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Overview Overview
Lecture Style Goal
e Language This is a course on mathematics and/or theory of computation
e Spoken: in English or Japanese
e Slides: in English Goal of the course : o
e Report submission: in Japanese/English (up to you) e Study an example of mathematical thoughts that are benefitial
e Feedback for algorithms design
o Submission of a piece of paper at the end of each lecture e In this course, such an example = lattice-point counting in
e Can be anonymous convex polytopes
e There might be a survey at the term end
Prerequisites
e Nothing in particular
o Other than a moderate familiarity with freshmen math
(Calculus, Linear Algebra, Discrete Math)
o And eagerness to learn
4/51
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Overview

Evaluation

Overview

Administration

How to get a credit
Submission of exercise solutions

e Each lecture is accompanied with several exercises in the
textbook

e Students should assign themselves to different exercises

e Assignment should be done at the wiki page of the course in the
first-come-first-serve way

e Submission due: next lecture

Wiki:  http://www.is.titech.ac.jp/~okamoto/
cgi-bin/pukiwiki/index.php?DMCS09

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2000-04-16 5 /51

Introduction

@ Introduction

@® Frobenius’ coin-exchange problem
Why use generating functions?
Two coins
Partial fractions and a surprising formula
Sylvester’s result
Three and more coins

© Concluding remarks
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e Course Webpage
o http://www.is.titech.ac.jp/~okamoto/lect/2009/dmcs/
e Reachable from the CompView website
(http://compview.titech.ac.jp/)
e This is in the Education Program for CompView
o Lecturer: Yoshio Okamoto
Email: okamoto at is.titech.ac.jp
Office: W904 in West 8th Bldg.
Int. Phone: 3871
Office hours: by appointment, or you can try your luck any time

o Remark: This lattice-point counting course will not be given
next year; Could be discrete geometry, data structures, graph
theory, extremal combinatorics, ..., I'm thinking

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2000-04-16 6 /51

Introduction

The basic computational problems

When a finite set Q is given implicitly...,
e Decide whether Q = & (decision)
e Find an element of Q if it exists (search)
e Count |Q| (counting)
e List all elements of (listing)
e Sample an element of Q uniformly at random (sampling)
e They have some relationship

Counting is the most difficult in a certain sense
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Introduction

A kind of the most general setting

Introduction

A theoretical development

One setting
Q = PN Z9 where

e P a d-dimensional convex polyhedron (in the H-representation)
(the terminology will be defined through the course)

o 7 is the set of integers
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Introduction

More formally speaking...

Q=pPnz?
Theorem (Barvinok, Math of OR '94)

P is rational, d is constant =
|P N Z9| can be computed in polynomial time

Implementations are also available
o LattE (Project led by De Loera)
http://www.math.ucdavis.edu/"latte/

e LattE macchiato (Kdppe)
http://www.math.ucdavis.edu/”mkoppe/latte/

e barvinok (Verdoolaege)
http://www.kotnet.org/~skimo/barvinok/

Q=pPnz
Theorem (Barvinok, Math of OR '94)

P is rational, d is constant =
The Ehrhart quasi-polynomial of P can be computed in poly time

So, in this course we look at
o lattice points in convex polyhedra
e Ehrhart (quasi-)polynomials
e and relationship with other subarea of mathematics
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Introduction
What's discrete volume?
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Introduction

Lattice-point counting in convex polytopes

Geometry

(Dedekind sums
Chapters 7 & 8

Combinatorics

(counting)
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Frobenius' coin-exchange problem Why use generating functions?

A generating function of a sequence

Frobenius' coin-exchange problem  Why use generating functions?
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Frobenius' coin-exchange problem Why use generating functions?

Example: Fibonacci sequence

Definition (Generating function)

Given a sequence {ay}, define its generating function as

F(z) = Z arz"

F(z) is a power series, but let's forget about the convergence for the
moment

o Generating functions are quite useful for many reasons

e Generating functions are main objects we deal with in this course
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Definition (Fibonacci sequence)

The Fibonacci sequence {f;} is defined as follows
e o =0 =1
o frio="f1+fforall k>0

The first few numbers in the sequence are:
0,1,1,2, 3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

See http://www.research.att.com/~njas/sequences/

e Excellent source of integer sequences
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Frobenius' coin-exchange problem Why use generating functions? Frobenius’ coin-exchange problem Why use generating functions?

Discovery through the generating function Discovery through the generating function (cont'd)

e [(z) the generating function for the Fibonacci sequence e . (1) is rewritten as
e Then, by the recursion

1 1
Z fin 2" = Z (fer1 + F) 2" = Z fes1 25 + Z f " (1) ) (F(z) —2) = ;F(Z) + F(2)

k> k> k> k> .
=0 =0 =0 =0 o Equivalently,
F(s) — z
o The LHS of (1) is @)=17——0»
1 1 1 e A fun to check (by a comput
k _ k+2 _ k y puter
ka+22 —;ka+2z —;kaz —;(F(Z)—Z)
k>0 k>0 k>2 z
= = = ﬁ:z+z2+2z3+3z“+525+8z6+13z7+--~
—z—z
e The RHS of (1) is
1 1
f1 254 fzk=2= for1 2T 25 = ZF(2)+F(z
S Y it = L3 e #Y f — L) ()
k>0 k>0 k>0 k>0
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Frobenius' coin-exchange problem Why use generating functions? Frobenius' coin-exchange problem Why use generating functions?
Discovery through the generating function (cont'd) Discovery through the generating function (cont'd)
e A partial fraction expansion gives us e We have

oz 1B 1s B K
AT T e P = Fle) = fZCMz) n (=)

) ) k>0 k>0
o Remember the geometric series

1++/5 1-v5\"\
S i) ()

k>0 k>0

1+v5
2

1-5
2

F(Z)Zm f_1<1+ﬁ>k_1<1—¢5>k
Z o 1-+5 Vel 2 V5 2
=
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e Then, by setting x = zand x = z we have e Thus, we obtain a closed formula for the Fibonacci sequence




Frobenius' coin-exchange problem Why use generating functions?

Usefulness of a generating function

o |t gives a closed formula of a sequence

k
f_ L (1£VR) 1 (1-45
AL 2 NAUE

o |t gives a short description of a sequence as a rational function

z

F(Z):l—z—z2
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Frobenius' coin-exchange problem Two coins
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Frobenius’ coin-exchange problem Why use generating functions?

Partial fraction expansion (in case you've never heard of that)

Theorem 1.1 (Partial fraction expansion)

Given any rational function

_ p(2)
O a0

where p is a polynomial of degree less than e; + e, + - -+ + e, and
the a,’'s are distinct, there exists a decomposition

“ Ck,1 Ck2 Ck,e
F :2 8 & PP I
& (Z_ak " (z — a,)? T (z—ak)ek>’

k=1

where ¢, ; € C are unique.

v

Proof: Exercise 1.35
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Frobenius' coin-exchange problem Two coins

What if the new coin system is introduced

O

22 /51

Imagine we only have 4-yen, 7-yen, 9-yen, and 34-yen coins
Which price can be paid without making any change?

1 x| 6 x |11 ][16 |21 /
2 x| 7 |12 V|17 V][22
3 x| 8 |13 |18 |23
4 0|9 V|14 V|19 |24 ¢
5 x |10 x |15 |20 |25 /

Exercise 1.20
The coins are coprime =- Only finitely many prices cannot be paid

Frobenius' coin-exchange problem, informally
Find the largest price that the coin system cannot allow us to pay

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16
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A={a1,a,...,a,} a set of coprime positive integers

An integer n is representable by A if 3 non-negative integers
my, my,...,mg s.t. n=nma; + - -+ myay

g(A) = max number that's not representable by A

Determine g(A)

More is known when d = 2

exactly

integers are not

(a1 —1)(a2 —1)
a, a, coprime = 2
representable

Example: a1 =3,a, =7 (~ a1ay — a3 — ap = 11)

1 x| 6 J[11 x[16 J[21
2 x| 7 V|12 |17 |22
3 V| 8 x |13 |18 |23
4 x| 9 |1 yl19 |24
5 x |10 |15 |20 |25 /

When d = 2 the situation is well studied

aj, ay coprime = g(ay, @) = aja, — a1 — &

e Quite simple
e But such a simple formula cannot be expected for larger d

We prove it in the next subsection

A={a1,...,aq} a set of coprime positive integer

pA(n) ::#{(mla"'vmd)ezd: all ijO, }

mia; +---+mygag =n

pa(n) = # representations of n by A '

8(A) = max{n | pa(n) = 0}




Frobenius' coin-exchange problem Two coins

Restricted partition functions and polytopes

Definition (Dilate)
The n-th dilate of any set S C R is

nS = {(nxy, nxa, ..., nxg) : (x1,...,x4) € S}

If we define
P={(x,....xq) ER?: all x; >0, xqa; + -+ +xgag = 1} (4)

then we see that
e P is a polytope (defined in the next lecture), and
e pa(n) = #(nP NZ9)
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Frobenius’ coin-exchange problem  Two coins

Geometric picture for two coins

Frobenius’ coin-exchange problem Two coins

Schematic geometric picture for three coins

A={4,7}, thelinesdx+T7y =n,n=1,2,...
y

0
0 1 2 3 4 5 6 7 8 9 X
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Generating function for the restricted partition function

Frobenius’ coin-exchange problem Partial fractions and a surprising formula

Looking at the constant term by shifting

Concentrate on the case d = 2, so let A = {a, b} where a, b coprime
e Consider pg, p(n) = #{(k,1) € Z*: k,1 >0, ak + bl = n}
o Consider the product of the following two geometric series:

1 1
(l—za> (1_Zb) = (1+Za+22a+--~) (1+zb+z2b+...)
— Zzzakzbl

k>0 1>0

= > pas(n) 2"

n>0

e . this fn is the generating fn for the seq (pyae}(n))

The idea is to study the compact function on the LHS!
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

After a few minutes of computation...

More convenient if we can look at the constant term after shifting

o Namely, pa(n) is the constant term of

fla) = (1-2z9) (11 — zb) zn - Z Plasy (k) 2

k>0

This is a Laurent series

e To obtain pa(n) we only need to “evaluate” f(z) at z =0, but
this is impossible since f(z) has terms with negative exponents

o We just need a contant term, so we subtract the terms with
negative exponents from f(z) and evaluate it at z =10

e (Or, we may use the residue theorem from complex analysis)

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16

Frobenius' coin-exchange problem Partial fractions and a surprising formula

Greatest-integer functions and fractional-part functions

34 /51

We get

1 1 n 122 1 12 1
Pon () = -+ or bt Y et Y
{a.b} 2. 2b  ab ag(l—ffjb)ff b;(l—ﬁ,)&
(7)
where

: 2r .. 27w
&, = e¥™/? = cos — + isin —
a a

is the a-th root of unity
e Let's make it simpler and more understandable
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Let x e R

Definition (Greatest-integer function)
x| =max{n € Z | n<x}

Definition (Fractional-part function)

{x =x - x]

Example:
x | lx) {x}
4.2 4 0.2
-37| -4 03
7 7 0
Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

With help of this notation

Frobenius’ coin-exchange problem Partial fractions and a surprising formula

Popoviciu's theorem

e When b =1, the problem gets one-dimensional
pay(n) = #{(k,1) €Z?: k,1 >0, ak+I=n}
=#{keZ: k>0, ak <n}
:#{kEZ: ogkgf} - HH
a

a

e Therefore,

L1, Jrlé’*1 1 _HH
2.2 a ac=(1 — &gk L
a—1
1 1 {n} 1 1
S w0 ®
_ ¢k ckn
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Geometric picture for two coins, again

A={4,7}, thelinesdx+T7y =n,n=1,2,...
y

0 1 2 3 4 5 6 7 8 9 X
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e Exercise 1.22

1L 1
a ; (1— gbkyeln — Z fk)ﬁ" thn

where b1 is an integer s.t. b'b=1 mod a
o Therefore

-1
13 1 b~'n 1 1
Zbkkn:_{ +5—52 (10)
ai (1-¢0) & a 2 2a
e Combining this with (7) gives the following theorem
Theorem 1.5 (Popoviciu's theorem, 1953)
n b~1ln aln
. n)=—— — 1
a, b coprime = Pias} (n) ab { a } { b } *
where blb=1mod a, ala=1mod b O
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Frobenius’ coin-exchange problem Sylvester's result
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Frobenius' coin-exchange problem Sylvester's result

What we're going to do now

Frobenius' coin-exchange problem Sylvester’s result

We use a lemma

Prove Theorems 1.2 and 1.3 from Theorem 1.5

Theorem 1.2
aj, ap coprime = g(a, a) = aja, — a1 — a

Theorem 1.3 (Sylvester's theorem, 1884)

(a1 —1)(a2 — 1)

exactly integers are not

a;, a, coprime =
representable

Theorem 1.5 (Popoviciu's theorem, 1953)

N b~ 1ln aln |
a, b coprime = Pias)(n) = R
where b1b=1 mod a, a la=1 mod b

y

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16 41 /51

Frobenius’ coin-exchange problem  Sylvester’s result

Proof of Theorem 1.2

Lemma 1.6
a, b coprime, n € [1,ab—1], afn, b/n =

Pia.b}(n) + prapy(ab—n) =1

Proof: Use Theorem 5

piany(ab ) = aba; n {bl(ab - n)} - {al(a[l)) - n)} .

(*_)_i+ ~1Ip N aln
~ab a b

= 1= pasy(n)
(%) follows by {—x} =1 — {x} for x € Z O
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Frobenius’ coin-exchange problem  Sylvester’s result

Proof of Theorem 1.3

It suffices to prove the following two
® p(.py(ab—a—b) =0 (Exer 1.24 and Lem 1.6)
® pi.py(ab—a—b+n) >0 foralln>0

Proof of (2):

1
° Note{ﬂ}gl—fforallmez
a a

e Then
ab—a—b+n 1 1
A b—a—>b > (1= ) - [1—~ 1
pa,p}(ab—a—b+n) > s ( a) ( b)—l—
n
=—>0 O
ab -
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e Non-representable numbers all in [1, ab—1] (by Thm 1.2)

aln or b|n = n representable

e Otherwise, exactly one of n and ab—n is representable (Lem 1.6)
L]

b—1) — (b—1) —(a—1)+0

# non-representable numbers = (a )~ 2) (a=1) +
—1)(b—
G
2
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Frobenius’ coin-exchange problem

Three and more coins

Three coins
@ Introduction a, b, c coprime (Reminder: &, = e*//")
o n(1 1 1
® Frobenius’ coin-exchange problem Paper(n) = 2abe "2 \3b T3 T be
yhy use generating functions? 1 /3 . 3 . 3 . 2 . b . c
wo coms .. 12\a b ¢ bc ac ab
Partial fractions and a surprising formula 1
Sylvester’s result —l—l 1
Three and more coins ai= (1-8P) (1 -l
© Concluding remarks b — (1 = fj‘-’) (1 = ;ja) fn
1A 1
+= ka kb ¢kn
¢ k=1 (1_§c )(1_§c )gc
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Frobenius' coin-exchange problem Three and more coins Frobenius' coin-exchange problem Three and more coins
Fourier—Dedekind sums Three coins, rewritten
. . 2mi/b :
Reminder: &, = e a, b, c coprime
Definition (Fourier-Dedekind sum)
(n) n® n(1 1 1
n = — — — JE—
= - SELs 2abc 2 \ab ac bc
sn(aL, @, ..., am b) == ; 1/3 3 3 a b ¢
b 1_ kay 1_ kaz.-.]_— kam +_ _+_+_+_ il _
kzl( b)( b) ( b()13) 12\a b ¢ bc ac ab
+s_,(b,c;a)+s_,(a,c;b)+s_,(a,b;c)
e Generalizes Dedekind sums (defined in Chapter 7) For the derivation, and the extension to more coins, see the textbook
e Studied thoroughly (in Chapter 8)
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Frobenius' coin-exchange problem Three and more coins

Two coins, revisited

Eq. (7) for two coins

1 1 n

Piapy(n) = 52 " 25 3b

1 a—1 1 1 b—1 1
T2 byekn T p 2 ek
a k; (1—&4b)san b ; (1—&2)eh

1 1 n
= —+—+4+ —+s_,(ba)+s_,(ab
2a  2b ab (b 3) (2 b) |
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Concluding remarks

Concluding remarks

e Frobenius’ coin-exchange problem to see the relation of

e Combinatorics (generating functions)
e Geometry (convex polytopes)
e Number theory (Dedekind sums)

e Lots of problems still remain unsolved

Literature

e J.L. Ramirez-Alfonsin. The Diophantine Frobenius Problem.
Oxford University Press, 2006.
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