right) \in \mathbb{Z}_{>0}^{d+1}: m_{1}+m_{2}+\cdots+m_{d+1}=t\right\} \\
& \quad=\text { const }\left(\left(\sum_{m_{1}>0} z^{m_{1}}\right)\left(\sum_{m_{2}>0} z^{m_{2}}\right) \cdots\left(\sum_{m_{d+1}>0} z^{m_{d+1}}\right) z^{-t}\right) \\
& \quad=\text { const }\left(\left(\frac{z}{1-z}\right)^{d+1} z^{-t}\right) \\
& \quad=\text { const }\left(z^{d+1-t} \sum_{k \geq 0}\binom{d+k}{d} z^{k}\right) \\
& \quad=\binom{t-1}{d} \underset{\text { Ex. 2.10 }}{=}(-1)^{d}\binom{d-t}{d}
\end{aligned}
$$

(1) The language of polytopes
(2) The unit cube
(3) The standard simplex
(4) The Bernoulli polynomials as lattice-point enumerators of pyramids
(5) The lattice-point enumerators of the cross-polytopes
(6) Pick's theorem
(7) Polygons with rational vertices
(8) Euler's generating function for general rational polytopes

Pyramids

Definition (d-Dimensional pyramid)

- Vertices

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{d-1}, 0\right): \text { all } x_{k}=0 \text { or } 1\right\} \cup\{(0,0, \ldots, 0,1)\}
$$

- Hyperplane description

$$
\mathcal{P}=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: \begin{array}{l}
0 \leq x_{k} \leq 1-x_{d} \leq 1 \tag{9}\\
\text { for all } k=1, \ldots, d-1
\end{array}\right\}
$$

Remark

$$
d \text {-dim. pyramid } \subseteq d \text {-dim. unit cube }
$$

```
Lattice-point enumerator of a pyramid
```

$$
\begin{aligned}
L_{\mathcal{P}}(t) & =\left\{\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}: \begin{array}{l}
0 \leq m_{k} \leq t-m_{d} \leq t \\
\text { for all } k=1, \ldots, d-1
\end{array}\right\} \\
& =\sum_{m_{d}=0}^{t}\left(t-m_{d}+1\right)^{d-1} \\
& =\sum_{k=1}^{t+1} k^{d-1}
\end{aligned}
$$

Question
 What's the last sum?

Bernoulli polynomials and Bernoulli numbers

Definition (Bernoulli polynomial)

The Bernoulli polynomials $B_{k}(x)$ are defined via the generating fn

$$
\begin{equation*}
\frac{z e^{x z}}{e^{z}-1}=\sum_{k \geq 0} \frac{B_{k}(x)}{k!} z^{k} \tag{8}
\end{equation*}
$$

First few Bernoulli polynomials: $k=0,1,2,3$,
$1, x-\frac{1}{2}, x^{2}-x+\frac{1}{6}, x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x$
Definition (Bernoulli number)
The Bernoulli numbers are $B_{k}:=B_{k}(0)$

$$
\begin{align*}
L_{\mathcal{P}}(t) & =\left\{\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}: \begin{array}{l}
0 \leq m_{k} \leq 1-m_{d} \leq 1 \\
\text { for all } k=1, \ldots, d-1
\end{array}\right\} \\
& =\sum_{m_{d}=0}^{t}\left(t-m_{d}+1\right)^{d-1} \\
& =\sum_{k=1}^{t+1} k^{d-1} \\
& =\sum_{k=0}^{t+1} k^{d-1} \quad(\text { if } d \geq 2) \\
& =\frac{1}{d}\left(B_{d}(t+2)-B_{d}\right) \tag{10}
\end{align*}
$$

A lemma to show a connection.

Lemma 2.3

$$
\sum_{k=0}^{n-1} k^{d-1}=\frac{1}{d}\left(B_{d}(n)-B_{d}\right) \quad \text { for integers } d \geq 1, n \geq 2
$$

Proof:

$$
\begin{align*}
\sum_{d \geq 0} \frac{B_{d}(n)-B_{d}}{d!} z^{d} & =z \frac{e^{n z}-1}{e^{z}-1}=z \sum_{k=0}^{n-1} e^{k z} \\
& =z \sum_{k=0}^{n-1} \sum_{j \geq 0} \frac{(k z)^{j}}{j!}=\sum_{j \geq 0}\left(\sum_{k=0}^{n-1} k^{j}\right) \frac{z^{j+1}}{j!} \\
& =\sum_{j \geq 1}\left(\sum_{k=0}^{n-1} k^{j-1}\right) \frac{z^{j}}{(j-1)!}
\end{align*}
$$

and compare the both sides

How about the interior \mathcal{P}° ?

$$
\begin{aligned}
L_{\mathcal{P}^{\circ}}(t) & =\left\{\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}: \begin{array}{l}
0<m_{k}<1-m_{d}<1 \\
\text { for all } k=1, \ldots, d-1
\end{array}\right\} \\
& =\sum_{m_{d}=1}^{t-1}\left(t-m_{d}-1\right)^{d-1} \\
& =\sum_{k=0}^{t-2} k^{d-1}=\frac{1}{d}\left(B_{d}(t-1)-B_{d}\right)
\end{aligned}
$$

From Exercises 2.15 and 2.16

$$
\begin{aligned}
L_{\mathcal{P}}(-t) & =\frac{1}{d}\left(B_{d}(-t+2)-B_{d}\right)=(-1)^{d} \frac{1}{d}\left(B_{d}(t-1)-B_{d}\right) \\
& =(-1)^{d} L_{\mathcal{P} \circ}(t)
\end{aligned}
$$

Pyramids over polytopes - generalization

Derivation of $L_{\operatorname{Pyr}(\mathcal{Q})}(t)$

$$
L_{\operatorname{Pyr}(\mathcal{Q})}(t)=1+L_{\mathcal{Q}}(1)+L_{\mathcal{Q}}(2)+\cdots+L_{\mathcal{Q}}(t)=1+\sum_{j=1}^{t} L_{\mathcal{Q}}(j)
$$

The pyramid over \mathcal{Q} is the convex hull of $\left(\mathbf{v}_{1}, 0\right),\left(\mathbf{v}_{2}, 0\right), \ldots,\left(\mathbf{v}_{m}, 0\right)$, and $(0, \ldots, 0,1)$
Denoted by $\operatorname{Pyr}(\mathcal{Q})$

Note
 $\mathcal{P}=\operatorname{Pyr}(\square)$

Question

What is $L_{\operatorname{Pyr}(\mathcal{Q})}(t):=\#\left(t \operatorname{Pyr}(\mathcal{Q}) \cap \mathbb{Z}^{d}\right)$?

The Bernoulli polynomials and pyramids

The Ehrhart series of a pyramid

Theorem 2.4
 $\operatorname{Ehr}_{\operatorname{Pyr}_{(\mathcal{Q})}(z)}=\frac{\operatorname{Ehr}_{\mathcal{Q}}(z)}{1-z}$

Proof:

$$
\begin{aligned}
\operatorname{Ehr}_{\operatorname{Pyr}(\mathcal{Q})}(z) & =1+\sum_{t \geq 1} L_{\operatorname{Pyr}(\mathcal{Q})}(t) z^{t}=1+\sum_{t \geq 1}\left(1+\sum_{j=1}^{t} L_{\mathcal{Q}}(j)\right) z^{t} \\
& =\sum_{t \geq 0} z^{t}+\sum_{t \geq 1} \sum_{j=1}^{t} L_{\mathcal{Q}}(j) z^{t}=\frac{1}{1-z}+\sum_{j \geq 1} L_{\mathcal{Q}}(j) \sum_{t \geq j} z^{t} \\
& =\frac{1}{1-z}+\sum_{j \geq 1} L_{\mathcal{Q}}(j) \frac{z^{j}}{1-z}=\frac{1+\sum_{j \geq 1} L_{\mathcal{Q}}(j) z^{j}}{1-z}
\end{aligned}
$$

(1) The language of polytopes
(2) The unit cube
(3) The standard simplex
(4) The Bernoulli polynomials as lattice-point enumerators of pyramids

5 The lattice-point enumerators of the cross-polytopes
(6) Pick's theorem
(7) Polygons with rational vertices

8 Euler's generating function for general rational polytopes

The lattice-point enumerators of the cross-polytopes
An octahedron $=$ a 3 -dimensional cross-polytope

The lattice-point enumerators of the cross-polytopes

Cross-polytopes

Definition (Cross-polytope)

- Vertices

$$
\pm \mathbf{e}_{1}, \pm \mathbf{e}_{2}, \ldots, \pm \mathbf{e}_{d}
$$

- Hyperplane description

$$
\diamond:=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}:\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{d}\right| \leq 1\right\}
$$

The bipyramid over a polytope - generalization
\mathcal{Q} a convex $(d-1)$-polytope containing the origin, $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ the vertices of \mathcal{Q}

```
Definition (bipyramid over a polytope)
```

The bipyramid over \mathcal{Q} is the convex hull of $\left(\mathbf{v}_{1}, 0\right)$,
$\left(\mathbf{v}_{2}, 0\right), \ldots,\left(\mathbf{v}_{m}, 0\right),(0, \ldots, 0,1)$, and $(0, \ldots, 0,-1)$
Denoted by $\operatorname{BiPyr}(\mathcal{Q})$

[^1]\[

$$
\begin{aligned}
L_{\operatorname{BiPyr}(\mathcal{Q})}(t) & =2+2 L_{\mathcal{Q}}(1)+2 L_{\mathcal{Q}}(2)+\cdots+2 L_{\mathcal{Q}}(t-1)+L_{\mathcal{Q}}(t) \\
& =2+2 \sum_{j=1}^{t-1} L_{\mathcal{Q}}(j)+L_{\mathcal{Q}}(t)
\end{aligned}
$$
\]

Theorem 2.6

$\operatorname{Ehr}_{\operatorname{BiPyr}(\mathcal{Q})}(z)=\frac{1+z}{1-z} \operatorname{Ehr}_{\mathcal{Q}}(z)$ if \mathcal{Q} contains the origin
Proof: Exercise 2.23

- $\diamond=0$-dim cross-polytope $=\{$ origin $\} \Rightarrow$

$$
\operatorname{Ehr}_{\diamond}(z)=\frac{1}{1-z}
$$

- $\diamond=d$-dim cross-polytope \Rightarrow

$$
\operatorname{Ehr}_{\diamond}(z)=\frac{(1+z)^{d}}{(1-z)^{d+1}}
$$

Let's derive $L_{\diamond}(t)$ from $\operatorname{Ehr}_{\diamond}(z)$!

Counting the lattice points in ∇°

$$
\begin{aligned}
L_{\diamond \circ}(t) & =\#\left\{\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}:\left|m_{1}\right|+\left|m_{2}\right|+\cdots+\left|m_{d}\right|<t\right\} \\
& =\#\left\{\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}:\left|m_{1}\right|+\left|m_{2}\right|+\cdots+\left|m_{d}\right| \leq t-1\right\} \\
& =L_{\diamond}(t-1) \\
& =\sum_{k=0}^{d}\binom{d}{d-k}\binom{t-1+d-k}{d} \\
& =(-1)^{d} \sum_{k=0}^{d}\binom{d}{k}(-1)^{d}\binom{t-1+k}{d} \\
& =(-1)^{d} \sum_{k=0}^{d}\binom{d}{k}\binom{-t-k+d}{d} \quad \text { (by Ex. 2.10) } \\
& =(-1)^{d} L_{\diamond}(-t)
\end{aligned}
$$

$$
L_{\diamond}(t)=\sum_{k=0}^{d}\binom{d}{k}\binom{t-k+d}{d}
$$

Theorem 2.7

\diamond the cross-polytope in \mathbb{R}^{d}
(a) The lattice-point enumerator of \diamond is the polynomial

$$
L_{\diamond}(t)=\sum_{k=0}^{d}\binom{d}{k}\binom{t-k+d}{d}
$$

(b) Its evaluation at negative integers yields $(-1)^{d} L_{\diamond}(-t)=L_{\diamond} \circ(t)$
(c) The Ehrhart series of \mathcal{P} is $\operatorname{Ehr}_{\diamond}(z)=\frac{(1+z)^{d}}{(1-z)^{d+1}}$

Pick's theorem

Let's get back to \mathbb{R}^{2} : Pick's theorem

Theme

A strange connection between the number of lattice points and the area of an integral convex polygon

Theorem 2.8 (Pick's theorem)

For an integral convex polygon \mathcal{P}

$$
A=I+\frac{1}{2} B-1,
$$

where

- $A=$ the area of \mathcal{P}
- $I=\#$ of lattice points in \mathcal{P}
-•••••

-••••••••

-•••••••••
- $B=\#$ of lattice points on $\partial \mathcal{P}$
(1) The language of polytopes
(2) The unit cube
(3) The standard simplex
(4) The Bernoulli polynomials as lattice-point enumerators of pyramids
(5) The lattice-point enumerators of the cross-polytopes
(6) Pick's theorem
(3) Polygons with rational vertices
(8 Euler's generating function for general rational polytopes

Proof of Pick's theorem (sketch)

- \mathcal{P} is partitioned into \mathcal{P}_{1} and $\mathcal{P}_{2} \Rightarrow$

$$
I+\frac{1}{2} B-1=\left(I_{1}+\frac{1}{2} B_{1}-1\right)+\left(I_{2}+\frac{1}{2} B_{2}-1\right)
$$

- \therefore Enough to prove for triangles
- Embed a triangle into a rectangle
- \therefore Enough to prove for right triangles and rectangles
- Ex. 2.24 will finish

Summary (before the proof): an integral convex polygon

- $\#\left(\mathcal{P} \cap \mathbb{Z}^{2}\right)=I+B=\left(A-\frac{1}{2} B+1\right)+B=A+\frac{1}{2} B+1$

Theorem 2.9
(a) The lattice-point enumerator of \mathcal{P} is the polynomial

$$
L_{\mathcal{P}}(t)=A t^{2}+\frac{1}{2} B t+1
$$

(b) Its evaluation at negative integers yields the relation

$$
L_{\mathcal{P}}(-t)=L_{\mathcal{P}^{\circ}}(t)
$$

(c) The Ehrhart series of \mathcal{P} is

$$
\operatorname{Ehr}_{\mathcal{P}}(z)=\frac{\left(A-\frac{B}{2}+1\right) z^{2}+\left(A+\frac{B}{2}-2\right) z+1}{(1-z)^{3}}
$$

Ehrhart series of an integral convex polygon

Proof of Thm 2.9(c):

$$
\begin{aligned}
\operatorname{Ehr}_{\mathcal{P}}(z) & =1+\sum_{t \geq 1} L_{\mathcal{P}}(t) z^{t} \\
& =\sum_{t \geq 0}\left(A t^{2}+\frac{B}{2} t+1\right) z^{t} \\
& =A \frac{z^{2}+z}{(1-z)^{3}}+\frac{B}{2} \frac{z}{(1-z)^{2}}+\frac{1}{1-z} \\
& =\frac{\left(A-\frac{B}{2}+1\right) z^{2}+\left(A+\frac{B}{2}-2\right) z+1}{(1-z)^{3}}
\end{aligned}
$$

Lattice-point enumerator of an integral convex polygon

Proof of Thm 2.9(a):

- Inflating by factor of t makes
- the area larger by factor of t^{2}
- the perimeter larger by factor of t
- Then, Pick's theorem proves

Proof of Thm 2.9(b):

$$
\begin{align*}
L_{\mathcal{P} \circ}(t) & =L_{\mathcal{P}}(t)-B t \\
& =\left(A t^{2}+\frac{1}{2} B t+1\right)-B t \\
& =A t^{2}-\frac{1}{2} B t+1=L_{\mathcal{P}}(-t)
\end{align*}
$$

```
(1) The language of polytopes
(2) The unit cube
(3) The standard simplex
44 The Bernoulli polynomials as lattice-point enumerators of pyramids
(5) The lattice-point enumerators of the cross-polytopes
6 Pick's theorem
```

(7) Polygons with rational vertices
(8) Euler's generating function for general rational polytopes

- Triangulate a rational convex polygon
- \rightarrow Enough to study triangles
- Embed a triangle into a rectangle
- \rightarrow Enough to study right triangles
- Translate, rotate, and mirror a right triangle
- \rightarrow Enough to study the following type of triangles

Goal of this section

- Develop a theory for rational convex polygons
- Introduce a quasipolynomial

A right triangle: setup

- $a, b, d, e, f, r \in \mathbb{Z}_{\geq 0}$, ea $+f b \leq r d, a, b<d$
- For brevity, e,f coprime

Lattice-point enumerator: introducing a slack variable

$$
\begin{aligned}
L_{\mathcal{T}}(t) & =\#\left\{(m, n) \in \mathbb{Z}^{2}: m \geq \frac{t a}{d}, n \geq \frac{t b}{d}, e m+f n \leq t r\right\} \\
& =\#\left\{(m, n, s) \in \mathbb{Z}^{3}: \begin{array}{l}
m \geq \frac{t a}{d}, n \geq \frac{t b}{d}, s \geq 0 \\
e m+f n+s=t r
\end{array}\right\}
\end{aligned}
$$

This is interpreted as the coefficient of $z^{t r}$ in the function

$$
\left(\sum_{m \geq \frac{\text { ta }}{d}} z^{e m}\right)\left(\sum_{n \geq \frac{t b}{d}} z^{f_{n}}\right)\left(\sum_{s \geq 0} z^{s}\right)
$$

where the subscript under a summation sign means "sum over all integers satisfying this condition"

Lattice-point enumerator: a power series

$$
\begin{align*}
\left(\sum_{m \geq\left\lceil\frac{t a}{d}\right\rceil} z^{e m}\right)\left(\sum_{n \geq\left\lceil\frac{t b}{d}\right\rceil} z^{f n}\right)\left(\sum_{s \geq 0} z^{s}\right) & =\frac{z^{\left\lceil\frac{t a}{d}\right\rceil e}}{1-z^{e}} \frac{z^{\left\lceil\frac{t b}{d}\right\rceil f}}{1-z^{f}} \frac{1}{1-z} \\
& =\frac{z^{u+v}}{\left(1-z^{e}\right)\left(1-z^{f}\right)(1-z)} \tag{17}
\end{align*}
$$

where

$$
\begin{equation*}
u:=\left\lceil\frac{t a}{d}\right\rceil e \quad \text { and } \quad v:=\left\lceil\frac{t b}{d}\right\rceil f \tag{18}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
L_{\mathcal{T}}(t) & =\operatorname{const}\left(\frac{z^{u+v-t r}}{\left(1-z^{e}\right)\left(1-z^{f}\right)(1-z)}\right) \\
& =\operatorname{const}\left(\frac{1}{\left(1-z^{e}\right)\left(1-z^{f}\right)(1-z) z^{t r-u-v}}\right)
\end{aligned}
$$

Y. Okamoto (Tokyo Tech)

DMCS'09 (2)

Properties of this $L_{\mathcal{T}}(t)$

$$
\begin{aligned}
L_{\mathcal{T}}(t)= & \frac{1}{2 e f}(t r-u-v)^{2}+\frac{1}{2}(t r-u-v)\left(\frac{1}{e}+\frac{1}{f}+\frac{1}{e f}\right) \\
& +\frac{1}{4}\left(1+\frac{1}{e}+\frac{1}{f}\right)+\frac{1}{12}\left(\frac{e}{f}+\frac{f}{e}+\frac{1}{e f}\right) \\
& +\frac{1}{e} \sum_{j=1}^{e-1} \frac{\xi_{e}^{j(v-t r)}}{\left(1-\xi_{e}^{j f}\right)\left(1-\xi_{e}^{j}\right)}+\frac{1}{f} \sum_{l=1}^{f-1} \frac{\xi_{f}^{\prime(u-t r)}}{\left(1-\xi_{f}^{l e}\right)\left(1-\xi_{f}^{\prime}\right)}
\end{aligned}
$$

- $L_{\mathcal{T}}(t)$ is a quadratic fn if we forget the last two sums and u, v
- the last two sums are periodic
- $u=\left\lceil\frac{t a}{d}\right\rceil e$ and $v=\left\lceil\frac{t b}{d}\right\rceil f$ show periodic behaviors

Therefore, $L_{\mathcal{T}}(t)$ is a "quadratic polynomial" in t whose coefficients are periodic in t

Lattice-point enumerator: theorem

$$
\begin{equation*}
L_{\mathcal{T}}(t)=\operatorname{const}\left(\frac{1}{\left(1-z^{e}\right)\left(1-z^{f}\right)(1-z) z^{t r-u-v}}\right) \tag{Ex.2.31}
\end{equation*}
$$

- Note: $u+v-t r-e-f-1<0$
- A calculation gives the following theorem

Theorem 2.10

For the triangle \mathcal{T} given by (16), where e and f are coprime,

$$
\begin{aligned}
L_{\mathcal{T}}(t)= & \frac{1}{2 e f}(t r-u-v)^{2}+\frac{1}{2}(t r-u-v)\left(\frac{1}{e}+\frac{1}{f}+\frac{1}{e f}\right) \\
& +\frac{1}{4}\left(1+\frac{1}{e}+\frac{1}{f}\right)+\frac{1}{12}\left(\frac{e}{f}+\frac{f}{e}+\frac{1}{e f}\right) \\
& +\frac{1}{e} \sum_{j=1}^{e-1} \frac{\xi_{e}^{j(v-t r)}}{\left(1-\xi_{e}^{j f}\right)\left(1-\xi_{e}^{j}\right)}+\frac{1}{f} \sum_{l=1}^{f-1} \frac{\xi_{f}^{l(u-t r)}}{\left(1-\xi_{f}^{l e}\right)\left(1-\xi_{f}^{\prime}\right)}
\end{aligned}
$$

Constituents of a quasipolynomial

Q a quasipolynomial in t

- $\exists k$ and polynomials $p_{0}, p_{1}, \ldots, p_{k-1}$ s.t.

$$
Q(t)=\left\{\begin{array}{cc}
p_{0}(t) & \text { if } t \equiv 0 \bmod k, \\
p_{1}(t) & \text { if } t \equiv 1 \bmod k, \\
\vdots & \\
p_{k-1}(t) & \text { if } t \equiv k-1 \bmod k
\end{array}\right.
$$

- The minimal such k is the period of Q

Definition (Constituent)

For this minimal k, the polynomials $p_{0}, p_{1}, \ldots, p_{k-1}$ are the constituents of Q

The lattice-point enumerator of a rational polygon is a quasipolynomial

$$
\begin{aligned}
L_{\mathcal{T}}(t)= & \frac{1}{2 e f}(t r-u-v)^{2}+\frac{1}{2}(t r-u-v)\left(\frac{1}{e}+\frac{1}{f}+\frac{1}{e f}\right) \\
& +\frac{1}{4}\left(1+\frac{1}{e}+\frac{1}{f}\right)+\frac{1}{12}\left(\frac{e}{f}+\frac{f}{e}+\frac{1}{e f}\right) \\
& +\frac{1}{e} \sum_{j=1}^{e-1} \frac{\xi_{e}^{j(v-t r)}}{\left(1-\xi_{e}^{j f}\right)\left(1-\xi_{e}^{j}\right)}+\frac{1}{f} \sum_{l=1}^{f-1} \frac{\xi_{f}^{\prime(u-t r)}}{\left(1-\xi_{f}^{l e}\right)\left(1-\xi_{f}^{l}\right)}
\end{aligned}
$$

- This is a quasipolynomial of degree 2

Theorem 2.11

\mathcal{P} any rational polygon \Rightarrow

- $L_{\mathcal{P}}(t)$ is a quasipolynomial of degree 2
- Its leading coefficient is the area of \mathcal{P} (in particular, a constant)
Y. Okamoto (Tokyo Tech)

Euler's generating function for general rational polytopes
(1) The language of polytopes
(2) The unit cube
(3) The standard simplex
(4) The Bernoulli polynomials as lattice-point enumerators of pyramids
(5) The lattice-point enumerators of the cross-polytopes
(6) Pick's theorem
(7) Polygons with rational vertices

8 Euler's generating function for general rational polytopes

Eulers kenerating function for general rational polytopes

Roadmap

Contents

Goal of this section

- Develop a theory for rational convex polytopes

Definition (recap)

A polytope \mathcal{P} is rational if all of its vertices have rational coordinates
We are interested in $\#\left(t \mathcal{P} \cap \mathbb{Z}^{d}\right)$

- Consider a hyperplane description of \mathcal{P}
- Every coefficient can be chosen as an integer
- Inequalities are transformed into equalities (by slack var's)
- All pts in \mathcal{P} have nonnegative coord's (by translation)

Therefore, any rational polytope \mathcal{P} is expressed as

$$
\begin{equation*}
\mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}_{\geq 0}^{d}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\} \tag{23}
\end{equation*}
$$

for some integral matrix $\mathbf{A} \in \mathbb{Z}^{m \times d}$ and some integer vector $\mathbf{b} \in \mathbb{Z}^{m}$
Note: d is not necessarily the dimension of \mathcal{P} Y. Okamoto (Tokyo Tech)

for general rational polytopes

Example: Setup

$$
\mathcal{P}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}, x_{2} \geq 0, \quad \begin{array}{c}
x_{1}+2 x_{2} \leq 3 \\
x_{1}+x_{2} \leq 2
\end{array}\right\}
$$

$$
\mathcal{P}=\left\{\mathbf{x} \in \mathbb{R}_{\geq 0}^{d}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\}
$$

Therefore,

$$
\begin{align*}
t \mathcal{P} & =\left\{t \mathbf{x} \in \mathbb{R}_{\geq 0}^{d}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\} \tag{Ex.2.7}\\
& =\left\{\mathbf{x} \in \mathbb{R}_{\geq 0}^{d}: \mathbf{A} \frac{\mathbf{x}}{t}=\mathbf{b}\right\} \\
& =\left\{\mathbf{x} \in \mathbb{R}_{\geq 0}^{d}: \mathbf{A} \mathbf{x}=t \mathbf{b}\right\}
\end{align*}
$$

Namely,

$$
\begin{equation*}
L_{\mathcal{P}}(t)=\#\left\{\mathbf{x} \in \mathbb{Z}_{\geq 0}^{d}: \mathbf{A} \mathbf{x}=t \mathbf{b}\right\} \tag{24}
\end{equation*}
$$

Example: Lattice-point enumerator

$$
\begin{aligned}
& L_{\mathcal{P}}(t)=\#\left\{\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}: x_{1}, x_{2} \geq 0, \begin{array}{c}
x_{1}+2 x_{2} \leq 3 t \\
x_{1}+x_{2} \leq 2 t
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\#\left\{x \in \mathbb{Z}_{\geq 0}^{4}:\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right) \mathbf{x}=\binom{3 t}{2 t}\right\}
\end{aligned}
$$

$$
\begin{aligned}
f & \left(z_{1}, z_{2}\right):=\frac{1}{\left(1-z_{1} z_{2}\right)\left(1-z_{1}^{2} z_{2}\right)\left(1-z_{1}\right)\left(1-z_{2}\right) z_{1}^{3 t} z_{2}^{2 t}} \\
& =\left(\sum_{n_{1} \geq 0}\left(z_{1} z_{2}\right)^{n_{1}}\right)\left(\sum_{n_{2} \geq 0}\left(z_{1}^{2} z_{2}\right)^{n_{2}}\right)\left(\sum_{n_{3} \geq 0} z_{1}^{n_{3}}\right)\left(\sum_{n_{4} \geq 0} z_{2}^{n_{4}}\right) \frac{1}{z_{1}^{3 t} z_{2}^{2 t}} \\
& =\sum_{n_{1}, \ldots, n_{4} \geq 0} z_{1}^{n_{1}+2 n_{2}+n_{3}-3 t} z_{2}^{n_{1}+n_{2}+n_{4}-2 t}
\end{aligned}
$$

Therefore,

$$
L_{\mathcal{P}}(t)=\underset{z_{1}, z_{2}}{\mathrm{const}} f\left(z_{1}, z_{2}\right)
$$

Then, we have (Ex. 2.36)

$$
\frac{7}{4} t^{2}+\frac{5}{2} t+\frac{7+(-1)^{t}}{8}
$$

General case: A typical term

$$
f(\mathbf{z})=\left(\sum_{n_{1} \geq 0} \mathbf{z}^{n_{1} \mathbf{c}_{1}}\right)\left(\sum_{n_{2} \geq 0} \mathbf{z}^{n_{2} \mathbf{c}_{2}}\right) \cdots\left(\sum_{n_{d} \geq 0} \mathbf{z}^{n_{d} \mathbf{c}_{d}}\right) \frac{1}{\mathbf{z}^{\mathbf{t b}}}
$$

- The exponent of a typical term looks like

$$
n_{1} \mathbf{c}_{1}+n_{2} \mathbf{c}_{2}+\cdots+n_{d} \mathbf{c}_{d}-t \mathbf{b}=\mathbf{A n}-t \mathbf{b}
$$

where $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{d}\right) \in \mathbb{Z}_{\geq 0}^{d}$

- Therefore, the constant term of $f(\mathbf{z})$ counts the number of solutions \mathbf{n} to

$$
\mathbf{A} \mathbf{n}-t \mathbf{b}=\mathbf{0}
$$

namely, the number of lattice points in $t \mathcal{P}$

Reminder

$$
L_{\mathcal{P}}(t)=\#\left\{\mathbf{x} \in \mathbb{Z}_{\geq 0}^{d}: \mathbf{A} \mathbf{x}=t \mathbf{b}\right\}
$$

Let

- $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{d}$ the columns of \mathbf{A}
- $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$

Let

$$
\begin{align*}
f(\mathbf{z}) & =\frac{1}{\left(1-\mathbf{z}^{\mathbf{c}_{1}}\right)\left(1-\mathbf{z}^{\mathbf{c}_{2}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{c}_{d}}\right) \mathbf{z}^{\mathbf{t b}}} \tag{25}\\
& =\left(\sum_{n_{1} \geq 0} \mathbf{z}^{n_{1} \mathbf{c}_{1}}\right)\left(\sum_{n_{2} \geq 0} \mathbf{z}^{n_{2} \mathbf{c}_{2}}\right) \cdots\left(\sum_{n_{d} \geq 0} \mathbf{z}^{n_{d} \mathbf{c}_{d}}\right) \frac{1}{\mathbf{z}^{t \mathbf{b}}}
\end{align*}
$$

$$
\text { where } \mathbf{z}^{\mathbf{c}}:=z_{1}^{c_{1}} z_{2}^{c_{2}} \cdots z_{m}^{c_{m}} \text { for } \mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{m}\right) \in \mathbb{Z}^{m}
$$

General case: Euler's generating function

Theorem 2.13

Suppose the rational polytope \mathcal{P} is given by (23)
Then the lattice-point enumerator of \mathcal{P} can be computed as

$$
L_{\mathcal{P}}(t)=\underset{\mathbf{z}}{\operatorname{const}}\left(\frac{1}{\left(1-\mathbf{z}^{\mathbf{c}_{1}}\right)\left(1-\mathbf{z}^{\mathbf{c}_{2}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{c}_{d}}\right) \mathbf{z}^{\mathbf{t b}}}\right)
$$

Corollary 2.14

Suppose the rational polytope \mathcal{P} is given by (23).
Then the Ehrhart series of \mathcal{P} can be computed as

$$
\operatorname{Ehr}_{\mathcal{P}}(x)=\operatorname{const}_{\mathbf{z}}\left(\frac{1}{\left(1-\mathbf{z}^{\mathbf{c}_{1}}\right)\left(1-\mathbf{z}^{\mathbf{c}_{2}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{c}_{d}}\right)\left(1-\frac{x}{\mathbf{z}^{\mathbf{b}}}\right)}\right)
$$

Proof:

$$
\begin{aligned}
\operatorname{Ehr}_{\mathcal{P}}(x) & =\sum_{t \geq 0} \operatorname{const}_{\mathbf{z}}\left(\frac{1}{\left(1-\mathbf{z}^{\mathbf{c}_{1}}\right)\left(1-\mathbf{z}^{\mathbf{c}_{2}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{c}_{d}}\right) \mathbf{z}^{\mathbf{t b}}}\right) x^{t} \\
& =\operatorname{const}_{\mathbf{z}}\left(\frac{1}{\left(1-\mathbf{z}^{\mathbf{c}_{1}}\right)\left(1-\mathbf{z}^{\mathbf{c}_{2}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{c}_{d}}\right)} \sum_{t \geq 0} \frac{x^{t}}{\mathbf{z}^{\mathbf{t b}}}\right) \\
& =\operatorname{const}_{\mathbf{z}}\left(\frac{1}{\left(1-\mathbf{z}^{\mathbf{c}_{1}}\right)\left(1-\mathbf{z}^{\mathbf{c}_{2}}\right) \cdots\left(1-\mathbf{z}^{\mathbf{c}_{d}}\right)} \frac{1}{1-\frac{x}{\mathbf{z}^{\mathbf{b}}}}\right)
\end{aligned}
$$1 The language of polytopesThe unit cube3 The standard simplex(4) The Bernoulli polynomials as lattice-point enumerators of pyramids(3) The lattice-point enumerators of the cross-polytopesPick's theorem

(7) Polygons with rational vertices

8 Euler's generating function for general rational polytopes

Summary

- Definition of a polytope, and related concepts
- Observation of common phenomena through various examples
- Lattice-point enumerators are polynomials in t
- Evaluation at $-t$ gives the lattice-point enumerator of the interior
- Definition of a quasipolynomial
- Lattice-point enumerators of rational polytopes

[^0]: Proof: See Appendix A in the textbook

[^1]: Note
 d-dim cross-polytope $=\operatorname{BiPyr}((d-1)$-dim cross-polytope $)$

