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The language of polytopes

Convex polytopes in dimension 1

Convex polytopes in dimension 1

= straight line segments

• Integral segment [a, b], a, b ∈ Z, a < b

#([a, b] ∩ Z) = b − a + 1

a b

• Rational segment [a/b, c/d ], a, b, c , d ∈ Z, a/b < c/d

#([a/b, c/d ] ∩ Z) = bc/dc − b(a−1)/bc

(Exercise 2.1)
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The language of polytopes

Convex polytopes in dimension 2

Convex polytopes in dimension 2

= convex polygons

Lattice-point counting is a topic of Sect. 2.6 and 2.7
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The language of polytopes

Convex polytopes in dimension d

Convex polytopes in dimension d

= convex hulls of a finite set of points

For {v1, v2, . . . , vn} ⊂ Rd

P =

{
λ1v1 + λ2v2 + · · ·+ λnvn :

all λk ≥ 0 and
λ1 + λ2 + · · ·+ λn = 1

}
,

that is, the smallest convex set containing {v1, v2, . . . , vn}
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The language of polytopes

Convex polytopes in dimension d , another point of view

Convex polytopes in dimension d

= bounded intersections of finitely many half-spaces

For a1, a2, . . . , am ∈ Rd and b1, b2, . . . , bm ∈ R

P = {x : ai · x ≤ bi for all i = 1, 2, . . . ,m}
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The language of polytopes

Convex polytopes

Convex polytopes are

• convex hulls of a finite set of points
(vertex description, v-polytopes)

or

• bounded intersections of finitely many half-spaces
(hyperplane description, h-polytopes)

Theorem (Main theorem for polytopes, Minkowski-Weyl Theorem)

• Every v-polytope is an h-polytope

• Every h-polytope is a v-polytope

Proof: See Appendix A in the textbook
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The language of polytopes

Dimension of convex polytopes

P a convex polytope

Definition (Dimension)

The dimension of P is the dimension of the span of P , where

spanP := {x + λ(y − x) : x, y ∈ P , λ ∈ R}

Definition (d-Polytope)

If the dimension of P is d , then we write

• dimP = d

• P is a d-polytope
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The language of polytopes

Valid inequalities

P ⊆ Rd a convex polytope; a ∈ Rd , b ∈ R

Definition (Valid inequality)

The inequality a · x ≤ b is a valid inequality for P if
a · z ≤ b for all z ∈ P
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The language of polytopes

Faces of a convex polytope

P ⊆ Rd a convex polytope

Definition (Face)

F is a face of P if ∃ a valid inequality a · x ≤ b for P s.t.

F = P ∩ {x : a · x = b}

Remark

• Every face of a convex polytope is also a convex polytope

• P and ∅ are faces of P
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The language of polytopes

Names of faces

P ⊆ Rd a convex polytope

Definition

0-dimensional face vertex of P
1-dimensional face edge of P

(d−1)-dimensional face facet of P
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The language of polytopes

Simplices

Fact

Every convex d-polytope has at least d+1 vertices

Definition (Simplex)

A convex d-polytope is a d-simplex if it has exactly d+1 vertices
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The language of polytopes

Integral polytopes and rational polytopes

Definition (Integral polytope)

A convex polytope is integral if all of its vertices have integer
coordinates

Definition (Rational polytope)

A convex polytope is rational if all of its vertices have rational
coordinates
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The unit cube

1 The language of polytopes

2 The unit cube

3 The standard simplex

4 The Bernoulli polynomials as lattice-point enumerators of pyramids

5 The lattice-point enumerators of the cross-polytopes
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The unit cube

Unit cubes

Definition (Unit d-cube �)

• Vertices
{(x1, x2, . . . , xd) : all xk = 0 or 1}

• Hyperplane description

� =
{

(x1, x2, . . . , xd) ∈ Rd : 0 ≤ xk ≤ 1 for all k
}
.
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The unit cube

Question

What’s the number of integer points in t � (t ∈ Z>0)?

x1

x2

6

6

#
(
t � ∩ Zd

)
= #

(
[0, t]d ∩ Zd

)
= (t + 1)d
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The unit cube

Lattice-point enumerators

P ⊆ Rd not necessarily a convex polytope

Definition (Lattice-point enumerator)

The lattice-point enumerator fot t P is defined as

LP(t) := #
(
tP ∩ Zd

)
Remarks

• LP(t) = #
(
P ∩ 1

t
Zd
)

• L�(t) = (t + 1)d
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The unit cube

(t + 1)d is the generating function of ...

(t + 1)d =
d∑

k=0

(
d

k

)
tk ,

where
(
d
k

)
is a binomial coefficient defined as follows

Definition (Binomial coefficient)

For m ∈ C, n ∈ Z>0(
m

n

)
:=

m(m − 1)(m − 2) · · · (m − n + 1)

n!
(1)
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The unit cube

What about the interior?

L�◦(t) = #
(
t �◦ ∩ Zd

)
= #

(
(0, t)d ∩ Zd

)
= (t − 1)d

x1

x2

6

6

Remark

L�◦(t) = (−1)dL�(−t)
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The unit cube

Ehrhart series — another tool for studying discrete volume

P ⊆ Rd

Definition (Ehrhart series)

The Ehrhart series of P is the generating fn of LP(t):

EhrP(z) := 1 +
∑
t≥1

LP(t) z t

Namely,

Ehr�(z) = 1 +
∑
t≥1

(t + 1)d z t
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The unit cube

Eulerian numbers

Definition (Eulerian number)

For 0 ≤ k ≤ d , the Eulerian number A (d , k) is defined through

∑
j≥0

jd z j =

∑d
k=0 A (d , k) zk

(1− z)d+1
(2)

Then,

Ehr�(z) = 1 +
∑
t≥1

(t + 1)d z t

=
∑
t≥0

(t + 1)d z t =
1

z

∑
t≥1

td z t

=

∑d
k=1 A (d , k) zk−1

(1− z)d+1
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The unit cube

What’s an Eulerian number?

Fact

A (d , k) = # permutations of {1, . . . , d} with k−1 ascents

d = 6

, k = 3

: 1

|

4

|

2

|

5

|

6

|

3

Properties (Exercise 2.8) 1 ≤ k ≤ d

A (d , k) = A (d , d + 1− k) ,

A (d , k) = (d − k + 1) A (d − 1, k − 1) + k A (d − 1, k) ,
d∑

k=0

A (d , k) = d ! , (3)

A (d , k) =
k∑

j=0

(−1)j

(
d + 1

j

)
(k − j)d
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The unit cube

Summary: The unit cube

Theorem 2.1

(a) The lattice-point enumerator of � is the polynomial

L�(t) = (t + 1)d =
d∑

k=0

(
d

k

)
tk

(b) Its evaluation at negative integers yields the relation

(−1)dL�(−t) = L�◦(t)

(c) The Ehrhart series of � is Ehr�(z) =

∑d
k=1 A (d , k) zk−1

(1− z)d+1
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The standard simplex
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The standard simplex

Standard simplices

Definition (Standard d-simplex)

• Vertices
e1, e2, . . . , ed and 0, where
ej is the unit vector (0, . . . , 1, . . . , 0) with a 1 in the j-th position

• Hyperplane description

∆ =

{
(x1, x2 . . . , xd) ∈ Rd :

x1 + x2 + · · ·+ xd ≤ 1,
all xk ≥ 0

}
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The standard simplex

Example: Standard 3-simplex

x1

x2

x3

0

1

1

1
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The standard simplex

The dilated standard simplex t∆

t∆ =

{
(x1, x2, . . . , xd) ∈ Rd :

x1 + x2 + · · ·+ xd ≤ t,
all xk ≥ 0

}
Let’s compute the discrete volume and the Ehrhard series!

We need a trick

• ∆ involves an inequality

• The example from Lecture 1 involves equalities only

Trick →
{

Transform an inequality to equalities by introducing
an extra coordinate
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The standard simplex

Slack variables

• Want to count all integer solutions (m1,m2, . . . ,md) ∈ Zd
≥0 to

m1 + m2 + · · ·+ md ≤ t (4)

• Let md+1 = RHS− LHS ≥ 0

• Then

# integer solutions (m1,m2, . . . ,md) ∈ Zd
≥0 to

m1 + m2 + · · ·+ md ≤ t

=

# integer solutions (m1,m2, . . . ,md+1) ∈ Zd+1
≥0 to

m1 + m2 + · · ·+ md+1 = t

Such a variable md+1 is called a slack variable
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The standard simplex

Discrete volume of a standard simplex

• Similarly to Lecture 1

#
(
t∆ ∩ Zd

)
= const

(∑
m1≥0

zm1

)(∑
m2≥0

zm2

)
· · ·

 ∑
md+1≥0

zmd+1

 z−t



= const

(
1

(1− z)d+1z t

)

(5)

• Now use the binomial series

1

(1− z)d+1
=
∑
k≥0

(
d + k

d

)
zk for d ≥ 0 (6)

• That gives L∆(t) := #
(
t∆ ∩ Zd

)
=

(
d + t

d

)
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The standard simplex

What about the interior ∆◦?

L∆◦(t)

= #
{

(m1,m2, . . . ,md) ∈ Zd
>0 : m1 + m2 + · · ·+ md < t

}

= #
{

(m1,m2, . . . ,md+1) ∈ Zd+1
>0 : m1 + m2 + · · ·+ md+1 = t

}
= const

(∑
m1>0

zm1

)(∑
m2>0

zm2

)
· · ·

 ∑
md+1>0

zmd+1

 z−t


= const

((
z

1− z

)d+1

z−t

)

= const

(
zd+1−t

∑
k≥0

(
d + k

d

)
zk

)

=

(
t − 1

d

)
Ex. 2.10

= (−1)d

(
d − t

d

)
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(m1,m2, . . . ,md+1) ∈ Zd+1

>0 : m1 + m2 + · · ·+ md+1 = t
}

= const

(∑
m1>0

zm1

)(∑
m2>0

zm2

)
· · ·

 ∑
md+1>0

zmd+1

 z−t



= const

((
z

1− z

)d+1

z−t

)

= const

(
zd+1−t

∑
k≥0

(
d + k

d

)
zk

)

=

(
t − 1

d

)
Ex. 2.10

= (−1)d

(
d − t

d

)
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The standard simplex

Summary: The standard d-simplex

Theorem 2.2

(a) The lattice-point enumerator of ∆ is the polynomial

L∆(t) =

(
d + t

d

)
(b) Its evaluation at negative integers yields

(−1)dL∆(−t) = L∆◦(t)

(c) The Ehrhart series of ∆ is Ehr∆(z) =
1

(1− z)d+1
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The Bernoulli polynomials and pyramids

1 The language of polytopes

2 The unit cube

3 The standard simplex

4 The Bernoulli polynomials as lattice-point enumerators of pyramids

5 The lattice-point enumerators of the cross-polytopes

6 Pick’s theorem

7 Polygons with rational vertices

8 Euler’s generating function for general rational polytopes
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The Bernoulli polynomials and pyramids

Example: The 3-dimensional pyramid

x1

x3

x2

1

1

1
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The Bernoulli polynomials and pyramids

Pyramids

Definition (d-Dimensional pyramid)

• Vertices

{(x1, x2, . . . , xd−1, 0) : all xk = 0 or 1} ∪ {(0, 0, . . . , 0, 1)}

• Hyperplane description

P =

{
(x1, x2, . . . , xd) ∈ Rd :

0 ≤ xk ≤ 1− xd ≤ 1
for all k = 1, . . . , d−1

}
(9)

Remark

d-dim. pyramid ⊆ d-dim. unit cube
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The Bernoulli polynomials and pyramids

Lattice-point enumerator of a pyramid

LP(t) =

{
(m1,m2, . . . ,md) ∈ Zd :

0 ≤ mk ≤ t −md ≤ t
for all k = 1, . . . , d−1

}
=

t∑
md=0

(t −md + 1)d−1

=
t+1∑
k=1

kd−1

Question

What’s the last sum?
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The Bernoulli polynomials and pyramids

Bernoulli polynomials and Bernoulli numbers

Definition (Bernoulli polynomial)

The Bernoulli polynomials Bk(x) are defined via the generating fn

z exz

ez − 1
=
∑
k≥0

Bk(x)

k!
zk (8)

First few Bernoulli polynomials: k = 0, 1, 2, 3, . . .

1, x − 1

2
, x2 − x +

1

6
, x3 − 3

2
x2 +

1

2
x , . . .

Definition (Bernoulli number)

The Bernoulli numbers are Bk := Bk(0)
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The Bernoulli polynomials and pyramids

A lemma to show a connection...

Lemma 2.3
n−1∑
k=0

kd−1 =
1

d
(Bd(n)− Bd) for integers d ≥ 1, n ≥ 2

Proof:∑
d≥0

Bd(n)− Bd

d !
zd

= z
enz − 1

ez − 1
= z

n−1∑
k=0

ekz

= z
n−1∑
k=0

∑
j≥0

(kz)j

j !
=
∑
j≥0

(
n−1∑
k=0

k j

)
z j+1

j !

=
∑
j≥1

(
n−1∑
k=0

k j−1

)
z j

(j − 1)!

and compare the both sides
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The Bernoulli polynomials and pyramids

Lattice-point enumerator of a pyramid, cont’d

LP(t) =

{
(m1,m2, . . . ,md) ∈ Zd :

0 ≤ mk ≤ 1−md ≤ 1
for all k = 1, . . . , d−1

}
=

t∑
md=0

(t −md + 1)d−1

=
t+1∑
k=1

kd−1

=
t+1∑
k=0

kd−1 (if d ≥ 2)

=
1

d
(Bd(t + 2)− Bd)

(10)
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The Bernoulli polynomials and pyramids

How about the interior P◦?

LP◦(t) =

{
(m1,m2, . . . ,md) ∈ Zd :

0 < mk < 1−md < 1
for all k = 1, . . . , d−1

}

=
t−1∑

md=1

(t −md − 1)d−1

=
t−2∑
k=0

kd−1 =
1

d
(Bd(t − 1)− Bd)

From Exercises 2.15 and 2.16

LP(−t) =
1

d
(Bd(−t + 2)− Bd) = (−1)d 1

d
(Bd(t − 1)− Bd)

=(−1)dLP◦(t)
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The Bernoulli polynomials and pyramids

Pyramids over polytopes — generalization

Q a convex (d−1)-polytope, v1, v2, . . . , vm the vertices of Q

Definition (Pyramid over a polytope)

The pyramid over Q is the convex hull of (v1, 0), (v2, 0) , . . . , (vm, 0),
and (0, . . . , 0, 1)
Denoted by Pyr(Q)

Note

P = Pyr(�)

Question

What is LPyr(Q)(t) := #(t Pyr(Q) ∩ Zd)?
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The Bernoulli polynomials and pyramids

Derivation of LPyr(Q)(t)

LPyr(Q)(t) = 1 + LQ(1) + LQ(2) + · · ·+ LQ(t)

= 1 +
t∑

j=1

LQ(j)

x1

x3

x2
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The Bernoulli polynomials and pyramids

The Ehrhart series of a pyramid

Theorem 2.4

EhrPyr(Q)(z) =
EhrQ(z)

1− z

Proof:

EhrPyr(Q)(z) = 1 +
∑
t≥1

LPyr(Q)(t) z t

= 1 +
∑
t≥1

(
1 +

t∑
j=1

LQ(j)

)
z t

=
∑
t≥0

z t +
∑
t≥1

t∑
j=1

LQ(j) z t =
1

1− z
+
∑
j≥1

LQ(j)
∑
t≥j

z t

=
1

1− z
+
∑
j≥1

LQ(j)
z j

1− z
=

1 +
∑

j≥1 LQ(j) z j

1− z
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The Bernoulli polynomials and pyramids

Summary: The pyramid

Theorem 2.5

P the d-pyramid

P =
{

(x1, x2, . . . , xd) ∈ Rd : 0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1
}

(a) The lattice-point enumerator of P is the polynomial

LP(t) =
1

d
(Bd(t + 2)− Bd)

(b) Its evaluation at negative integers yields (−1)dLP(−t) = LP◦(t)

(c) The Ehrhart series of P is EhrP(z) =

∑d−1
k=1 A (d − 1, k) zk−1

(1− z)d+1
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The lattice-point enumerators of the cross-polytopes

1 The language of polytopes

2 The unit cube

3 The standard simplex

4 The Bernoulli polynomials as lattice-point enumerators of pyramids

5 The lattice-point enumerators of the cross-polytopes

6 Pick’s theorem

7 Polygons with rational vertices

8 Euler’s generating function for general rational polytopes
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The lattice-point enumerators of the cross-polytopes

Cross-polytopes

Definition (Cross-polytope)

• Vertices
±e1,±e2, . . . ,±ed

• Hyperplane description

♦ :=
{

(x1, x2, . . . , xd) ∈ Rd : |x1|+ |x2|+ · · ·+ |xd | ≤ 1
}
(14)
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The lattice-point enumerators of the cross-polytopes

An octahedron = a 3-dimensional cross-polytope

x1

x2

x3
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The lattice-point enumerators of the cross-polytopes

The bipyramid over a polytope — generalization

Q a convex (d−1)-polytope containing the origin, v1, v2, . . . , vm the
vertices of Q

Definition (bipyramid over a polytope)

The bipyramid over Q is the convex hull of (v1, 0),
(v2, 0) , . . . , (vm, 0), (0, . . . , 0, 1), and (0, . . . , 0,−1)
Denoted by BiPyr(Q)

Note

d-dim cross-polytope = BiPyr((d−1)-dim cross-polytope)
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The lattice-point enumerators of the cross-polytopes

The lattice-point enumerator and the Ehrhart series of a bipyramid

LBiPyr(Q)(t) = 2 + 2LQ(1) + 2LQ(2) + · · ·+ 2LQ(t − 1) + LQ(t)

= 2 + 2
t−1∑
j=1

LQ(j) + LQ(t)

Theorem 2.6

EhrBiPyr(Q)(z) = 1+z
1−z

EhrQ(z) if Q contains the origin

Proof: Exercise 2.23
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The lattice-point enumerators of the cross-polytopes

Implication to cross-polytopes

• ♦ = 0-dim cross-polytope = {origin} ⇒

Ehr♦(z) =
1

1− z

• ♦ = d-dim cross-polytope ⇒

Ehr♦(z) =
(1 + z)d

(1− z)d+1

Let’s derive L♦(t) from Ehr♦(z)!
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The lattice-point enumerators of the cross-polytopes

Lattice-point enumerator of a cross-polytope

Ehr♦(z) =
(1 + z)d

(1− z)d+1

=

∑d
k=0

(
d
k

)
zk

(1− z)d+1
=

d∑
k=0

(
d

k

)
zk
∑
t≥0

(
t + d

d

)
z t

=
d∑

k=0

(
d

k

)∑
t≥k

(
t − k + d

d

)
z t

=
d∑

k=0

(
d

k

)∑
t≥0

(
t − k + d

d

)
z t

=
∑
t≥0

d∑
k=0

(
d

k

)(
t − k + d

d

)
z t

Therefore, for all t ≥ 1

L♦(t) =
d∑

k=0

(
d

k

)(
t − k + d

d

)
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The lattice-point enumerators of the cross-polytopes

Counting the lattice points in ♦◦

L♦◦(t) = #
{

(m1,m2, . . . ,md) ∈ Zd : |m1|+ |m2|+ · · ·+ |md | < t
}

= #
{

(m1,m2, . . . ,md) ∈ Zd : |m1|+ |m2|+ · · ·+ |md | ≤ t−1
}

= L♦(t − 1)

=
d∑

k=0

(
d

d − k

)(
t − 1 + d − k

d

)

= (−1)d
d∑

k=0

(
d

k

)
(−1)d

(
t − 1 + k

d

)

= (−1)d
d∑

k=0

(
d

k

)(
−t − k + d

d

)
(by Ex. 2.10)

= (−1)dL♦(−t)
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The lattice-point enumerators of the cross-polytopes

Summary: Cross-polytopes

Theorem 2.7

♦ the cross-polytope in Rd

(a) The lattice-point enumerator of ♦ is the polynomial

L♦(t) =
d∑

k=0

(
d

k

)(
t − k + d

d

)
(b) Its evaluation at negative integers yields (−1)dL♦(−t) = L♦◦(t)

(c) The Ehrhart series of P is Ehr♦(z) = (1+z)d

(1−z)d+1
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Pick’s theorem

1 The language of polytopes

2 The unit cube

3 The standard simplex

4 The Bernoulli polynomials as lattice-point enumerators of pyramids

5 The lattice-point enumerators of the cross-polytopes

6 Pick’s theorem

7 Polygons with rational vertices

8 Euler’s generating function for general rational polytopes
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Pick’s theorem

Let’s get back to R2: Pick’s theorem

Theme

A strange connection between the number of lattice points and the
area of an integral convex polygon

Theorem 2.8 (Pick’s theorem)

For an integral convex polygon P

A = I +
1

2
B − 1,

where

• A = the area of P
• I = # of lattice points in P
• B = # of lattice points on ∂P
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Pick’s theorem

Proof of Pick’s theorem (sketch)

• P is partitioned into P1 and P2 ⇒

I +
1

2
B − 1 = (I1 +

1

2
B1 − 1) + (I2 +

1

2
B2 − 1)

• ∴ Enough to prove for triangles

• Embed a triangle into a rectangle

• ∴ Enough to prove for right triangles and rectangles

• Ex. 2.24 will finish
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Pick’s theorem

Summary (before the proof): an integral convex polygon

• #(P ∩ Z2) = I + B =
(
A− 1

2
B + 1

)
+ B = A + 1

2
B + 1

Theorem 2.9

(a) The lattice-point enumerator of P is the polynomial

LP(t) = A t2 +
1

2
B t + 1

(b) Its evaluation at negative integers yields the relation

LP(−t) = LP◦(t)

(c) The Ehrhart series of P is

EhrP(z) =

(
A− B

2
+ 1
)
z2 +

(
A + B

2
− 2
)
z + 1

(1− z)3
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Pick’s theorem

Lattice-point enumerator of an integral convex polygon

Proof of Thm 2.9(a):

• Inflating by factor of t makes
• the area larger by factor of t2 (Ex. 2.25)
• the perimeter larger by factor of t (Ex. 2.25)

• Then, Pick’s theorem proves

Proof of Thm 2.9(b):

LP◦(t) = LP(t)− B t

=

(
A t2 +

1

2
B t + 1

)
− B t

= A t2 − 1

2
B t + 1 = LP(−t)
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Pick’s theorem

Ehrhart series of an integral convex polygon

Proof of Thm 2.9(c):

EhrP(z) = 1 +
∑
t≥1

LP(t) z t

=
∑
t≥0

(
A t2 +

B

2
t + 1

)
z t

= A
z2 + z

(1− z)3
+

B

2

z

(1− z)2
+

1

1− z

=

(
A− B

2
+ 1
)
z2 +

(
A + B

2
− 2
)
z + 1

(1− z)3
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Polygons with rational vertices

1 The language of polytopes

2 The unit cube

3 The standard simplex

4 The Bernoulli polynomials as lattice-point enumerators of pyramids

5 The lattice-point enumerators of the cross-polytopes

6 Pick’s theorem

7 Polygons with rational vertices

8 Euler’s generating function for general rational polytopes
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Polygons with rational vertices

Roadmap

Contents

d Integral polytopes Rational polytopes
general Sect. 2–5 Sect. 8

↓ ↑
2 Sect. 6 → Sect. 7

Goal of this section

• Develop a theory for rational convex polygons

• Introduce a quasipolynomial
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Polygons with rational vertices

Steps towards rational convex polygons

• Triangulate a rational convex polygon

• → Enough to study triangles

• Embed a triangle into a rectangle

• → Enough to study right triangles

• Translate, rotate, and mirror a right triangle

• → Enough to study the following type of triangles

Y. Okamoto (Tokyo Tech) DMCS’09 (2) 2009-04-30 62 / 83



Polygons with rational vertices

Steps towards rational convex polygons

• Triangulate a rational convex polygon

• → Enough to study triangles

• Embed a triangle into a rectangle

• → Enough to study right triangles

• Translate, rotate, and mirror a right triangle

• → Enough to study the following type of triangles

Y. Okamoto (Tokyo Tech) DMCS’09 (2) 2009-04-30 62 / 83



Polygons with rational vertices

Steps towards rational convex polygons

• Triangulate a rational convex polygon

• → Enough to study triangles

• Embed a triangle into a rectangle

• → Enough to study right triangles

• Translate, rotate, and mirror a right triangle

• → Enough to study the following type of triangles

Y. Okamoto (Tokyo Tech) DMCS’09 (2) 2009-04-30 62 / 83



Polygons with rational vertices

A right triangle: setup

x

y

(
r − fb/d

e
,
b

d

)(
a

d
,
b

d

)

(
a

d
,
r − ea/d

f

)

T =

{
(x , y) ∈ R2 : x ≥ a

d
, y ≥ b

d
, ex + fy ≤ r

}
(16)

• a, b, d , e, f , r ∈ Z≥0, ea + fb ≤ rd , a, b < d

• For brevity, e, f coprime
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Polygons with rational vertices

Lattice-point enumerator: introducing a slack variable

LT (t) = #

{
(m, n) ∈ Z2 : m ≥ ta

d
, n ≥ tb

d
, em + fn ≤ tr

}

= #

{
(m, n, s) ∈ Z3 :

m ≥ ta
d
, n ≥ tb

d
, s ≥ 0,

em + fn + s = tr

}
This is interpreted as the coefficient of z tr in the function∑

m≥ ta
d

zem

∑
n≥ tb

d

z fn

(∑
s≥0

z s

)
,

where the subscript under a summation sign means “sum over all
integers satisfying this condition”
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Polygons with rational vertices

Lattice-point enumerator: a power series ∑
m≥d ta

d e
zem


 ∑

n≥d tb
d e

z fn

(∑
s≥0

z s

)

=
zd

ta
d ee

1− ze

zd
tb
d ef

1− z f

1

1− z

=
zu+v

(1− ze) (1− z f ) (1− z)
,

(17)

where

u :=
⌈ta

d

⌉
e and v :=

⌈
tb

d

⌉
f (18)

Therefore,

LT (t) = const

(
zu+v−tr

(1− ze) (1− z f ) (1− z)

)
= const

(
1

(1− ze) (1− z f ) (1− z)z tr−u−v

)
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Polygons with rational vertices

Lattice-point enumerator: theorem

LT (t) = const

(
1

(1− ze) (1− z f ) (1− z)z tr−u−v

)

• Note: u + v − tr − e − f − 1 < 0 (Ex. 2.31)
• A calculation gives the following theorem (Ex. 2.32)

Theorem 2.10

For the triangle T given by (16), where e and f are coprime,

LT (t) =
1

2ef
(tr − u − v)2 +

1

2
(tr − u − v)

(
1

e
+

1

f
+

1

ef

)
+

1

4

(
1 +

1

e
+

1

f

)
+

1

12

(
e

f
+

f

e
+

1

ef

)
+

1

e

e−1∑
j=1

ξ
j(v−tr)
e(

1− ξjf
e

)(
1− ξj

e

) +
1

f

f−1∑
l=1

ξ
l(u−tr)
f(

1− ξle
f

) (
1− ξl

f

)
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Polygons with rational vertices

Properties of this LT (t)

LT (t) =
1

2ef
(tr − u − v)2 +

1

2
(tr − u − v)

(
1

e
+

1

f
+

1

ef

)
+

1

4

(
1 +

1

e
+

1

f

)
+

1

12

(
e

f
+

f

e
+

1

ef

)
+

1

e

e−1∑
j=1

ξ
j(v−tr)
e(

1− ξjf
e

)(
1− ξj

e

) +
1

f

f−1∑
l=1

ξ
l(u−tr)
f(

1− ξle
f

) (
1− ξl

f

)

• LT (t) is a quadratic fn if we forget the last two sums and u, v

• the last two sums are periodic

• u =
⌈

ta
d

⌉
e and v =

⌈
tb
d

⌉
f show periodic behaviors

Therefore, LT (t) is a “quadratic polynomial” in t whose coefficients
are periodic in t
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Polygons with rational vertices
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Polygons with rational vertices
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Polygons with rational vertices
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Polygons with rational vertices

Properties of this LT (t)
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Polygons with rational vertices

Quasipolynomials

Definition (Quasipolynomial)

A function Q in t is quasipolynomial if Q can be expressed as

Q(t) = cn(t) tn + · · ·+ c1(t) t + c0(t),

where c0, . . . , cn are periodic functions in t

• The degree of Q is n (assuming that cn is not the zero function)

• The period of Q is the least common period of c0, . . . , cn
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Polygons with rational vertices

Constituents of a quasipolynomial

Q a quasipolynomial in t

• ∃ k and polynomials p0, p1, . . . , pk−1 s.t.

Q(t) =


p0(t) if t ≡ 0 mod k ,

p1(t) if t ≡ 1 mod k ,
...

pk−1(t) if t ≡ k − 1 mod k

• The minimal such k is the period of Q

Definition (Constituent)

For this minimal k , the polynomials p0, p1, . . . , pk−1 are the
constituents of Q
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Polygons with rational vertices

The lattice-point enumerator of a rational polygon is a quasipolynomial

LT (t) =
1

2ef
(tr − u − v)2 +

1

2
(tr − u − v)

(
1

e
+

1

f
+

1

ef

)
+

1

4

(
1 +

1

e
+

1

f

)
+

1

12

(
e

f
+

f

e
+

1

ef

)
+

1

e

e−1∑
j=1

ξ
j(v−tr)
e(

1− ξjf
e

)(
1− ξj

e

) +
1

f

f−1∑
l=1

ξ
l(u−tr)
f(

1− ξle
f

) (
1− ξl

f

)
• This is a quasipolynomial of degree 2

Theorem 2.11

P any rational polygon ⇒
• LP(t) is a quasipolynomial of degree 2

• Its leading coefficient is the area of P (in particular, a constant)
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Euler’s generating function for general rational polytopes

1 The language of polytopes

2 The unit cube

3 The standard simplex

4 The Bernoulli polynomials as lattice-point enumerators of pyramids

5 The lattice-point enumerators of the cross-polytopes

6 Pick’s theorem

7 Polygons with rational vertices

8 Euler’s generating function for general rational polytopes
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Euler’s generating function for general rational polytopes

Roadmap

Contents

d Integral polytopes Rational polytopes
general Sect. 2–5 Sect. 8

↓ ↑
2 Sect. 6 → Sect. 7

Goal of this section

• Develop a theory for rational convex polytopes
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Euler’s generating function for general rational polytopes

Rational polytopes: setup

Definition (recap)

A polytope P is rational if all of its vertices have rational coordinates

We are interested in #(t P ∩ Zd)

• Consider a hyperplane description of P
• Every coefficient can be chosen as an integer (Ex. 2.7)

• Inequalities are transformed into equalities (by slack var’s)

• All pts in P have nonnegative coord’s (by translation)

Therefore, any rational polytope P is expressed as

P =
{
x ∈ Rd

≥0 : Ax = b
}

(23)

for some integral matrix A ∈ Zm×d and some integer vector b ∈ Zm

Note: d is not necessarily the dimension of P
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Euler’s generating function for general rational polytopes

Lattice-point enumerator of a rational polytope

P =
{
x ∈ Rd

≥0 : Ax = b
}

Therefore,

tP =
{
t x ∈ Rd

≥0 : Ax = b
}

=
{
x ∈ Rd

≥0 : A
x

t
= b

}
=
{
x ∈ Rd

≥0 : Ax = tb
}

Namely,
LP(t) = #

{
x ∈ Zd

≥0 : Ax = tb
}

(24)
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Euler’s generating function for general rational polytopes

Example: Setup

@
@

@
@

@
@

@
@

@
@

@
@

HHH
HHH

HHH
HHH

HHH
HH

t(
0, 3

2

)

t
(2, 0)

t(1, 1)

t
(0, 0)

P =

{
(x1, x2) ∈ R2 : x1, x2 ≥ 0,

x1 + 2x2 ≤ 3,
x1 + x2 ≤ 2

}
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Euler’s generating function for general rational polytopes

Example: Lattice-point enumerator

LP(t) = #

{
(x1, x2) ∈ Z2 : x1, x2 ≥ 0,

x1 + 2x2 ≤ 3t,
x1 + x2 ≤ 2t

}

= #

(x1, x2, x3, x4) ∈ Z4 :
x1, x2, x3, x4 ≥ 0,

x1 + 2x2 + x3 = 3t,
x1 + x2 + x4 = 2t


= #

{
x ∈ Z4

≥0 :

(
1 2 1 0
1 1 0 1

)
x =

(
3t
2t

)}
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Euler’s generating function for general rational polytopes

Example: Power series

f (z1, z2) :=
1

(1− z1z2) (1− z2
1 z2) (1− z1) (1− z2) z3t

1 z2t
2

=

(∑
n1≥0

(z1z2)n1

)(∑
n2≥0

(
z2
1 z2

)n2

)(∑
n3≥0

zn3
1

)(∑
n4≥0

zn4
2

)
1

z3t
1 z2t

2

=
∑

n1,...,n4≥0

zn1+2n2+n3−3t
1 zn1+n2+n4−2t

2

Therefore,
LP(t) = const

z1,z2

f (z1, z2)

Then, we have (Ex. 2.36)

7

4
t2 +

5

2
t +

7 + (−1)t

8
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Euler’s generating function for general rational polytopes

General case: Lattice-point enumerator and power series

Reminder

LP(t) = #
{
x ∈ Zd

≥0 : Ax = tb
}

Let

• c1, c2, . . . , cd the columns of A

• z = (z1, z2, . . . , zm)

Let

f (z) =
1

(1− zc1) (1− zc2) · · · (1− zcd ) ztb
(25)

=

(∑
n1≥0

zn1c1

)(∑
n2≥0

zn2c2

)
· · ·

(∑
nd≥0

zndcd

)
1

ztb
,

where zc := zc1
1 zc2

2 · · · zcm
m for c = (c1, c2, . . . , cm) ∈ Zm
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Euler’s generating function for general rational polytopes

General case: A typical term

f (z) =

(∑
n1≥0

zn1c1

)(∑
n2≥0

zn2c2

)
· · ·

(∑
nd≥0

zndcd

)
1

ztb

• The exponent of a typical term looks like

n1c1 + n2c2 + · · ·+ ndcd − tb = An− tb ,

where n = (n1, n2, . . . , nd) ∈ Zd
≥0

• Therefore, the constant term of f (z) counts the number of
solutions n to

An− tb = 0,

namely, the number of lattice points in tP
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Euler’s generating function for general rational polytopes

General case: Euler’s generating function

Theorem 2.13

Suppose the rational polytope P is given by (23).
Then the lattice-point enumerator of P can be computed as

LP(t) = const
z

(
1

(1− zc1) (1− zc2) · · · (1− zcd ) ztb

)
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Euler’s generating function for general rational polytopes

General case: Ehrhart series

Corollary 2.14

Suppose the rational polytope P is given by (23).
Then the Ehrhart series of P can be computed as

EhrP(x) = const
z

(
1

(1− zc1) (1− zc2) · · · (1− zcd )
(
1− x

zb

))

Proof:

EhrP(x) =
∑
t≥0

const
z

(
1

(1− zc1) (1− zc2) · · · (1− zcd ) ztb

)
x t

= const
z

(
1

(1− zc1) (1− zc2) · · · (1− zcd )

∑
t≥0

x t

ztb

)

= const
z

(
1

(1− zc1) (1− zc2) · · · (1− zcd )

1

1− x
zb

)
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Summary

1 The language of polytopes

2 The unit cube

3 The standard simplex

4 The Bernoulli polynomials as lattice-point enumerators of pyramids

5 The lattice-point enumerators of the cross-polytopes

6 Pick’s theorem

7 Polygons with rational vertices

8 Euler’s generating function for general rational polytopes
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Summary

Summary

• Definition of a polytope, and related concepts

• Observation of common phenomena through various examples
• Lattice-point enumerators are polynomials in t
• Evaluation at −t gives the lattice-point enumerator of the

interior

• Definition of a quasipolynomial

• Lattice-point enumerators of rational polytopes
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