Discrete Mathematics & Computational Structures Lattice-Point Counting in Convex Polytopes (1) Frobenius' Coin-Exchange Problem

Yoshio Okamoto

Tokyo Institute of Technology

April 16, 2009

## "Last updated: 2009/04/16 13:10"

## Textbook

We follow the book:

• Matthias Beck and Sinai Robins, Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. New York, Springer. 2007.

Overview

- The updated version is available at http://math.sfsu.edu/beck/ccd.html
- Japanese translation will be available soon

| Overview      | Overview<br>Lecture Style<br>Goal | Y. Okamoto (Tokyo Tech) | DMCS'09 (1) | 2009-04-16 1 / 51 | Y. Okamoto (Tokyo Tec | h) DMCS'09 (1) | 2009-04-16 |
|---------------|-----------------------------------|-------------------------|-------------|-------------------|-----------------------|----------------|------------|
|               |                                   |                         |             |                   |                       |                |            |
|               |                                   |                         |             |                   |                       |                |            |
|               |                                   |                         |             |                   |                       |                |            |
|               |                                   |                         |             |                   |                       |                |            |
| Lecture Style |                                   | Lecture Style           | Overview    |                   | Goal                  | Overview       |            |

- Spoken: in English or Japanese
- Slides: in English
- Report submission: in Japanese/English (up to you)
- Feedback
  - Submission of a piece of paper at the end of each lecture

DMCS'09 (1)

- Can be anonymous
- There might be a survey at the term end

## Goal of the course

- Study an example of mathematical thoughts that are benefitial for algorithms design
- In this course, such an example = lattice-point counting in convex polytopes

## Prerequisites

- Nothing in particular
- Other than a moderate familiarity with freshmen math (Calculus, Linear Algebra, Discrete Math)
- And eagerness to learn

Y. Okamoto (Tokyo Tech)

## Evaluation

## How to get a credit

Submission of exercise solutions

• Each lecture is accompanied with several exercises in the textbook

Overview

- Students should assign themselves to different exercises
- Assignment should be done at the wiki page of the course in the first-come-first-serve way
- Submission due: next lecture
- Wiki: http://www.is.titech.ac.jp/~okamoto/ cgi-bin/pukiwiki/index.php?DMCS09

## Administration

- Course Webpage
  - http://www.is.titech.ac.jp/~okamoto/lect/2009/dmcs/

Overview

- Reachable from the CompView website (http://compview.titech.ac.jp/)
- This is in the Education Program for CompView
- Lecturer: Yoshio Okamoto
  - Email: okamoto at is.titech.ac.jp
  - Office: W904 in West 8th Bldg.
  - Int. Phone: 3871
  - Office hours: by appointment, or you can try your luck any time
- Remark: This lattice-point counting course will not be given next year; Could be discrete geometry, data structures, graph theory, extremal combinatorics, ..., I'm thinking

| Y. Okamoto (Tokyo Tech)          | DMCS'09 (1)              | 2009-04-16 5 / 51 | Y. Okamoto (Tokyo Tech) DMCS'09                      |
|----------------------------------|--------------------------|-------------------|------------------------------------------------------|
|                                  |                          |                   |                                                      |
|                                  |                          |                   |                                                      |
|                                  |                          |                   |                                                      |
|                                  |                          |                   |                                                      |
|                                  | Introduction             |                   |                                                      |
|                                  |                          |                   | The basic computational problems                     |
|                                  |                          |                   |                                                      |
| <ol> <li>Introduction</li> </ol> |                          |                   | When a finite set $\Omega$ is given implicit         |
|                                  |                          |                   | • Decide whether $\Omega = \emptyset$                |
| 2 Frobenius' coin-exc            | hange problem            |                   | <ul> <li>Find an element of Ω if it exist</li> </ul> |
| Why use generat                  | •                        |                   | • Count $ \Omega $                                   |
| Two coins                        |                          |                   | • List all elements of $\Omega$                      |
|                                  | and a surprising formula |                   | • Sample an element of $\Omega$ uniform              |
| Sylvester's result               | -                        |                   | • Sample all cicilient of 32 dimon                   |

Three and more coins

## Oncluding remarks

- They have some relationship
- Counting is the most difficult in a certain sense

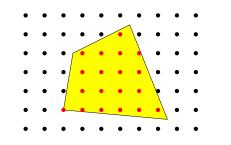
DMCS'09 (1)

## A kind of the most general setting

## One setting

 $\Omega = P \cap \mathbb{Z}^d$  where

- *P* a *d*-dimensional convex polyhedron (in the H-representation) (the terminology will be defined through the course)
- $\mathbb{Z}$  is the set of integers



| Y. Okamoto (Tokyo Tech) | DMCS'09 (1) |
|-------------------------|-------------|

## A theoretical development

 $\Omega = P \cap \mathbb{Z}^d$ 

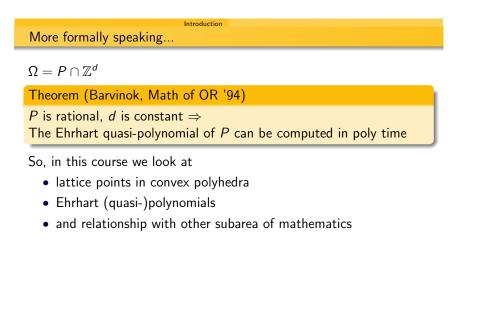
Theorem (Barvinok, Math of OR '94) P is rational, d is constant  $\Rightarrow$  $|P \cap \mathbb{Z}^d|$  can be computed in polynomial time

Introduction

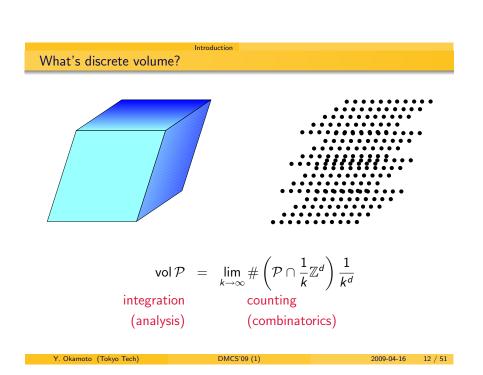
Implementations are also available

- LattE (Project led by De Loera) http://www.math.ucdavis.edu/~latte/
- LattE macchiato (Köppe) http://www.math.ucdavis.edu/~mkoppe/latte/
- barvinok (Verdoolaege) http://www.kotnet.org/~skimo/barvinok/

| Y. Okamoto (Tokyo Tech) | DMCS'09 (1) | 2009-04-16 10 / 51 |
|-------------------------|-------------|--------------------|

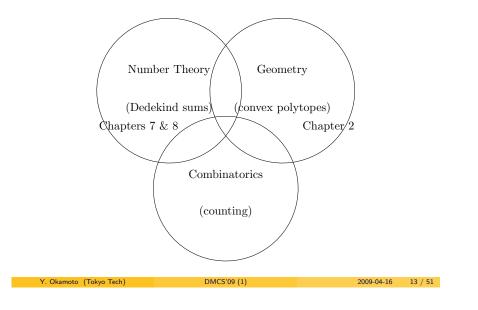


DMCS'09 (1)



2009-04-16 9 / 51

## Lattice-point counting in convex polytopes



1 Introduction

## Probenius' coin-exchange problem

Why use generating functions? Two coins Partial fractions and a surprising formula Sylvester's result Three and more coins

## 3 Concluding remarks

Y. Okamoto (Tokyo Tech)

Frobenius' coin-exchange problem Why use generating functions? A generating function of a sequence

Definition (Generating function) Given a sequence  $\{a_k\}$ , define its generating function as  $F(z) = \sum_{k \ge 0} a_k z^k$  F(z) is a power series, but let's forget about the convergence for the moment

- Generating functions are quite useful for many reasons
- Generating functions are main objects we deal with in this course

DMCS'09 (1)

Frobenius' coin-exchange problem Why use generating functions? Example: Fibonacci sequence

## Definition (Fibonacci sequence)

The Fibonacci sequence  $\{f_k\}$  is defined as follows

- $f_0 = 0, f_1 = 1$
- $f_{k+2} = f_{k+1} + f_k$  for all  $k \ge 0$

The first few numbers in the sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

DMCS'09 (1)

See http://www.research.att.com/~njas/sequences/

• Excellent source of integer sequences

2009-04-16

Frobenius' coin-exchange problem Why use generating functions? Discovery through the generating function

- F(z) the generating function for the Fibonacci sequence
- Then, by the recursion

$$\sum_{k\geq 0} f_{k+2} z^k = \sum_{k\geq 0} \left( f_{k+1} + f_k \right) z^k = \sum_{k\geq 0} f_{k+1} z^k + \sum_{k\geq 0} f_k z^k \quad (1)$$

• The LHS of (1) is

$$\sum_{k\geq 0} f_{k+2} z^k = \frac{1}{z^2} \sum_{k\geq 0} f_{k+2} z^{k+2} = \frac{1}{z^2} \sum_{k\geq 2} f_k z^k = \frac{1}{z^2} \left( F(z) - z \right)$$

• The RHS of (1) is

$$\sum_{k\geq 0} f_{k+1} z^k + \sum_{k\geq 0} f_k z^k = \frac{1}{z} \sum_{k\geq 0} f_{k+1} z^{k+1} + \sum_{k\geq 0} f_k z^k = \frac{1}{z} F(z) + F(z)$$

DMCS'09 (1)

Y. Okamoto (Tokyo Tech)

2009-04-16 17 / 51

Frobenius' coin-exchange problem Why use generating functions? Discovery through the generating function (cont'd)

•  $\therefore$  (1) is rewritten as

$$\frac{1}{z^2}(F(z)-z)=\frac{1}{z}F(z)+F(z)$$

Equivalently,

Y. Okamoto (Tokyo Tech)

$$F(z)=\frac{z}{1-z-z^2}$$

• A fun to check (by a computer)

$$\frac{z}{1-z-z^2} = z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + 13z^7 + \cdots$$

DMCS'09 (1)

Frobenius' coin-exchange problem Why use generating functions? Discovery through the generating function (cont'd)

• A partial fraction expansion gives us

$$F(z) = \frac{z}{1 - z - z^2} = \frac{1/\sqrt{5}}{1 - \frac{1 + \sqrt{5}}{2}z} - \frac{1/\sqrt{5}}{1 - \frac{1 - \sqrt{5}}{2}z}$$
(2)

• Remember the geometric series

$$\sum_{k\geq 0} x^k = \frac{1}{1-x} \tag{3}$$

• Then, by setting 
$$x = \frac{1+\sqrt{5}}{2}z$$
 and  $x = \frac{1-\sqrt{5}}{2}z$  we have

$$F(z) = \frac{z}{1 - z - z^2}$$
  
=  $\frac{1}{\sqrt{5}} \sum_{k \ge 0} \left( \frac{1 + \sqrt{5}}{2} z \right)^k - \frac{1}{\sqrt{5}} \sum_{k \ge 0} \left( \frac{1 - \sqrt{5}}{2} z \right)^k$ 

DMCS'09 (1)

Frobenius' coin-exchange problem Why use generating functions? Discovery through the generating function (cont'd)

• We have

$$F(z) = \frac{1}{\sqrt{5}} \sum_{k \ge 0} \left( \frac{1 + \sqrt{5}}{2} z \right)^k - \frac{1}{\sqrt{5}} \sum_{k \ge 0} \left( \frac{1 - \sqrt{5}}{2} z \right)^k$$
$$= \sum_{k \ge 0} \frac{1}{\sqrt{5}} \left( \left( \frac{1 + \sqrt{5}}{2} \right)^k - \left( \frac{1 - \sqrt{5}}{2} \right)^k \right) z^k$$

• Thus, we obtain a closed formula for the Fibonacci sequence

$$f_k = rac{1}{\sqrt{5}} \left(rac{1+\sqrt{5}}{2}
ight)^k - rac{1}{\sqrt{5}} \left(rac{1-\sqrt{5}}{2}
ight)^k$$

DMCS'09 (1)

## Y. Okamoto (Tokyo Tech)

2009-04-16 20 / 51

2009-04-16

18 / 51

Y. Okamoto (Tokyo Tech)

Frobenius' coin-exchange problem Why use generating functions? Usefulness of a generating function

• It gives a closed formula of a sequence

$$f_k = rac{1}{\sqrt{5}} \left(rac{1+\sqrt{5}}{2}
ight)^k - rac{1}{\sqrt{5}} \left(rac{1-\sqrt{5}}{2}
ight)^k$$

• It gives a short description of a sequence as a rational function

$$F(z)=\frac{z}{1-z-z^2}$$

Frobenius' coin-exchange problem Why use generating functions? Partial fraction expansion (in case you've never heard of that)

## Theorem 1.1 (Partial fraction expansion)

Given any rational function

$$F(z):=\frac{p(z)}{\prod_{k=1}^m (z-a_k)^{e_k}}$$

where p is a polynomial of degree less than  $e_1 + e_2 + \cdots + e_m$  and the  $a_k$ 's are distinct, there exists a decomposition

$$F(z) = \sum_{k=1}^{m} \left( \frac{c_{k,1}}{z - a_k} + \frac{c_{k,2}}{(z - a_k)^2} + \dots + \frac{c_{k,e_k}}{(z - a_k)^{e_k}} \right),$$

where  $c_{k,i} \in \mathbb{C}$  are unique.

Y. Okamoto (Tokyo Tech)

| Proof: Exercise 1.35 |  |  |
|----------------------|--|--|
|----------------------|--|--|

DMCS'09 (1)

Frobenius' coin-exchange problem Two coins What if the new coin system is introduced

## Imagine we only have 4-yen, 7-yen, 9-yen, and 34-yen coins

Which price can be paid without making any change?

| Γ | 1 | X        | 6  | X | 11 | <br>16 | <br>21 |  |
|---|---|----------|----|---|----|--------|--------|--|
|   | 2 | ×        | 7  |   | 12 | <br>17 | <br>22 |  |
|   | 3 | $\times$ | 8  |   | 13 | <br>18 | <br>23 |  |
|   | 4 |          | 9  |   | 14 | <br>19 | <br>24 |  |
|   | 5 | ×        | 10 | × | 15 | <br>20 | <br>25 |  |

## Exercise 1.20

The coins are coprime  $\Rightarrow$  Only finitely many prices cannot be paid

Frobenius' coin-exchange problem, informally

Find the largest price that the coin system cannot allow us to pay

DMCS'09 (1)

DMCS'09 (1)

Frobenius' coin-exchange problem Two coins

## 1 Introduction

Y. Okamoto (Tokyo Tech)

**2** Frobenius' coin-exchange problem

Why use generating functions? Two coins Partial fractions and a surprising formula Sylvester's result Three and more coins

## 3 Concluding remarks



2009-04-16 21 / 51

Y. Okamoto (Tokyo Tech)

2009-04-16

# Two coinsFrobenius' coin-exchange problem $A = \{a_1, a_2, \dots, a_d\}$ a set of coprime positive integersDefinition (Representable integer)An integer n is representable by A if $\exists$ non-negative integers $m_1, m_2, \dots, m_d$ s.t. $n = m_1 a_1 + \dots + m_d a_d$ Definition (Frobenius number)

Frobenius' coin-exchange problem Two coins

When d = 2 the situation is well studied

| Theorem 1.2                                                             |
|-------------------------------------------------------------------------|
| $a_1, a_2 \text{ coprime} \Rightarrow g(a_1, a_2) = a_1a_2 - a_1 - a_2$ |

• Quite simple

Y. Okamoto (Tokyo Tech)

• But such a simple formula cannot be expected for larger d

DMCS'09 (1)

We prove it in the next subsection

| Frobenius' coin-exchange problem Two coins Sylvester's theorem | Frobenius' coin-exchange problem Two coins<br>A tool: restricted partition function |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|

2009-04-16 25 / 51

More is known when d = 2

Frobenius' coin-exchange problem

Determine g(A)

Y. Okamoto (Tokyo Tech)

Theorem 1.3 (Sylvester's theorem, 1884)  $a_1, a_2 \text{ coprime} \Rightarrow \begin{array}{c} \text{exactly} \ \frac{(a_1 - 1)(a_2 - 1)}{2} \\ \text{representable} \end{array}$  integers are not

 $g(A) = \max$  number that's not representable by A

DMCS'09 (1)

Example: 
$$a_1 = 3, a_2 = 7 ( \rightsquigarrow a_1 a_2 - a_1 - a_2 = 11 )$$

| 1 | ×        | 6           |          | 11 | × | 16 | <br>21 |  |
|---|----------|-------------|----------|----|---|----|--------|--|
| 2 | $\times$ | 7<br>8<br>9 |          | 12 |   | 17 | <br>22 |  |
| 3 |          | 8           | $\times$ | 13 |   | 18 | <br>23 |  |
| 4 | $\times$ | 9           |          | 14 |   | 19 | <br>24 |  |
| 5 | ×        | 10          |          | 15 |   | 20 | <br>25 |  |

DMCS'09 (1)

 $A = \{a_1, \dots, a_d\}$  a set of coprime positive integer

Definition (Restricted partition function)

$$p_A(n) := \# \left\{ (m_1, \ldots, m_d) \in \mathbb{Z}^d: egin{array}{c} ext{all } m_j \geq 0, \ m_1 a_1 + \cdots + m_d a_d = n \end{array} 
ight\}$$

## In words

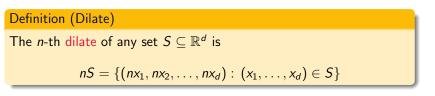
 $p_A(n) = \#$  representations of n by A

## Note

 $g(A) = \max\{n \mid p_A(n) = 0\}$ 

2009-04-16 26 / 51

Frobenius' coin-exchange problem Two coins Restricted partition functions and polytopes



If we define

$$\mathcal{P} = \left\{ (x_1, \dots, x_d) \in \mathbb{R}^d : \text{ all } x_j \ge 0, \ x_1 a_1 + \dots + x_d a_d = 1 \right\} \quad (4)$$

DMCS'09 (1)

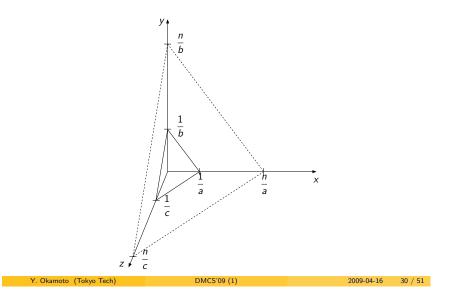
2009-04-16 29 / 51

then we see that

Y. Okamoto (Tokyo Tech)

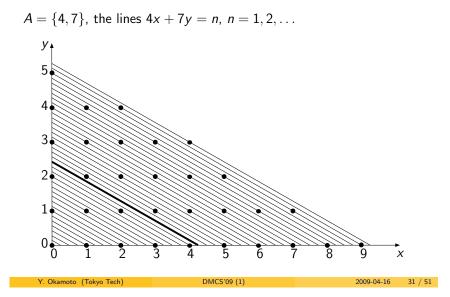
- $\mathcal{P}$  is a polytope (defined in the next lecture), and
- $p_A(n) = \#(n\mathcal{P} \cap \mathbb{Z}^d)$





Frobenius' coin-exchange problem Partial fractions and a surprising formula

Frobenius' coin-exchange problem Two coins



- Introduction
- Probenius' coin-exchange problem
  - Why use generating functions? Two coins Partial fractions and a surprising formula Sylvester's result Three and more coins

## 3 Concluding remarks

Concentrate on the case d = 2, so let  $A = \{a, b\}$  where a, b coprime

- Consider  $p_{\{a,b\}}(n) = \# \{(k,l) \in \mathbb{Z}^2 : k, l \ge 0, ak + bl = n\}$
- Consider the product of the following two geometric series:

$$\left(\frac{1}{1-z^a}\right)\left(\frac{1}{1-z^b}\right) = \left(1+z^a+z^{2a}+\cdots\right)\left(1+z^b+z^{2b}+\cdots\right)$$
$$= \sum_{k\geq 0}\sum_{l\geq 0} z^{ak}z^{bl}$$
$$= \sum_{n\geq 0} p_{\{a,b\}}(n) z^n$$

• : this fn is the generating fn for the seq  $(p_{\{a,b\}}(n))_{n=0}^{\infty}$ The idea is to study the compact function on the LHS!

DMCS'09 (1)

Frobenius' coin-exchange problem Partial fractions and a surprising formula Looking at the constant term by shifting

More convenient if we can look at the constant term after shifting

• Namely,  $p_A(n)$  is the constant term of

$$f(z) := \frac{1}{(1-z^a)(1-z^b)z^n} = \sum_{k\geq 0} p_{\{a,b\}}(k) \, z^{k-n}$$

## This is a Laurent series

- To obtain  $p_A(n)$  we only need to "evaluate" f(z) at z = 0, but this is impossible since f(z) has terms with negative exponents
- We just need a contant term, so we subtract the terms with negative exponents from f(z) and evaluate it at z = 0
- (Or, we may use the residue theorem from complex analysis)

DMCS'09 (1)

Frobenius' coin-exchange problem Partial fractions and a surprising formula After a few minutes of computation...

We get

$$p_{\{a,b\}}(n) = \frac{1}{2a} + \frac{1}{2b} + \frac{n}{ab} + \frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{(1 - \xi_a^{kb})\xi_a^{kn}} + \frac{1}{b} \sum_{j=1}^{b-1} \frac{1}{(1 - \xi_b^{ja})\xi_b^{jn}}$$
(7)

where

$$\xi_a := e^{2\pi i/a} = \cos\frac{2\pi}{a} + i\sin\frac{2\pi}{a}$$

DMCS'09 (1)

is the a-th root of unity

Y. Okamoto (Tokyo Tech)

• Let's make it simpler and more understandable

Greatest-integer functions and fractional-part functions

Let  $x \in \mathbb{R}$ 

Y. Okamoto (Tokyo Tech)

Definition (Greatest-integer function)

 $\lfloor x \rfloor = \max\{n \in \mathbb{Z} \mid n \le x\}$ 

Definition (Fractional-part function)

 $\{x\} = x - |x|$ 

Example:

2009-04-16 33 / 51

Y. Okamoto (Tokyo Tech)

2009-04-16

## Frobenius' coin-exchange problem Partial fractions and a surprising formula With help of this notation

• When b = 1, the problem gets one-dimensional

$$p_{\{a,1\}}(n) = \# \{ (k,l) \in \mathbb{Z}^2 : k, l \ge 0, ak+l=n \}$$
$$= \# \{ k \in \mathbb{Z} : k \ge 0, ak \le n \}$$
$$= \# \{ k \in \mathbb{Z} : 0 \le k \le \frac{n}{a} \} = \left\lfloor \frac{n}{a} \right\rfloor + 1$$

• Therefore,

Y. Okamoto (Tokyo Tech)

$$\frac{1}{2a} + \frac{1}{2} + \frac{n}{a} + \frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{(1 - \xi_a^k) \xi_a^{kn}} = \left\lfloor \frac{n}{a} \right\rfloor + 1$$
$$\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{(1 - \xi_a^k) \xi_a^{kn}} = -\left\{ \frac{n}{a} \right\} + \frac{1}{2} - \frac{1}{2a} \qquad (8)$$

2009-04-16 37 / 51

DMCS'09 (1)

Frobenius' coin-exchange problem Partial fractions and a surprising formula Geometric picture for two coins, again

$$A = \{4, 7\}, \text{ the lines } 4x + 7y = n, n = 1, 2, \dots$$

Frobenius' coin-exchange problem Partial fractions and a surprising formula Popoviciu's theorem

• Exercise 1.22

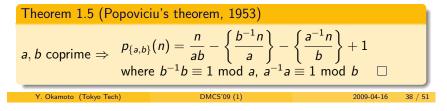
$$\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{(1-\xi_a^{bk})\xi_a^{kn}} = \frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{(1-\xi_a^k)\xi_a^{b^{-1}kn}}$$
(9)

where  $b^{-1}$  is an integer s.t.  $b^{-1}b\equiv 1 \mod a$ 

• Therefore

$$\frac{1}{a}\sum_{k=1}^{a-1}\frac{1}{(1-\xi_a^{bk})\xi_a^{kn}} = -\left\{\frac{b^{-1}n}{a}\right\} + \frac{1}{2} - \frac{1}{2a}$$
(10)

• Combining this with (7) gives the following theorem



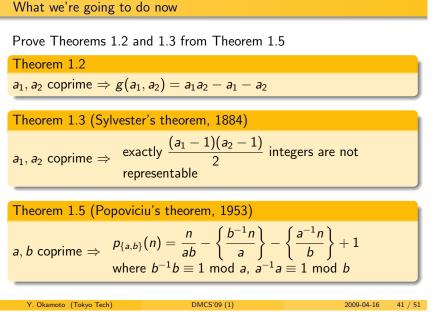
Frobenius' coin-exchange problem Sylvester's result

## 1 Introduction

- Probenius' coin-exchange problem
  - Why use generating functions? Two coins Partial fractions and a surprising formula Sylvester's result Three and more coins

## 3 Concluding remarks

## Frobenius' coin-exchange problem Sylvester's result



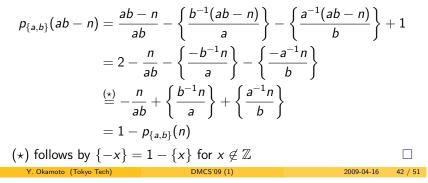
Frobenius' coin-exchange problem Svlvester's result We use a lemma

## Lemma 1.6

a, b coprime,  $n \in [1, ab-1]$ ,  $a \not\mid n, b \not\mid n \Rightarrow$ 

$$p_{\{a,b\}}(n) + p_{\{a,b\}}(ab-n) = 1$$

Proof: Use Theorem 5



Frobenius' coin-exchange problem Svlvester's result Proof of Theorem 1.3

- Non-representable numbers all in [1, *ab*-1] (by Thm 1.2)
- $a|n \text{ or } b|n \Rightarrow n \text{ representable}$
- Otherwise, exactly one of n and ab-n is representable (Lem 1.6)
- ...

$$\#$$
 non-representable numbers  $=$   $\frac{(ab-1)-(b-1)-(a-1)+0}{2}$  $=$   $\frac{(a-1)(b-1)}{2}$   $\square$ 

Frobenius' coin-exchange problem Svlvester's result Proof of Theorem 1.2

It suffices to prove the following two  $p_{\{a,b\}}(ab-a-b) = 0$ (Exer 1.24 and Lem 1.6)  $p_{\{a,b\}}(ab-a-b+n) > 0 \text{ for all } n > 0$ 

Proof of (2):

• Note 
$$\left\{\frac{m}{a}\right\} \leq 1 - \frac{1}{a}$$
 for all  $m \in \mathbb{Z}$ 

• Then

$$p_{\{a,b\}}(ab-a-b+n) \ge rac{ab-a-b+n}{ab} - \left(1-rac{1}{a}
ight) - \left(1-rac{1}{b}
ight) + 1$$
 $= rac{n}{ab} > 0$ 

DMCS'09 (1)

Frobenius' coin-exchange problem Three and more coins

## 1 Introduction

## Probenius' coin-exchange problem

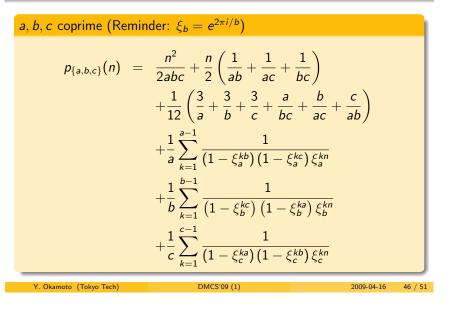
Why use generating functions? Two coins Partial fractions and a surprising formula Sylvester's result Three and more coins

## Occurrent Concluding remarks

| Y. Okamoto (Tokyo Tech) | DMCS'09 (1) | 2009-04-16 | 45 / 51 |
|-------------------------|-------------|------------|---------|

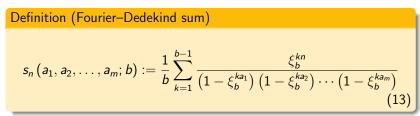
```
Frobenius' coin-exchange problem Three and more coins
```

## Three coins



|               | Frobenius' coin-exchange problem | Three and more coins |
|---------------|----------------------------------|----------------------|
| Fourier-Dedek | kind sums                        |                      |

Reminder:  $\xi_b = e^{2\pi i/b}$ 



DMCS'09 (1)

- Generalizes Dedekind sums (defined in Chapter 7)
- Studied thoroughly (in Chapter 8)

| Frobenius' coin-exchange problem | Three and more coins |
|----------------------------------|----------------------|
| Three coins, rewritten           |                      |

| a, b, c coprime                                                                                            |
|------------------------------------------------------------------------------------------------------------|
|                                                                                                            |
| $p_{\{a,b,c\}}(n) = \frac{n^2}{2abc} + \frac{n}{2}\left(\frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc}\right)$ |
|                                                                                                            |
| $+\frac{1}{12}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}+\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)$     |
|                                                                                                            |
| $+s_{-n}(b,c;a) + s_{-n}(a,c;b) + s_{-n}(a,b;c)$                                                           |

For the derivation, and the extension to more coins, see the textbook

## Eq. (7) for two coins $p_{\{a,b\}}(n) = \frac{1}{2a} + \frac{1}{2b} + \frac{n}{ab} + \frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{(1 - \xi_a^{kb})\xi_a^{kn}} + \frac{1}{b} \sum_{j=1}^{b-1} \frac{1}{(1 - \xi_b^{ja})\xi_b^{jn}} = \frac{1}{2a} + \frac{1}{2b} + \frac{n}{ab} + s_{-n}(b; a) + s_{-n}(a; b)$

## Introduction

## Probenius' coin-exchange problem

Why use generating functions? Two coins Partial fractions and a surprising formula Sylvester's result Three and more coins

## 3 Concluding remarks

| Y. Okamoto (Tokyo Tech) | DMCS'09 (1)            | 2009-04-16 49 / 51 | Y. Okamoto (Tokyo Tech) | DMCS'09 (1) |
|-------------------------|------------------------|--------------------|-------------------------|-------------|
|                         |                        |                    |                         |             |
|                         |                        |                    |                         |             |
|                         |                        |                    |                         |             |
|                         |                        |                    |                         |             |
|                         |                        |                    |                         |             |
|                         |                        |                    |                         |             |
|                         |                        |                    |                         |             |
|                         |                        |                    |                         |             |
|                         |                        |                    |                         |             |
| C.                      | and a discourse of the |                    |                         |             |

Concluding remarks

- Frobenius' coin-exchange problem to see the relation of
  - Combinatorics (generating functions)
  - Geometry (convex polytopes)
  - Number theory (Dedekind sums)
- Lots of problems still remain unsolved

## <u>Literature</u>

• J.L. Ramírez-Alfonsín. *The Diophantine Frobenius Problem*. Oxford University Press, 2006.

DMCS'09 (1)