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= straight line segments I

e Integral segment [a, b], a,b € Z,a < b
#([a,p)NZ)=b—a+1

B R S

a b
o Rational segment [a/b, c/d], a,b,c,d € Z,a/b < c/d

#(la/b,c/d]NZ) = |c/d] = |(a=1)/b]

(Exercise 2.1)
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= convex polygons '
L] L] L] L] L] L] L] L] L] L]

Lattice-point counting is a topic of Sect. 2.6 and 2.7
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= bounded intersections of finitely many half-spaces '

For a,ap,...,am € R? and by, by,...,bm €R
P={x:a;-x< b foralli=12 ..., m}

-

= convex hulls of a finite set of points

For {vi,vz,...,v,} CR?

~all Ay > 0 and
P = {)\1V1—|->\2V2-|-...—|—)\,,V,,. Attt A, =1 },
that is, the smallest convex set containing {vi,va,...,v,}

|

e convex hulls of a finite set of points
(vertex description, v-polytopes)

or

e bounded intersections of finitely many half-spaces
(hyperplane description, h-polytopes)

e Every v-polytope is an h-polytope
e Every h-polytope is a v-polytope

Proof: See Appendix A in the textbook



P a convex polytope

The dimension of P is the dimension of the span of P, where

spanP = {x+ Ay —x) : x,y € P, A € R}

If the dimension of P is d, then we write
e dmP =d
e P is a d-polytope

P C R9 a convex polytope

F is a face of P if 3 a valid inequality a- x < b for P s.t.

F=Pn{x:a-x=b}

)

o Every face of a convex polytope is also a convex polytope
e P and & are faces of P

P C RY a convex polytope; a € RY, b€ R

The inequality a - x < b is a valid inequality for P if
a-z<bforallze P

P C R9 a convex polytope

0-dimensional face vertex of P
1-dimensional face edge of P
(d—1)-dimensional face facet of P




Every convex d-polytope has at least d+1 vertices I

A convex d-polytope is a d-simplex if it has exactly d+1 vertices

S

® The language of polytopes

® The unit cube

© The standard simplex

@ The Bernoulli polynomials as lattice-point enumerators of pyramids
© The lattice-point enumerators of the cross-polytopes

® Pick’'s theorem

@ Polygons with rational vertices

® Euler's generating function for general rational polytopes

A convex polytope is integral if all of its vertices have integer
coordinates

A convex polytope is rational if all of its vertices have rational
coordinates

e Vertices
{(x1,x2,...,xq) : all xx, =0or 1}

e Hyperplane description

D:{(xl,xz,...,xd)eRd: 0 < x, <1 forall k}.
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What's the number of integer points in t O (t € Zs)? J
X2
e 6 o o o o o o
6 *—0—0—0 & o
e 6 o o o o o o
® © o o o o o o
e © o o o o o o
® © o o o o o o
e © o o o o o o
—0—0—0 & 6 ® X

#(t0ONZY) = #([0,t]"NZ7) = (t+ 1)°

(t+ 1) = Ed: (Z) tk,

k=0

where (Z) is a binomial coefficient defined as follows

Forme C,ne Z-g

(m)_ m(m —1)(m —2) - (m— n+1) -

n!

P C R9 not necessarily a convex polytope

The lattice-point enumerator fot t P is defined as

Lp(t) = # (tP N Z9)

° Lp(t) =z (P N %Zd)
o Lo(t)=(t+1)

Loo(t) = # (t0°NZ7) = # ((0,1) N29) = (t — 1)°

X2

(@)}

[ ]

[ ]

[ ]

[ ]

[ ]

o o

6 X1

Loo(t) = (—1)?Lo(-1)



The Ehrhart series of P is the generating fn of Lp(t):

Ehrp(z) =14 Lp(t) 2"

t>1

Namely,
Ehro(z) =1+ ) (t+1)2

t>1
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A(d, k) = # permutations of {1,...,d} with k—1 ascents '

d=6 k=31 4[2 5 6|3

A(d. k) =A(d,d+1— k),
A(d, k) =(d —k+1)A(d —1,k— 1)+ kA(d —1,k),

d
> TA(d, k) =dI, ®3)

A =3y (4T -y

Jj=0

For 0 < k < d, the Eulerian number A(d, k) is defined through

d k
id j Ek:OA(d? k) z
Zf 2= S (2)
Then,
Ehro(z) =14 ) (t+1)72' =) (t+1)/2' = 12 td 2t
t>1 t>0 z t>1
_ Y Ald k)2
T (1—2z)t
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a) The lattice-point enumerator of [ is the polynomial
(a) y
. /d
_ d_ K
Lo(t) = (t+1)7 =) (k)t
k=0
(b) Its evaluation at negative integers yields the relation
(—=1)Lo(=t) = Lo (1)

d k-1
A(d, k
(c) The Ehrhart series of O is Ehr(z) = Zk:(ll _(zidzlz O




® The language of polytopes

Th it cub i
® The unit cube e Vertices

ei, e, ...,eq and 0, where

The standard simple
© mpex e, is the unit vector (0,...,1,...,0) with a 1 in the j-th position

© The Bernoulli polynomials as lattice-point enumerators of pyramids e Hyperplane description

all x, >0

@ The lattice-point enumerators of the cross-polytopes A= {(Xl,Xz i xg) ERY: X+t +x4<1, }

® Pick's theorem
@ Polygons with rational vertices

® Euler's generating function for general rational polytopes

tA:{(xl Xa, ... Xq4) ERY: X1+X2+'”+ngt’}

all Xk 20

We need a trick
e A involves an inequality
e The example from Lecture 1 involves equalities only

Trick — { Transform an inequality to equalities by introducing

an extra coordinate

X3 ¥



The standard simplex

Slack variables

The standard simplex

Discrete volume of a standard simplex

e Want to count all integer solutions (my, my, ..., my) € Zdzo to
m+m+-4+my<t (4)

o Let my;; =RHS—LHS >0
e Then

# integer solutions (my, my, ..., my) € Z<, to
my+my+---+mg <t
I
# integer solutions (my, ma, ..., my.1) € Ziél to
m+my+-+my =t

Such a variable mgy, 4 is called a slack variable
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The standard simplex

What about the interior A°?

e Similarly to Lecture 1

# (tANZY)

— const <sz1> (ZzW)... 3

m; >0 my>0 myy12>0

1
= const <(1—z)d+lzt>

e Now use the binomial series

m,
z d+1

1 d+k\ ,
(]__Z)d+122< d >Z fordZO

k>0

e That gives La(t) == # (tANZY) = <d * t>

Z—t

(5)

(6)

Lao(t)
:#{(ml,mg,...,md)GZioz m1+m2+~-~+md<t}
:#{ml,m2,.. md+1)€Zd>$1:ml—l—m2+-~-+md+1:t}

= const

= const Z z"71 (Z z’"2> Z FMas1 | =t
m;>0 my>0 mgy1>0
( Z_t>
d+ k
= const (zd“_tz ( : >zk>
k>0
t—1Y\ ex 210 Jfd—t

e — _1

(4 == ()
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The standard simplex
Summary: The standard d-simplex
Theorem 2.2
(a) The lattice-point enumerator of A is the polynomial
d+t
La(t) =
s0-("7")
(b) Its evaluation at negative integers yields
(=1)7La(=t) = Las(t)
The Ehrh ies of A is Eh = L
(c) The Ehrhart series of A is Ehra(z) = A=z
Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2009-04-30 32 /83
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e Vertices

{(x1, %2, ,X%4-1,0) : all x, =00or 1} U{(0,0,...,0,1)}

e Hyperplane description

< <1 — <
Pz{(xl,xz,...,xd)e]Rd: 0<x<1-x43<1 } ©)

forall k=1,...,d-1

d-dim. pyramid C d-dim. unit cube

X ¥

0<m<t—-my<t
B d. VS M= d=
Lp(t)—{(m17m27"'7md)€Z ' fora”k:l’...,d—l}

= i (t— md+1)d_1

What's the last sum? I
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The Bernoulli polynomials Bi(x) are defined via the generating fn

ze¥ Bi(x)
1 K2 (8)
k>0

1 1 3 1
1,x—E,Xz—x+6,x3—§x2+§x,...

The Bernoulli numbers are By := Bi(0) I
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0<m<1—-my<1
- d. VS M= d=
L’p(t)—{(mlymZa”'7md)€Z ' fora“k:l’...,d—l}

n—1
Z k-1 — %(Bd(n) — By) forintegersd >1,n>2
k=0

Proof:
By(n) =By 4_ € -1 _ A,
Z d Z:Zez_lzzze
d>0 k=0
n—1 n—1
_ (kz)y Z*
Sy oy (et
k=0 j>0 j>0 \k=0
n—1 j
- kf—1> z
i>1 \k=0 (-1
and compare the both sides O

O<me<l—my<1
B d. k d
L'pc)(t)—{(mlam27"-7md)€Z ' fora“k:]_’...,d—l }

= 2 (t—md—l)d_l

md:1




Q a convex (d—1)-polytope, vi,Vy, ..., Vv, the vertices of Q

The pyramid over Q is the convex hull of (vy,0), (v2,0),...,(vm,0),
and (0,...,0,1)
Denoted by Pyr(Q

= Pyr(O '

What is Lpy(g)(t) := #(t Pyr(Q) N Z%)?

Ehro(z
Ehrpy(0)(2) = T(z)
Proof:
t
Ehrey(o)(2) = 1+ ) Leyo)(t) 2 =1+ (1 +y LQU)) z'
t>1 t>1 j=1
t
=Y Y ) La() 2 = —+ZLQ(J Z
£>0 t>1 j=1 j>1
- 1+ Zj21 Lo(j) Z
+;LQ(I)1—2_ 11—z

Ley(o)(t) = 1+ Lo(1) + Lo(2) + -+ + Lo(t) = 1 + Z Lo(j)

+ X3

X2 ¥

P the d-pyramid

P = {(xl,xz,...,xd)eRd: 0<x1,%0,...,X-1<1—x4 < 1}

(a) The lattice-point enumerator of P is the polynomial
1
L'p(t) = 3 (Bd(t = 2) - Bd)

(b) lts evaluation at negative integers yields (—1)¥Lp(—t) = Lpo(t)
1 A(d—1,k) 2
(1= z)dtt

(c) The Ehrhart series of P is Ehrp(z) =




| Thelatticepoint enumerators of the cross-polytopes
® The language of polytopes
® The unit cube
© The standard simplex
® The Bernoulli polynomials as lattice-point enumerators of pyramids
@ The lattice-point enumerators of the cross-polytopes
® Pick's theorem

@ Polygons with rational vertices

® Euler's generating function for general rational polytopes

e Vertices
+e;, +e,, ..., tey

o Hyperplane description

O = {(x1, %, -, xg) ERY 1 Pl + xof + -+ + |xg| <1}
(14)
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Q a convex (d—1)-polytope containing the origin, vi,va, ..., Vv, the
vertices of Q

The bipyramid over Q is the convex hull of (vy,0),
(v2,0),...,(vm,0), (0,...,0,1), and (O,...,0,—1)
Denoted by BiPyr(Q)

d-dim cross-polytope = BiPyr((d—1)-dim cross-polytope)




The lattice-point enumerators of the cross-polytopes

The lattice-point enumerator and the Ehrhart series of a bipyramid

The lattice-point enumerators of the cross-polytopes

Implication to cross-polytopes

LBiPyr(Q)(t) =2+ 2LQ(1) + 2LQ(2) + -+ 2Lg(t — 1) + LQ(t)
t—1

= 2+2ZLQ(j) + Lo(t)

Jj=1

Theorem 2.6
Ehrgipyr(o)(z) = 122 Ehrg(z) if Q contains the origin

Proof: Exercise 2.23

Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2000-04-30 49 / 83

The lattice-point enumerators of the cross-polytopes

Lattice-point enumerator of a cross-polytope

e { = 0-dim cross-polytope = {origin} =

1
Ehry(z) = 13
o { = d-dim cross-polytope =
(1+2)
Ehro(z) = (1= 27

Let's derive Ly(t) from Ehry(z)!

)~ k- HE s (s ()
(D; (t/;+d>zt
(O; <t—§+d>zt

d (d)(t—ker)t
> k d )¢
t>0 k=0
|t >
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The lattice-point enumerators of the cross-polytopes
Counting the lattice points in {°
d.
L<>°(t) = #{(m17m27"‘)md) SV |m1| + ‘m2| +oeee |md| < t}

:#{(ml,mz,...,md)GZd: |my| + |ma| + - -
:Lo(t—l)

s (d )C_1+d_ﬁ
B d—k d
k=0

d
d t—1+k
— (-1 d _1\d
( )Z(k)( 1)( g )
k=0
d
d\ [—t—k+d
= (—1)¢ by Ex. 2.10
( )Z(k>( ;7)) e
= (~1)Lo(~t)
Y. Okamoto (Tokyo Tech) DMCS'09 (2)

+ |md| < t—l}
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The lattice-point enumerators of the cross-polytopes

Summary: Cross-polytopes

Theorem 2.7
O the cross-polytope in RY
(a) The lattice-point enumerator of ¢ is the polynomial

so=3()(75")

(b) Its evaluation at negative integers yields (—1)7Ly(—t) = Lyo(t)
(c) The Ehrhart series of P is Ehry(z) = % O

V.
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Pick’s theorem

Let's get back to R?: Pick’s theorem

Pick’s theorem

@ Pick's theorem

Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2009-04-30

Pick’s theorem

Proof of Pick’s theorem (sketch)

54 /83

Theme
A strange connection between the number of lattice points and the
area of an integral convex polygon

Theorem 2.8 (Pick's theorem)
For an integral convex polygon P

1
A=I1+-B-1
+2 9

where
e A = the area of P
o | = # of lattice points in P
e B = # of lattice points on OP

W
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e P is partitioned into P; and P, =

1 1 1

.". Enough to prove for triangles

Embed a triangle into a rectangle

.". Enough to prove for right triangles and rectangles
Ex. 2.24 will finish

Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2009-04-30
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Pick’s theorem

Summary (before the proof): an integral convex polygon

e #(PNZ*)=1+B=(A-1B+1)+B=A+1B+1

Theorem 2.9
(a) The lattice-point enumerator of P is the polynomial

1
Lp(t) :At2+§Bt+1
(b) Its evaluation at negative integers yields the relation
Lp(~t) = Lps(t)
(c) The Ehrhart series of P is

(A-2+1)22+(A+£-2)z+1
(1-2)3

Ehrp(z) =

Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2000-04-30 57 / 83

Pick’s theorem

Ehrhart series of an integral convex polygon

Pick’s theorem

Lattice-point enumerator of an integral convex polygon

Proof of Thm 2.9(c):

Ehrp(z) =1+ ) Lp(t) 2"

t>1
B
:Z<At2+2t+1>zt
>0
:A22+z B z 1

I—zp " 20=22 1=z
_ (A-2+1)22+(A+£-2)z+1
(1-2)?
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Proof of Thm 2.9(a):
o Inflating by factor of t makes

e the area larger by factor of t2 (Ex. 2.25)
e the perimeter larger by factor of ¢ (Ex. 2.25)
e Then, Pick's theorem proves O

Proof of Thm 2.9(b):

Lpo(t) = Lp(t) — Bt
1
= (At2—|—2Bt+1> — Bt

1
:At2—§Bt+1:LP(—t) O

Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2000-04-30 58 / 83

Polygons with rational vertices

@ Polygons with rational vertices

Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2009-04-30 60 / 83



Polygons with rational vertices

Roadmap
Contents
d Integral polytopes Rational polytopes
general | Sect. 2-5 | Sect. 8 ‘
| i
2| Sect. 6 | — | Sect. 7 ‘

Goal of this section
e Develop a theory for rational convex polygons

e Introduce a quasipolynomial
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Polygons with rational vertices

A right triangle: setup

Polygons with rational vertices

Steps towards rational convex polygons

o (2 r—ea/d
df

a b r—fb/d b
dd * e 'd
X

b
T—{(x,y)ERZ:xzz,yzd,ex—i—fy<r} (16)
e a b def,rcZsyeat+fb<rd ab<d
o For brevity, e, f coprime
Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2009-04-30 63 / 83

e Triangulate a rational convex polygon
e — Enough to study triangles
o Embed a triangle into a rectangle

— Enough to study right triangles

Translate, rotate, and mirror a right triangle

— Enough to study the following type of triangles

Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2009-04-30

Polygons with rational vertices

Lattice-point enumerator: introducing a slack variable

62 /83

t. tb
LT(t):#{(m,n)€Z2: nga, nzg, em—i—fngtr}
— 3.m2%7n2%75207
#{(m,n,s)eZ " em+fnts=tr

This is interpreted as the coefficient of z* in the function
> () (T2
m>% n>1 520

where the subscript under a summation sign means “sum over all
integers satisfying this condition”

Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2009-04-30
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Polygons with rational vertices

Lattice-point enumerator: a power series

Polygons with rational vertices

Lattice-point enumerator: theorem

wle [t
I DR 0 E
‘ — 1—z21—-2f1-=2
iyl )\t )\

Zu+v

S (1-z)(1-2z)(1-2)
(17)

where .
t t
u= {ga“ e and vi= ’Vd—‘ f (18)
Therefore,
Zu+v tr
Lr(t) = t
0 =eonst (=)
1
= t
((1 —z)(1-2)(1- ))
Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2009-0430 65/ 83

Polygons with rational vertices

Properties of this L7 (t)

Lr(t) = const ((1 Y Zfl) 1- z)sz“)

e Note: u+v—tr—e—f—-1<0 (Ex. 2.31)
e A calculation gives the following theorem (Ex. 2.32)

Theorem 2.10
For the triangle 7 given by (16), where e and f are coprime,

LT(t)— L (tr—u—v) + = (t“r—u—v)(1 i+e1f>

Jr1 1+1+l +1 e+f+l
4 e f 12\f e ef
/(utr)

1 é—_j(v tr) 1f—1
re (1—gf)(1 R D)

vy
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Polygons with rational vertices

Quasipolynomials

1 s 1 1 1 1
Lr(t)= =—— (tr —u— “(tr—u—-Vv)[(Z+Z+=
7(t) 2ef(r 4 v)+2(r “ V)<e+f+ef>

AR T Y

4 e f 12\f e ef

e—1 j(v—tr) f—1 I(u—tr)

1 £e 1 &r

+ = — 4+ .

L) d) g

e L7(t) is a quadratic fn if we forget the last two sums and u, v
e the last two sums are periodic
e u=[2]eand v=2]f show periodic behaviors

Therefore, L7(t) is a “quadratic polynomial” in t whose coefficients

are periodic in t
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Definition (Quasipolynomial)
A function Q in t is quasipolynomial if @ can be expressed as

Q(t) = calt) t" 4 - -+ cu(t) t + co(t),

where ¢, . . ., ¢, are periodic functions in t
e The degree of Q is n (assuming that ¢, is not the zero function)

e The period of Q is the least common period of ¢, ..., ¢,

Y. Okamoto (Tokyo Tech) DMCS'09 (2) 2009-04-30 68 / 83



Polygons with rational vertices

Constituents of a quasipolynomial

@ a quasipolynomial in t
e 1 k and polynomials pg, p1, ..., px_1 S.t.

po(t) if t =0 mod k,

Q1) = p1(t) if t =1 mod k,

pr—1(t) ift=k—1mod k
e The minimal such k is the period of @

Definition (Constituent)
For this minimal k, the polynomials pg, p1, ..., px_1 are the
constituents of @
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Euler's generating function for general rational polytopes

® Euler's generating function for general rational polytopes
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Polygons with rational vertices

The lattice-point enumerator of a rational polygon is a quasipolynomial

1 , 1 1 1 1
Lr(t) = == (tr —u— Str—u—v)(=+-+—
7(t) 2ef(r u v)—|—2(r u v)<e—|—f+ef>
+1 1+1+1 +1 e+f+1
4 e f 12\f e ef
e—1 j(v—tr) f—1 I(u—tr)
1 . 1 &
+7 . . +7 e
X g (1d) T )

e This is a quasipolynomial of degree 2

Theorem 2.11
‘P any rational polygon =
e Lp(t) is a quasipolynomial of degree 2
e Its leading coefficient is the area of P (in particular, a constant)
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Euler's generating function for general rational polytopes

Roadmap
Contents
d Integral polytopes Rational polytopes
general | Sect. 2-5 | Sect. 8 \
| i
2 | Sect. 6 | — | Sect. 7 \

Goal of this section
e Develop a theory for rational convex polytopes
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Euler's generating function for general rational polytopes

Rational polytopes: setup

Euler's generating function for general rational polytopes

Lattice-point enumerator of a rational polytope

Definition (recap)
A polytope P is rational if all of its vertices have rational coordinates}

We are interested in #(t P N Z9)
e Consider a hyperplane description of P
o Every coefficient can be chosen as an integer (Ex. 2.7)
e Inequalities are transformed into equalities (by slack var's)
e All pts in P have nonnegative coord’s (by translation)

Therefore, any rational polytope P is expressed as
P={xeR: Ax=b} (23)

for some integral matrix A € Z™*9 and some integer vector b € Z™

Note: d is not necessarily the dimension of P
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Euler's generating function for general rational polytopes

Example: Setup

P={xeR: Ax=b}

Therefore,
tP:{txeRdZO: Ax=b}
= {xer: A% =bf
={xeR%,: Ax=tb}
Namely,
Lp(t) =#{x € Zly: Ax=tb} (24)
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Euler's generating function for general rational polytopes

Example: Lattice-point enumerator

0.3) (1.1)

(0,0)] (2,0

<
P = {(X17X2)ER23 x1, %2 > 0, a2 s s, }

xp+x <2
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Lp(t) = # {(Xth) €72 x1,% >0, +2x; < 3t, }

x1+x <2t
X1, X2, X3, X4 > 07

# (X17X27X37X4) € Z4 oXx 2X2 + X3 = 3ta
X1+ X + x4 =2t

1210 3t
#{XEZ;’: (1 10 1)"_(2t>}
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Euler's generating function for general rational polytopes

Example: Power series

1
f =
(z1,22) (1—z212) (1 — 222) (1 — z1) (1 — zp) z3t 23t

1
"I @) Do) | DB )
Z(Z]_ZQ) (zlzz) z] z3 g

n1>0 m>0 n3>0 ny>0
— 2 : zlnl+2n2+n3—3tz2l11+n2+n4—2t
ni,...,ns >0
Therefore,

Lp(t) = const f (Zl7 22)
21,22

Then, we have (Ex. 2.36)

T2, 5, T+
4 2 8
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Euler's generating function for general rational polytopes

General case: A typical term

Euler's generating function for general rational polytopes

General case: Lattice-point enumerator and power series

f(Z) — Z Zn1C1 Z anc2 - Z Z"dcd Zi]t_:b

n>0 m>0 ng>0
e The exponent of a typical term looks like
mcy + mcy+ -+ -+ ngcyg — th = An — tb |

where n = (ny, my, ..., ng) € Z<,
e Therefore, the constant term of f(z) counts the number of

solutions n to
An —tb =0,

namely, the number of lattice points in tP
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Reminder
Lp(t) =#{x€Z,: Ax=tb}

Let
® C,Co,...,Cq the columns of A
o z=(21,2,...,2m)
Let
1
f(z) =
(2) (1—2z%)(1—2z%2)---(1—2z%)zt
— E Zn1C1 § zn2C2 - E z”dcd i
th’
n1 >0 n2>0 nyg>0
where z€ 1= z{'z3? - - - z5 for ¢ = (c1, 2y .., Cm) € Z™
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Euler's generating function for general rational polytopes

General case: Euler's generating function

2009-04-30

(25)
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Theorem 2.13
Suppose the rational polytope P is given by (23).

Then the lattice-point enumerator of P can be computed as

1

LP(t) = CO?St ((1 _ ch) (]_ _ ZCz) cee (1 — sz) ztb

)

Y. Okamoto (Tokyo Tech) DMCS'09 (2)
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Euler's generating function for general rational polytopes

General case: Ehrhart series

Corollary 2.14

Suppose the rational polytope P is given by (23).
Then the Ehrhart series of P can be computed as

1
(1—z)(1—2%)---(1—2%) (1 %)

Ehrp(x) = const

Proof:
1
Ehrp(x) = ;OconSt ((1 —2z9)(1—2z%)-.-(1—2z%) th> x
1 X
= const c1 C C Z b)
z (1—2z9)(1—2z%2)---(1—2z%) =
1 1
— t O
cons ((1 —ze)(1—z2) - (1—2z%) 1— %
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Summary
Summary

o Definition of a polytope, and related concepts
e Observation of common phenomena through various examples

e | attice-point enumerators are polynomials in t
e Evaluation at —t gives the lattice-point enumerator of the
interior

o Definition of a quasipolynomial

e Lattice-point enumerators of rational polytopes
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Summary

@ The language of polytopes

® The unit cube

© The standard simplex

@ The Bernoulli polynomials as lattice-point enumerators of pyramids
@ The lattice-point enumerators of the cross-polytopes

@ Pick's theorem

@ Polygons with rational vertices

® Euler's generating function for general rational polytopes
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