Discrete Mathematics \& Computational Structures Lattice-Point Counting in Convex Polytopes
 (1) Frobenius' Coin-Exchange Problem

Yoshio Okamoto
Tokyo Institute of Technology

April 16, 2009

"Last updated: 2009/04/16 13:10"

We follow the book:

- Matthias Beck and Sinai Robins, Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. New York, Springer. 2007.
- The updated version is available at http://math.sfsu.edu/beck/ccd.html
- Japanese translation will be available soon
- Language
- Spoken: in English or Japanese
- Slides: in English
- Report submission: in Japanese/English (up to you)
- Feedback
- Submission of a piece of paper at the end of each lecture
- Can be anonymous
- There might be a survey at the term end

Goal

This is a course on mathematics and/or theory of computation
Goal of the course

- Study an example of mathematical thoughts that are benefitial for algorithms design
- In this course, such an example $=$ lattice-point counting in convex polytopes

Prerequisites

- Nothing in particular
- Other than a moderate familiarity with freshmen math (Calculus, Linear Algebra, Discrete Math)
- And eagerness to learn

Evaluation

How to get a credit

Submission of exercise solutions

- Each lecture is accompanied with several exercises in the textbook
- Students should assign themselves to different exercises
- Assignment should be done at the wiki page of the course in the first-come-first-serve way
- Submission due: next lecture

Wiki: http://www.is.titech.ac.jp/~okamoto/ cgi-bin/pukiwiki/index.php?DMCS09

Administration

- Course Webpage
- http://www.is.titech.ac.jp/~okamoto/lect/2009/dmcs/
- Reachable from the CompView website (http://compview.titech.ac.jp/)
- This is in the Education Program for CompView
- Lecturer: Yoshio Okamoto
- Email: okamoto at is.titech.ac.jp
- Office: W904 in West 8th Bldg.
- Int. Phone: 3871
- Office hours: by appointment, or you can try your luck any time
- Remark: This lattice-point counting course will not be given next year; Could be discrete geometry, data structures, graph theory, extremal combinatorics, ..., I'm thinking
(1) Introduction
(2) Frobenius' coin-exchange problem Why use generating functions?
Two coins
Partial fractions and a surprising formula Sylvester's result
Three and more coins
(3) Concluding remarks

The basic computational problems

When a finite set Ω is given implicitly...,

- Decide whether $\Omega=\varnothing$
- Find an element of Ω if it exists
- Count $|\Omega|$
- List all elements of Ω
- Sample an element of Ω uniformly at random
(decision) (search)
(counting)
(listing)
(sampling)
- They have some relationship
- Counting is the most difficult in a certain sense

A kind of the most general setting

One setting

$\Omega=P \cap \mathbb{Z}^{d}$ where

- P a d-dimensional convex polyhedron (in the H -representation) (the terminology will be defined through the course)
- \mathbb{Z} is the set of integers

A theoretical development

$\Omega=P \cap \mathbb{Z}^{d}$

Theorem (Barvinok, Math of OR '94)

P is rational, d is constant \Rightarrow
$\left|P \cap \mathbb{Z}^{d}\right|$ can be computed in polynomial time
Implementations are also available

- LattE (Project led by De Loera) http://www.math.ucdavis.edu/~latte/
- LattE macchiato (Köppe) http://www.math.ucdavis.edu/~mkoppe/latte/
- barvinok (Verdoolaege) http://www.kotnet.org/~skimo/barvinok/

More formally speaking...

$\Omega=P \cap \mathbb{Z}^{d}$
Theorem (Barvinok, Math of OR '94)
P is rational, d is constant \Rightarrow
The Ehrhart quasi-polynomial of P can be computed in poly time
So, in this course we look at

- lattice points in convex polyhedra
- Ehrhart (quasi-)polynomials
- and relationship with other subarea of mathematics

What's discrete volume?

vol \mathcal{P}

$$
\#\left(\mathcal{P} \cap \quad \mathbb{Z}^{d}\right)
$$

What's discrete volume?

$$
\operatorname{vol} \mathcal{P}=\lim _{k \rightarrow \infty} \#\left(\mathcal{P} \cap \frac{1}{k} \mathbb{Z}^{d}\right) \frac{1}{k^{d}}
$$

What's discrete volume?

$$
\operatorname{vol} \mathcal{P}=\lim _{k \rightarrow \infty} \#\left(\mathcal{P} \cap \frac{1}{k} \mathbb{Z}^{d}\right) \frac{1}{k^{d}}
$$

integration
(analysis)
counting
(combinatorics)

Lattice-point counting in convex polytopes

(1) Introduction
(2) Frobenius' coin-exchange problem Why use generating functions?
Two coins
Partial fractions and a surprising formula Sylvester's result
Three and more coins
(3) Concluding remarks

A generating function of a sequence

Definition (Generating function)

Given a sequence $\left\{a_{k}\right\}$, define its generating function as

$$
F(z)=\sum_{k \geq 0} a_{k} z^{k}
$$

$F(z)$ is a power series, but let's forget about the convergence for the moment

- Generating functions are quite useful for many reasons
- Generating functions are main objects we deal with in this course

Example: Fibonacci sequence

Definition (Fibonacci sequence)

The Fibonacci sequence $\left\{f_{k}\right\}$ is defined as follows

- $f_{0}=0, f_{1}=1$
- $f_{k+2}=f_{k+1}+f_{k}$ for all $k \geq 0$

The first few numbers in the sequence are:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987
$$

See http://www.research.att.com/~njas/sequences/

- Excellent source of integer sequences

Discovery through the generating function

- $F(z)$ the generating function for the Fibonacci sequence

Discovery through the generating function

- $F(z)$ the generating function for the Fibonacci sequence
- Then, by the recursion

$$
\begin{equation*}
\sum_{k \geq 0} f_{k+2} z^{k} \tag{1}
\end{equation*}
$$

Discovery through the generating function

- $F(z)$ the generating function for the Fibonacci sequence
- Then, by the recursion

$$
\begin{equation*}
\sum_{k \geq 0} f_{k+2} z^{k}=\sum_{k \geq 0}\left(f_{k+1}+f_{k}\right) z^{k} \tag{1}
\end{equation*}
$$

Discovery through the generating function

- $F(z)$ the generating function for the Fibonacci sequence
- Then, by the recursion

$$
\begin{equation*}
\sum_{k \geq 0} f_{k+2} z^{k}=\sum_{k \geq 0}\left(f_{k+1}+f_{k}\right) z^{k}=\sum_{k \geq 0} f_{k+1} z^{k}+\sum_{k \geq 0} f_{k} z^{k} \tag{1}
\end{equation*}
$$

Discovery through the generating function

- $F(z)$ the generating function for the Fibonacci sequence
- Then, by the recursion

$$
\begin{equation*}
\sum_{k \geq 0} f_{k+2} z^{k}=\sum_{k \geq 0}\left(f_{k+1}+f_{k}\right) z^{k}=\sum_{k \geq 0} f_{k+1} z^{k}+\sum_{k \geq 0} f_{k} z^{k} \tag{1}
\end{equation*}
$$

- The LHS of (1) is

$$
\sum_{k \geq 0} f_{k+2} z^{k}
$$

Discovery through the generating function

- $F(z)$ the generating function for the Fibonacci sequence
- Then, by the recursion

$$
\begin{equation*}
\sum_{k \geq 0} f_{k+2} z^{k}=\sum_{k \geq 0}\left(f_{k+1}+f_{k}\right) z^{k}=\sum_{k \geq 0} f_{k+1} z^{k}+\sum_{k \geq 0} f_{k} z^{k} \tag{1}
\end{equation*}
$$

- The LHS of (1) is

$$
\sum_{k \geq 0} f_{k+2} z^{k}=\frac{1}{z^{2}} \sum_{k \geq 0} f_{k+2} z^{k+2}
$$

Discovery through the generating function

- $F(z)$ the generating function for the Fibonacci sequence
- Then, by the recursion

$$
\begin{equation*}
\sum_{k \geq 0} f_{k+2} z^{k}=\sum_{k \geq 0}\left(f_{k+1}+f_{k}\right) z^{k}=\sum_{k \geq 0} f_{k+1} z^{k}+\sum_{k \geq 0} f_{k} z^{k} \tag{1}
\end{equation*}
$$

- The LHS of (1) is

$$
\sum_{k \geq 0} f_{k+2} z^{k}=\frac{1}{z^{2}} \sum_{k \geq 0} f_{k+2} z^{k+2}=\frac{1}{z^{2}} \sum_{k \geq 2} f_{k} z^{k}
$$

Discovery through the generating function

- $F(z)$ the generating function for the Fibonacci sequence
- Then, by the recursion

$$
\begin{equation*}
\sum_{k \geq 0} f_{k+2} z^{k}=\sum_{k \geq 0}\left(f_{k+1}+f_{k}\right) z^{k}=\sum_{k \geq 0} f_{k+1} z^{k}+\sum_{k \geq 0} f_{k} z^{k} \tag{1}
\end{equation*}
$$

- The LHS of (1) is

$$
\sum_{k \geq 0} f_{k+2} z^{k}=\frac{1}{z^{2}} \sum_{k \geq 0} f_{k+2} z^{k+2}=\frac{1}{z^{2}} \sum_{k \geq 2} f_{k} z^{k}=\frac{1}{z^{2}}(F(z)-z)
$$

Discovery through the generating function

- $F(z)$ the generating function for the Fibonacci sequence
- Then, by the recursion

$$
\begin{equation*}
\sum_{k \geq 0} f_{k+2} z^{k}=\sum_{k \geq 0}\left(f_{k+1}+f_{k}\right) z^{k}=\sum_{k \geq 0} f_{k+1} z^{k}+\sum_{k \geq 0} f_{k} z^{k} \tag{1}
\end{equation*}
$$

- The LHS of (1) is

$$
\sum_{k \geq 0} f_{k+2} z^{k}=\frac{1}{z^{2}} \sum_{k \geq 0} f_{k+2} z^{k+2}=\frac{1}{z^{2}} \sum_{k \geq 2} f_{k} z^{k}=\frac{1}{z^{2}}(F(z)-z)
$$

- The RHS of (1) is

$$
\sum_{k=0} f_{k+1} f_{2}+\sum_{k=0} f_{k} z^{k}
$$

- $F(z)$ the generating function for the Fibonacci sequence
- Then, by the recursion

$$
\begin{equation*}
\sum_{k \geq 0} f_{k+2} z^{k}=\sum_{k \geq 0}\left(f_{k+1}+f_{k}\right) z^{k}=\sum_{k \geq 0} f_{k+1} z^{k}+\sum_{k \geq 0} f_{k} z^{k} \tag{1}
\end{equation*}
$$

- The LHS of (1) is

$$
\sum_{k \geq 0} f_{k+2} z^{k}=\frac{1}{z^{2}} \sum_{k \geq 0} f_{k+2} z^{k+2}=\frac{1}{z^{2}} \sum_{k \geq 2} f_{k} z^{k}=\frac{1}{z^{2}}(F(z)-z)
$$

- The RHS of (1) is

$$
\sum_{k \geq 0} f_{k+1} z^{k}+\sum_{k \geq 0} f_{k} z^{k}=\frac{1}{z} \sum_{k \geq 0} f_{k+1} z^{k+1}+\sum_{k \geq 0} f_{k} z^{k}
$$

- $F(z)$ the generating function for the Fibonacci sequence
- Then, by the recursion

$$
\begin{equation*}
\sum_{k \geq 0} f_{k+2} z^{k}=\sum_{k \geq 0}\left(f_{k+1}+f_{k}\right) z^{k}=\sum_{k \geq 0} f_{k+1} z^{k}+\sum_{k \geq 0} f_{k} z^{k} \tag{1}
\end{equation*}
$$

- The LHS of (1) is

$$
\sum_{k \geq 0} f_{k+2} z^{k}=\frac{1}{z^{2}} \sum_{k \geq 0} f_{k+2} z^{k+2}=\frac{1}{z^{2}} \sum_{k \geq 2} f_{k} z^{k}=\frac{1}{z^{2}}(F(z)-z)
$$

- The RHS of (1) is

$$
\sum_{k \geq 0} f_{k+1} z^{k}+\sum_{k \geq 0} f_{k} z^{k}=\frac{1}{z} \sum_{k \geq 0} f_{k+1} z^{k+1}+\sum_{k \geq 0} f_{k} z^{k}=\frac{1}{z} F(z)+F(z)
$$

Discovery through the generating function (cont'd)

- $\therefore(1)$ is rewritten as

$$
\frac{1}{z^{2}}(F(z)-z)=\frac{1}{z} F(z)+F(z)
$$

Discovery through the generating function (cont'd)

- $\therefore(1)$ is rewritten as

$$
\frac{1}{z^{2}}(F(z)-z)=\frac{1}{z} F(z)+F(z)
$$

- Equivalently,

$$
F(z)=\frac{z}{1-z-z^{2}}
$$

Discovery through the generating function (cont'd)

- \therefore (1) is rewritten as

$$
\frac{1}{z^{2}}(F(z)-z)=\frac{1}{z} F(z)+F(z)
$$

- Equivalently,

$$
F(z)=\frac{z}{1-z-z^{2}}
$$

- A fun to check (by a computer)

$$
\frac{z}{1-z-z^{2}}=z+z^{2}+2 z^{3}+3 z^{4}+5 z^{5}+8 z^{6}+13 z^{7}+\cdots
$$

Discovery through the generating function (cont'd)

- A partial fraction expansion gives us

$$
\begin{equation*}
F(z)=\frac{z}{1-z-z^{2}}=\frac{1 / \sqrt{5}}{1-\frac{1+\sqrt{5}}{2} z}-\frac{1 / \sqrt{5}}{1-\frac{1-\sqrt{5}}{2} z} \tag{2}
\end{equation*}
$$

Discovery through the generating function (cont'd)

- A partial fraction expansion gives us

$$
\begin{equation*}
F(z)=\frac{z}{1-z-z^{2}}=\frac{1 / \sqrt{5}}{1-\frac{1+\sqrt{5}}{2} z}-\frac{1 / \sqrt{5}}{1-\frac{1-\sqrt{5}}{2} z} \tag{2}
\end{equation*}
$$

- Remember the geometric series

$$
\begin{equation*}
\sum_{k \geq 0} x^{k}=\frac{1}{1-x} \tag{3}
\end{equation*}
$$

Discovery through the generating function (cont'd)

- A partial fraction expansion gives us

$$
\begin{equation*}
F(z)=\frac{z}{1-z-z^{2}}=\frac{1 / \sqrt{5}}{1-\frac{1+\sqrt{5}}{2} z}-\frac{1 / \sqrt{5}}{1-\frac{1-\sqrt{5}}{2} z} \tag{2}
\end{equation*}
$$

- Remember the geometric series

$$
\begin{equation*}
\sum_{k \geq 0} x^{k}=\frac{1}{1-x} \tag{3}
\end{equation*}
$$

- Then, by setting $x=\frac{1+\sqrt{5}}{2} z$ and $x=\frac{1-\sqrt{5}}{2} z$ we have

$$
\begin{aligned}
F(z) & =\frac{z}{1-z-z^{2}} \\
& =\frac{1}{\sqrt{5}} \sum_{k \geq 0}\left(\frac{1+\sqrt{5}}{2} z\right)^{k}-\frac{1}{\sqrt{5}} \sum_{k \geq 0}\left(\frac{1-\sqrt{5}}{2} z\right)^{k}
\end{aligned}
$$

Discovery through the generating function (cont'd)

- We have

$$
F(z)=\frac{1}{\sqrt{5}} \sum_{k \geq 0}\left(\frac{1+\sqrt{5}}{2} z\right)^{k}-\frac{1}{\sqrt{5}} \sum_{k \geq 0}\left(\frac{1-\sqrt{5}}{2} z\right)^{k}
$$

Discovery through the generating function (cont'd)

- We have

$$
\begin{aligned}
F(z) & =\frac{1}{\sqrt{5}} \sum_{k \geq 0}\left(\frac{1+\sqrt{5}}{2} z\right)^{k}-\frac{1}{\sqrt{5}} \sum_{k \geq 0}\left(\frac{1-\sqrt{5}}{2} z\right)^{k} \\
& =\sum_{k \geq 0} \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right) z^{k}
\end{aligned}
$$

Discovery through the generating function (cont'd)

- We have

$$
\begin{aligned}
F(z) & =\frac{1}{\sqrt{5}} \sum_{k \geq 0}\left(\frac{1+\sqrt{5}}{2} z\right)^{k}-\frac{1}{\sqrt{5}} \sum_{k \geq 0}\left(\frac{1-\sqrt{5}}{2} z\right)^{k} \\
& =\sum_{k \geq 0} \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right) z^{k}
\end{aligned}
$$

- Thus, we obtain a closed formula for the Fibonacci sequence

$$
f_{k}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k}
$$

Usefulness of a generating function

- It gives a closed formula of a sequence

$$
f_{k}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k}
$$

- It gives a short description of a sequence as a rational function

$$
F(z)=\frac{z}{1-z-z^{2}}
$$

Partial fraction expansion (in case you've never heard of that)

Theorem 1.1 (Partial fraction expansion)
Given any rational function

$$
F(z):=\frac{p(z)}{\prod_{k=1}^{m}\left(z-a_{k}\right)^{e_{k}}},
$$

where p is a polynomial of degree less than $e_{1}+e_{2}+\cdots+e_{m}$ and the a_{k} 's are distinct, there exists a decomposition

$$
F(z)=\sum_{k=1}^{m}\left(\frac{c_{k, 1}}{z-a_{k}}+\frac{c_{k, 2}}{\left(z-a_{k}\right)^{2}}+\cdots+\frac{c_{k, e_{k}}}{\left(z-a_{k}\right)^{e_{k}}}\right),
$$

where $c_{k, j} \in \mathbb{C}$ are unique.

Proof: Exercise 1.35

(1) Introduction
(2) Frobenius' coin-exchange problem Why use generating functions?
Two coins
Partial fractions and a surprising formula Sylvester's result
Three and more coins
(3) Concluding remarks

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	6	11	16	21
2	7	12	17	22
3	8	13	18	23
4	9	14	19	24
5	10	15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	11	16	21
2		7	12	17	22
3		8	13	18	23
4		9	14	19	24
5		10	15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	11	16	21
2	\times	7	12	17	22
3		8	13	18	23
4		9	14	19	24
5		10	15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	11	16	21
2	\times	7	12	17	22
3	\times	8	13	18	23
4		9	14	19	24
5		10	15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	11	16	21
2	\times	7	12	17	22
3	\times	8	13	18	23
4	$\sqrt{ }$	9	14	19	24
5		10	15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	11	16	21
2	\times	7	12	17	22
3	\times	8	13	18	23
4	$\sqrt{ }$	9	14	19	24
5	\times	10	15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	16	21
2	\times	7		12	17	22
3	\times	8		13	18	23
4	$\sqrt{ }$	9		14	19	24
5	\times	10		15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	16	21
2	\times	7	$\sqrt{ }$	12	17	22
3	\times	8		13	18	23
4	$\sqrt{ }$	9		14	19	24
5	\times	10		15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	16	21
2	\times	7	$\sqrt{ }$	12	17	22
3	\times	8	$\sqrt{ }$	13	18	23
4	$\sqrt{ }$	9		14	19	24
5	\times	10		15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	16	21
2	\times	7	$\sqrt{ }$	12	17	22
3	\times	8	$\sqrt{ }$	13	18	23
4	$\sqrt{ }$	9	$\sqrt{ }$	14	19	24
5	\times	10		15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	16	21
2	\times	7	$\sqrt{ }$	12	17	22
3	\times	8	$\sqrt{ }$	13	18	23
4	$\sqrt{ }$	9	$\sqrt{ }$	14	19	24
5	\times	10	\times	15	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	$\sqrt{ }$	16	21
2	\times	7	$\sqrt{ }$	12		17	22
3	\times	8	$\sqrt{ }$	13		18	23
4	$\sqrt{ }$	9	$\sqrt{ }$	14		19	24
5	\times	10	\times	15		20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	$\sqrt{ }$	16	21
2	\times	7	$\sqrt{ }$	12	$\sqrt{ }$	17	22
3	\times	8	$\sqrt{ }$	13		18	23
4	$\sqrt{ }$	9	$\sqrt{ }$	14		19	24
5	\times	10	\times	15		20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	$\sqrt{ }$	16	21
2	\times	7	$\sqrt{ }$	12	$\sqrt{ }$	17	22
3	\times	8	$\sqrt{ }$	13	$\sqrt{ }$	18	23
4	$\sqrt{ }$	9	$\sqrt{ }$	14		19	24
5	\times	10	\times	15		20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	$\sqrt{ }$	16	21
2	\times	7	$\sqrt{ }$	12	$\sqrt{ }$	17	22
3	\times	8	$\sqrt{ }$	13	$\sqrt{ }$	18	23
4	$\sqrt{ }$	9	$\sqrt{ }$	14	$\sqrt{ }$	19	24
5	\times	10	\times	15		20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	$\sqrt{ }$	16	21
2	\times	7	$\sqrt{ }$	12	$\sqrt{ }$	17	22
3	\times	8	$\sqrt{ }$	13	$\sqrt{ }$	18	23
4	$\sqrt{ }$	9	$\sqrt{ }$	14	$\sqrt{ }$	19	24
5	\times	10	\times	15	$\sqrt{ }$	20	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	$\sqrt{ }$	16	$\sqrt{ }$	21
2	\times	7	$\sqrt{ }$	12	$\sqrt{ }$	17		22
3	\times	8	$\sqrt{ }$	13	$\sqrt{ }$	18		23
4	$\sqrt{ }$	9	$\sqrt{ }$	14	$\sqrt{ }$	19		24
5	\times	10	\times	15	$\sqrt{ }$	20		25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	$\sqrt{ }$	16	$\sqrt{ }$	21
2	\times	7	$\sqrt{ }$	12	$\sqrt{ }$	17	$\sqrt{ }$	22
3	\times	8	$\sqrt{ }$	13	$\sqrt{ }$	18		23
4	$\sqrt{ }$	9	$\sqrt{ }$	14	$\sqrt{ }$	19		24
5	\times	10	\times	15	$\sqrt{ }$	20		25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	$\sqrt{ }$	16	$\sqrt{ }$	21
2	\times	7	$\sqrt{ }$	12	$\sqrt{ }$	17	$\sqrt{ }$	22
3	\times	8	$\sqrt{ }$	13	$\sqrt{ }$	18	$\sqrt{ }$	23
4	$\sqrt{ }$	9	$\sqrt{ }$	14	$\sqrt{ }$	19		24
5	\times	10	\times	15	$\sqrt{ }$	20		25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	$\sqrt{ }$	16	$\sqrt{ }$	21
2	\times	7	$\sqrt{ }$	12	$\sqrt{ }$	17	$\sqrt{ }$	22
3	\times	8	$\sqrt{ }$	13	$\sqrt{ }$	18	$\sqrt{ }$	23
4	$\sqrt{ }$	9	$\sqrt{ }$	14	$\sqrt{ }$	19	$\sqrt{ }$	24
5	\times	10	\times	15	$\sqrt{ }$	20		25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

1	\times	6	\times	11	$\sqrt{ }$	16	$\sqrt{ }$	21
2	\times	7	$\sqrt{ }$	12	$\sqrt{ }$	17	$\sqrt{ }$	22
3	\times	8	$\sqrt{ }$	13	$\sqrt{ }$	18	$\sqrt{ }$	23
4	$\sqrt{ }$	9	$\sqrt{ }$	14	$\sqrt{ }$	19	$\sqrt{ }$	24
5	\times	10	\times	15	$\sqrt{ }$	20	$\sqrt{ }$	25

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

$$
\begin{array}{|cc|cc|cc|cc|cc|}
\hline 1 & \times & 6 & \times & 11 & \sqrt{ } & 16 & \sqrt{ } & 21 & \sqrt{ } \\
2 & \times & 7 & \sqrt{ } & 12 & \sqrt{ } & 17 & \sqrt{ } & 22 & \sqrt{ } \\
3 & \times & 8 & \sqrt{ } & 13 & \sqrt{ } & 18 & \sqrt{ } & 23 & \sqrt{ } \\
4 & \times \sqrt{ } & 9 & \sqrt{ } & 14 & \sqrt{ } & 19 & \sqrt{ } & 24 & \sqrt{ } \\
5 & \times & 10 & \times & 15 & \sqrt{ } & 20 & \sqrt{ } & 25 & \sqrt{ } \\
\hline
\end{array}
$$

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins
Which price can be paid without making any change?

$$
\begin{array}{|rr|rr|cc|cc|cc|}
\hline 1 & \times & 6 & \times & 11 & \sqrt{ } & 16 & \sqrt{ } & 21 & \sqrt{ } \\
2 & \times & 7 & \sqrt{ } & 12 & \sqrt{ } & 17 & \sqrt{ } & 22 & \sqrt{ } \\
3 & \times & 8 & \sqrt{ } & 13 & \sqrt{ } & 18 & \sqrt{ } & 23 & \sqrt{ } \\
4 & \times & 9 & \sqrt{ } & 14 & \sqrt{ } & 19 & \sqrt{ } & 24 & \sqrt{ } \\
5 & \times & 10 & \times & 15 & \sqrt{ } & 20 & \sqrt{ } & 25 & \sqrt{ } \\
\hline
\end{array}
$$

Exercise 1.20

The coins are coprime \Rightarrow Only finitely many prices cannot be paid

What if the new coin system is introduced

Imagine we only have 4 -yen, 7 -yen, 9 -yen, and 34 -yen coins Which price can be paid without making any change?

$$
\begin{array}{|cc|cc|cc|cc|cc|}
\hline 1 & \times & 6 & \times & 11 & \sqrt{ } & 16 & \sqrt{ } & 21 & \sqrt{ } \\
2 & \times & 7 & \sqrt{ } & 12 & \sqrt{ } & 17 & \sqrt{ } & 22 & \sqrt{ } \\
3 & \times & 8 & \sqrt{ } & 13 & \sqrt{ } & 18 & \sqrt{ } & 23 & \sqrt{ } \\
4 & \times \sqrt{ } & 9 & \sqrt{ } & 14 & \sqrt{ } & 19 & \sqrt{ } & 24 & \sqrt{ } \\
5 & \times & 10 & \times & 15 & \sqrt{ } & 20 & \sqrt{ } & 25 & \sqrt{ } \\
\hline
\end{array}
$$

Exercise 1.20

The coins are coprime \Rightarrow Only finitely many prices cannot be paid
Frobenius' coin-exchange problem, informally
Find the largest price that the coin system cannot allow us to pay

Frobenius' coin-exchange problem

$A=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$ a set of coprime positive integers
Definition (Representable integer)
An integer n is representable by A if \exists non-negative integers $m_{1}, m_{2}, \ldots, m_{d}$ s.t. $n=m_{1} a_{1}+\cdots+m_{d} a_{d}$

Definition (Frobenius number)

$$
g(A)=\text { max number that's not representable by } A
$$

Frobenius' coin-exchange problem

Determine $g(A)$

Two coins

When $d=2$ the situation is well studied
Theorem 1.2
a_{1}, a_{2} coprime $\Rightarrow g\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}$

- Quite simple
- But such a simple formula cannot be expected for larger d We prove it in the next subsection

Sylvester's theorem

More is known when $d=2$
Theorem 1.3 (Sylvester's theorem, 1884)
a_{1}, a_{2} coprime \Rightarrow exactly $\frac{\left(a_{1}-1\right)\left(a_{2}-1\right)}{2}$ integers are not representable

Example: $a_{1}=3, a_{2}=7\left(\rightsquigarrow a_{1} a_{2}-a_{1}-a_{2}=11\right)$

1	\times	6	$\sqrt{ }$	11	\times	16	$\sqrt{ }$	21	$\sqrt{ }$
2	\times	7	$\sqrt{ }$	12	$\sqrt{ }$	17	$\sqrt{ }$	22	$\sqrt{ }$
3	$\times \sqrt{ }$	8	\times	13	$\sqrt{ }$	18	$\sqrt{ }$	23	$\sqrt{ }$
4	\times	9	$\sqrt{ }$	14	$\sqrt{ }$	19	$\sqrt{ }$	24	$\sqrt{ }$
5	\times	10	$\sqrt{ }$	15	$\sqrt{ }$	20	$\sqrt{ }$	25	$\sqrt{ }$

A tool: restricted partition function
$A=\left\{a_{1}, \ldots, a_{d}\right\}$ a set of coprime positive integer
Definition (Restricted partition function)

$$
p_{A}(n):=\#\left\{\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}: \begin{array}{l}
\text { all } m_{j} \geq 0, \\
m_{1} a_{1}+\cdots+m_{d} a_{d}=n
\end{array}\right\}
$$

In words

$p_{A}(n)=\#$ representations of n by A
Note
$g(A)=\max \left\{n \mid p_{A}(n)=0\right\}$

Restricted partition functions and polytopes

Definition (Dilate)

The n-th dilate of any set $S \subseteq \mathbb{R}^{d}$ is

$$
n S=\left\{\left(n x_{1}, n x_{2}, \ldots, n x_{d}\right):\left(x_{1}, \ldots, x_{d}\right) \in S\right\}
$$

If we define

$$
\begin{equation*}
\mathcal{P}=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: \text { all } x_{j} \geq 0, x_{1} a_{1}+\cdots+x_{d} a_{d}=1\right\} \tag{4}
\end{equation*}
$$

then we see that

- \mathcal{P} is a polytope (defined in the next lecture), and
- $p_{A}(n)=\#\left(n \mathcal{P} \cap \mathbb{Z}^{d}\right)$

Schematic geometric picture for three coins

Geometric picture for two coins

$A=\{4,7\}$, the lines $4 x+7 y=n, n=1,2, \ldots$

(1) Introduction
(2) Frobenius' coin-exchange problem Why use generating functions?
Two coins
Partial fractions and a surprising formula Sylvester's result
Three and more coins
(3) Concluding remarks

Generating function for the restricted partition function
Concentrate on the case $d=2$, so let $A=\{a, b\}$ where a, b coprime

- Consider $p_{\{a, b\}}(n)=\#\left\{(k, l) \in \mathbb{Z}^{2}: k, l \geq 0, a k+b l=n\right\}$

Generating function for the restricted partition function

Concentrate on the case $d=2$, so let $A=\{a, b\}$ where a, b coprime

- Consider $p_{\{a, b\}}(n)=\#\left\{(k, I) \in \mathbb{Z}^{2}: k, I \geq 0, a k+b l=n\right\}$
- Consider the product of the following two geometric series:

$$
\left(\frac{1}{1-z^{a}}\right)\left(\frac{1}{1-z^{b}}\right)
$$

Generating function for the restricted partition function

Concentrate on the case $d=2$, so let $A=\{a, b\}$ where a, b coprime

- Consider $p_{\{a, b\}}(n)=\#\left\{(k, I) \in \mathbb{Z}^{2}: k, l \geq 0, a k+b l=n\right\}$
- Consider the product of the following two geometric series:

$$
\left(\frac{1}{1-z^{a}}\right)\left(\frac{1}{1-z^{b}}\right)=\left(1+z^{a}+z^{2 a}+\cdots\right)\left(1+z^{b}+z^{2 b}+\cdots\right)
$$

Generating function for the restricted partition function

Concentrate on the case $d=2$, so let $A=\{a, b\}$ where a, b coprime

- Consider $p_{\{a, b\}}(n)=\#\left\{(k, I) \in \mathbb{Z}^{2}: k, I \geq 0, a k+b l=n\right\}$
- Consider the product of the following two geometric series:

$$
\begin{aligned}
\left(\frac{1}{1-z^{a}}\right)\left(\frac{1}{1-z^{b}}\right) & =\left(1+z^{a}+z^{2 a}+\cdots\right)\left(1+z^{b}+z^{2 b}+\cdots\right) \\
& =\sum_{k \geq 0} \sum_{l \geq 0} z^{a k} z^{b l}
\end{aligned}
$$

Generating function for the restricted partition function

Concentrate on the case $d=2$, so let $A=\{a, b\}$ where a, b coprime

- Consider $p_{\{a, b\}}(n)=\#\left\{(k, I) \in \mathbb{Z}^{2}: k, I \geq 0, a k+b l=n\right\}$
- Consider the product of the following two geometric series:

$$
\begin{aligned}
\left(\frac{1}{1-z^{a}}\right)\left(\frac{1}{1-z^{b}}\right) & =\left(1+z^{a}+z^{2 a}+\cdots\right)\left(1+z^{b}+z^{2 b}+\cdots\right) \\
& =\sum_{k \geq 0} \sum_{l \geq 0} z^{a k} z^{b \mid} \\
& =\sum_{n \geq 0} p_{\{a, b\}}(n) z^{n}
\end{aligned}
$$

Generating function for the restricted partition function

Concentrate on the case $d=2$, so let $A=\{a, b\}$ where a, b coprime

- Consider $p_{\{a, b\}}(n)=\#\left\{(k, I) \in \mathbb{Z}^{2}: k, l \geq 0, a k+b l=n\right\}$
- Consider the product of the following two geometric series:

$$
\begin{aligned}
\left(\frac{1}{1-z^{a}}\right)\left(\frac{1}{1-z^{b}}\right) & =\left(1+z^{a}+z^{2 a}+\cdots\right)\left(1+z^{b}+z^{2 b}+\cdots\right) \\
& =\sum_{k \geq 0} \sum_{l \geq 0} z^{a k} z^{b \mid} \\
& =\sum_{n \geq 0} p_{\{a, b\}}(n) z^{n}
\end{aligned}
$$

- \therefore this fn is the generating fn for the seq $\left(p_{\{a, b\}}(n)\right)_{n=0}^{\infty}$

Generating function for the restricted partition function

Concentrate on the case $d=2$, so let $A=\{a, b\}$ where a, b coprime

- Consider $p_{\{a, b\}}(n)=\#\left\{(k, I) \in \mathbb{Z}^{2}: k, l \geq 0, a k+b l=n\right\}$
- Consider the product of the following two geometric series:

$$
\begin{aligned}
\left(\frac{1}{1-z^{a}}\right)\left(\frac{1}{1-z^{b}}\right) & =\left(1+z^{a}+z^{2 a}+\cdots\right)\left(1+z^{b}+z^{2 b}+\cdots\right) \\
& =\sum_{k \geq 0} \sum_{l \geq 0} z^{a k} z^{b l} \\
& =\sum_{n \geq 0} p_{\{a, b\}}(n) z^{n}
\end{aligned}
$$

- \therefore this fn is the generating fn for the seq $\left(p_{\{a, b\}}(n)\right)_{n=0}^{\infty}$

The idea is to study the compact function on the LHS!

Looking at the constant term by shifting
More convenient if we can look at the constant term after shifting

- Namely, $p_{A}(n)$ is the constant term of

$$
f(z):=\frac{1}{\left(1-z^{a}\right)\left(1-z^{b}\right) z^{n}}=\sum_{k \geq 0} p_{\{a, b\}}(k) z^{k-n}
$$

This is a Laurent series

Looking at the constant term by shifting

More convenient if we can look at the constant term after shifting

- Namely, $p_{A}(n)$ is the constant term of

$$
f(z):=\frac{1}{\left(1-z^{a}\right)\left(1-z^{b}\right) z^{n}}=\sum_{k \geq 0} p_{\{a, b\}}(k) z^{k-n}
$$

This is a Laurent series

- To obtain $p_{A}(n)$ we only need to "evaluate" $f(z)$ at $z=0$, but this is impossible since $f(z)$ has terms with negative exponents

More convenient if we can look at the constant term after shifting

- Namely, $p_{A}(n)$ is the constant term of

$$
f(z):=\frac{1}{\left(1-z^{a}\right)\left(1-z^{b}\right) z^{n}}=\sum_{k \geq 0} p_{\{a, b\}}(k) z^{k-n}
$$

This is a Laurent series

- To obtain $p_{A}(n)$ we only need to "evaluate" $f(z)$ at $z=0$, but this is impossible since $f(z)$ has terms with negative exponents
- We just need a contant term, so we subtract the terms with negative exponents from $f(z)$ and evaluate it at $z=0$
- (Or, we may use the residue theorem from complex analysis)

After a few minutes of computation...

We get
$p_{\{a, b\}}(n)=\frac{1}{2 a}+\frac{1}{2 b}+\frac{n}{a b}+\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{k b}\right) \xi_{a}^{k n}}+\frac{1}{b} \sum_{j=1}^{b-1} \frac{1}{\left(1-\xi_{b}^{j a}\right) \xi_{b}^{j n}}$
(7)
where

$$
\xi_{a}:=e^{2 \pi i / a}=\cos \frac{2 \pi}{a}+i \sin \frac{2 \pi}{a}
$$

is the a-th root of unity

After a few minutes of computation...
We get
$p_{\{a, b\}}(n)=\frac{1}{2 a}+\frac{1}{2 b}+\frac{n}{a b}+\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{k b}\right) \xi_{a}^{k n}}+\frac{1}{b} \sum_{j=1}^{b-1} \frac{1}{\left(1-\xi_{b}^{j a}\right) \xi_{b}^{j n}}$
where

$$
\begin{equation*}
\xi_{a}:=e^{2 \pi i / a}=\cos \frac{2 \pi}{a}+i \sin \frac{2 \pi}{a} \tag{7}
\end{equation*}
$$

is the a-th root of unity

- Let's make it simpler and more understandable

Greatest-integer functions and fractional-part functions

Let $x \in \mathbb{R}$

Definition (Greatest-integer function)

$\lfloor x\rfloor=\max \{n \in \mathbb{Z} \mid n \leq x\}$
Definition (Fractional-part function)
$\{x\}=x-\lfloor x\rfloor$
Example:

x	$\lfloor x\rfloor$	$\{x\}$
4.2	4	0.2
-3.7	-4	0.3
7	7	0

With help of this notation

- When $b=1$, the problem gets one-dimensional

$$
p_{\{a, 1\}}(n)=\#\left\{(k, I) \in \mathbb{Z}^{2}: k, I \geq 0, a k+I=n\right\}
$$

With help of this notation

- When $b=1$, the problem gets one-dimensional

$$
\begin{aligned}
p_{\{a, 1\}}(n) & =\#\left\{(k, I) \in \mathbb{Z}^{2}: k, I \geq 0, a k+I=n\right\} \\
& =\#\{k \in \mathbb{Z}: k \geq 0, a k \leq n\}
\end{aligned}
$$

With help of this notation

- When $b=1$, the problem gets one-dimensional

$$
\begin{aligned}
p_{\{a, 1\}}(n) & =\#\left\{(k, I) \in \mathbb{Z}^{2}: k, I \geq 0, a k+I=n\right\} \\
& =\#\{k \in \mathbb{Z}: k \geq 0, a k \leq n\} \\
& =\#\left\{k \in \mathbb{Z}: 0 \leq k \leq \frac{n}{a}\right\}
\end{aligned}
$$

With help of this notation

- When $b=1$, the problem gets one-dimensional

$$
\begin{aligned}
p_{\{a, 1\}}(n) & =\#\left\{(k, l) \in \mathbb{Z}^{2}: k, I \geq 0, a k+I=n\right\} \\
& =\#\{k \in \mathbb{Z}: k \geq 0, a k \leq n\} \\
& =\#\left\{k \in \mathbb{Z}: 0 \leq k \leq \frac{n}{a}\right\}=\left\lfloor\frac{n}{a}\right\rfloor+1
\end{aligned}
$$

With help of this notation

- When $b=1$, the problem gets one-dimensional

$$
\begin{aligned}
p_{\{a, 1\}}(n) & =\#\left\{(k, I) \in \mathbb{Z}^{2}: k, I \geq 0, a k+I=n\right\} \\
& =\#\{k \in \mathbb{Z}: k \geq 0, a k \leq n\} \\
& =\#\left\{k \in \mathbb{Z}: 0 \leq k \leq \frac{n}{a}\right\}=\left\lfloor\frac{n}{a}\right\rfloor+1
\end{aligned}
$$

- Therefore,

$$
\begin{equation*}
\frac{1}{2 a}+\frac{1}{2}+\frac{n}{a}+\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{k}\right) \xi_{a}^{k n}}=\left\lfloor\frac{n}{a}\right\rfloor+1 \tag{8}
\end{equation*}
$$

With help of this notation

- When $b=1$, the problem gets one-dimensional

$$
\begin{aligned}
p_{\{a, 1\}}(n) & =\#\left\{(k, I) \in \mathbb{Z}^{2}: k, I \geq 0, a k+I=n\right\} \\
& =\#\{k \in \mathbb{Z}: k \geq 0, a k \leq n\} \\
& =\#\left\{k \in \mathbb{Z}: 0 \leq k \leq \frac{n}{a}\right\}=\left\lfloor\frac{n}{a}\right\rfloor+1
\end{aligned}
$$

- Therefore,

$$
\begin{align*}
\frac{1}{2 a}+\frac{1}{2}+\frac{n}{a}+\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{k}\right) \xi_{a}^{k n}} & =\left\lfloor\frac{n}{a}\right\rfloor+1 \\
\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{k}\right) \xi_{a}^{k n}} & =-\left\{\frac{n}{a}\right\}+\frac{1}{2}-\frac{1}{2 a} \tag{8}
\end{align*}
$$

Popoviciu's theorem

- Exercise 1.22

$$
\begin{equation*}
\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{b k}\right) \xi_{a}^{k n}}=\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{k}\right) \xi_{a}^{b^{-1} k n}} \tag{9}
\end{equation*}
$$

where b^{-1} is an integer s.t. $b^{-1} b \equiv 1 \bmod a$

Popoviciu's theorem

- Exercise 1.22

$$
\begin{equation*}
\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{b k}\right) \xi_{a}^{k n}}=\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{k}\right) \xi_{a}^{b^{-1} k n}} \tag{9}
\end{equation*}
$$

where b^{-1} is an integer s.t. $b^{-1} b \equiv 1 \bmod a$

- Therefore

$$
\begin{equation*}
\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{b k}\right) \xi_{a}^{k n}}=-\left\{\frac{b^{-1} n}{a}\right\}+\frac{1}{2}-\frac{1}{2 a} \tag{10}
\end{equation*}
$$

Popoviciu's theorem

- Exercise 1.22

$$
\begin{equation*}
\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{b k}\right) \xi_{a}^{k n}}=\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{k}\right) \xi_{a}^{b^{-1} k n}} \tag{9}
\end{equation*}
$$

where b^{-1} is an integer s.t. $b^{-1} b \equiv 1 \bmod a$

- Therefore

$$
\begin{equation*}
\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{b k}\right) \xi_{a}^{k n}}=-\left\{\frac{b^{-1} n}{a}\right\}+\frac{1}{2}-\frac{1}{2 a} \tag{10}
\end{equation*}
$$

- Combining this with (7) gives the following theorem

Theorem 1.5 (Popoviciu's theorem, 1953)
a, b coprime $\Rightarrow p_{\{a, b\}}(n)=\frac{n}{a b}-\left\{\frac{b^{-1} n}{a}\right\}-\left\{\frac{a^{-1} n}{b}\right\}+1$ where $b^{-1} b \equiv 1 \bmod a, a^{-1} a \equiv 1 \bmod b \quad \square$

Geometric picture for two coins, again

$A=\{4,7\}$, the lines $4 x+7 y=n, n=1,2, \ldots$

(1) Introduction
(2) Frobenius' coin-exchange problem Why use generating functions?
Two coins
Partial fractions and a surprising formula Sylvester's result
Three and more coins
(3) Concluding remarks

What we're going to do now

Prove Theorems 1.2 and 1.3 from Theorem 1.5

Theorem 1.2
a_{1}, a_{2} coprime $\Rightarrow g\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}$

Theorem 1.3 (Sylvester's theorem, 1884)

a_{1}, a_{2} coprime \Rightarrow exactly $\frac{\left(a_{1}-1\right)\left(a_{2}-1\right)}{2}$ integers are not representable

Theorem 1.5 (Popoviciu's theorem, 1953)
a, b coprime $\Rightarrow \quad p_{\{a, b\}}(n)=\frac{n}{a b}-\left\{\frac{b^{-1} n}{a}\right\}-\left\{\frac{a^{-1} n}{b}\right\}+1$ where $b^{-1} b \equiv 1 \bmod a, a^{-1} a \equiv 1 \bmod b$

We use a lemma

Lemma 1.6

a, b coprime, $n \in[1, a b-1], a \nmid n, b \nmid n \Rightarrow$

$$
p_{\{a, b\}}(n)+p_{\{a, b\}}(a b-n)=1
$$

We use a lemma

Lemma 1.6

a, b coprime, $n \in[1, a b-1], a \nmid n, b \nmid n \Rightarrow$

$$
p_{\{a, b\}}(n)+p_{\{a, b\}}(a b-n)=1
$$

Proof: Use Theorem 5

$$
p_{\{a, b\}}(a b-n)=\frac{a b-n}{a b}-\left\{\frac{b^{-1}(a b-n)}{a}\right\}-\left\{\frac{a^{-1}(a b-n)}{b}\right\}+1
$$

We use a lemma

Lemma 1.6

a, b coprime, $n \in[1, a b-1], a \nmid n, b \nmid n \Rightarrow$

$$
p_{\{a, b\}}(n)+p_{\{a, b\}}(a b-n)=1
$$

Proof: Use Theorem 5

$$
\begin{aligned}
p_{\{a, b\}}(a b-n) & =\frac{a b-n}{a b}-\left\{\frac{b^{-1}(a b-n)}{a}\right\}-\left\{\frac{a^{-1}(a b-n)}{b}\right\}+1 \\
& =2-\frac{n}{a b}-\left\{\frac{-b^{-1} n}{a}\right\}-\left\{\frac{-a^{-1} n}{b}\right\}
\end{aligned}
$$

We use a lemma

Lemma 1.6

a, b coprime, $n \in[1, a b-1], a \nmid n, b \nmid n \Rightarrow$

$$
p_{\{a, b\}}(n)+p_{\{a, b\}}(a b-n)=1
$$

Proof: Use Theorem 5

$$
\begin{aligned}
p_{\{a, b\}}(a b-n) & =\frac{a b-n}{a b}-\left\{\frac{b^{-1}(a b-n)}{a}\right\}-\left\{\frac{a^{-1}(a b-n)}{b}\right\}+1 \\
& =2-\frac{n}{a b}-\left\{\frac{-b^{-1} n}{a}\right\}-\left\{\frac{-a^{-1} n}{b}\right\} \\
& \stackrel{(\star)}{=}-\frac{n}{a b}+\left\{\frac{b^{-1} n}{a}\right\}+\left\{\frac{a^{-1} n}{b}\right\}
\end{aligned}
$$

(\star) follows by $\{-x\}=1-\{x\}$ for $x \notin \mathbb{Z}$

We use a lemma

Lemma 1.6

a, b coprime, $n \in[1, a b-1], a \nmid n, b \nmid n \Rightarrow$

$$
p_{\{a, b\}}(n)+p_{\{a, b\}}(a b-n)=1
$$

Proof: Use Theorem 5

$$
\begin{aligned}
p_{\{a, b\}}(a b-n) & =\frac{a b-n}{a b}-\left\{\frac{b^{-1}(a b-n)}{a}\right\}-\left\{\frac{a^{-1}(a b-n)}{b}\right\}+1 \\
& =2-\frac{n}{a b}-\left\{\frac{-b^{-1} n}{a}\right\}-\left\{\frac{-a^{-1} n}{b}\right\} \\
& \stackrel{(\star)}{=}-\frac{n}{a b}+\left\{\frac{b^{-1} n}{a}\right\}+\left\{\frac{a^{-1} n}{b}\right\} \\
& =1-p_{\{a, b\}}(n)
\end{aligned}
$$

(\star) follows by $\{-x\}=1-\{x\}$ for $x \notin \mathbb{Z}$

Proof of Theorem 1.2

It suffices to prove the following two
(1) $p_{\{a, b\}}(a b-a-b)=0$
(Exer 1.24 and Lem 1.6)
(2) $p_{\{a, b\}}(a b-a-b+n)>0$ for all $n>0$

Proof of Theorem 1.2

It suffices to prove the following two
(1) $p_{\{a, b\}}(a b-a-b)=0$
(Exer 1.24 and Lem 1.6)
(2) $p_{\{a, b\}}(a b-a-b+n)>0$ for all $n>0$

Proof of (2):

- Note $\left\{\frac{m}{a}\right\} \leq 1-\frac{1}{a}$ for all $m \in \mathbb{Z}$

Proof of Theorem 1.2

It suffices to prove the following two
(1) $p_{\{a, b\}}(a b-a-b)=0$
(Exer 1.24 and Lem 1.6)
(2) $p_{\{a, b\}}(a b-a-b+n)>0$ for all $n>0$

Proof of (2):

- Note $\left\{\frac{m}{a}\right\} \leq 1-\frac{1}{a}$ for all $m \in \mathbb{Z}$
- Then

$$
p_{\{a, b\}}(a b-a-b+n) \geq \frac{a b-a-b+n}{a b}-\left(1-\frac{1}{a}\right)-\left(1-\frac{1}{b}\right)+1
$$

Proof of Theorem 1.2

It suffices to prove the following two
(1) $p_{\{a, b\}}(a b-a-b)=0$
(Exer 1.24 and Lem 1.6)
(2) $p_{\{a, b\}}(a b-a-b+n)>0$ for all $n>0$

Proof of (2):

- Note $\left\{\frac{m}{a}\right\} \leq 1-\frac{1}{a}$ for all $m \in \mathbb{Z}$
- Then

$$
\begin{aligned}
p_{\{a, b\}}(a b-a-b+n) & \geq \frac{a b-a-b+n}{a b}-\left(1-\frac{1}{a}\right)-\left(1-\frac{1}{b}\right)+1 \\
& =\frac{n}{a b}
\end{aligned}
$$

Proof of Theorem 1.2

It suffices to prove the following two
(1) $p_{\{a, b\}}(a b-a-b)=0$
(Exer 1.24 and Lem 1.6)
(2) $p_{\{a, b\}}(a b-a-b+n)>0$ for all $n>0$

Proof of (2):

- Note $\left\{\frac{m}{a}\right\} \leq 1-\frac{1}{a}$ for all $m \in \mathbb{Z}$
- Then

$$
\begin{aligned}
p_{\{a, b\}}(a b-a-b+n) & \geq \frac{a b-a-b+n}{a b}-\left(1-\frac{1}{a}\right)-\left(1-\frac{1}{b}\right)+1 \\
& =\frac{n}{a b}>0
\end{aligned}
$$

Proof of Theorem 1.3

- Non-representable numbers all in $[1, a b-1]$ (by Thm 1.2)

Proof of Theorem 1.3

- Non-representable numbers all in $[1, a b-1]$ (by Thm 1.2)
- $a \mid n$ or $b \mid n \Rightarrow n$ representable

Proof of Theorem 1.3

- Non-representable numbers all in $[1, a b-1]$ (by Thm 1.2)
- a|n or $b \mid n \Rightarrow n$ representable
- Otherwise, exactly one of n and $a b-n$ is representable (Lem 1.6)

Proof of Theorem 1.3

- Non-representable numbers all in $[1, a b-1]$ (by Thm 1.2)
- a|n or $b \mid n \Rightarrow n$ representable
- Otherwise, exactly one of n and $a b-n$ is representable (Lem 1.6)
- \quad.
\# non-representable numbers $=\frac{(a b-1)-(b-1)-(a-1)+0}{2}$

Proof of Theorem 1.3

- Non-representable numbers all in $[1, a b-1]$ (by Thm 1.2)
- a|n or $b \mid n \Rightarrow n$ representable
- Otherwise, exactly one of n and $a b-n$ is representable (Lem 1.6)
- \quad.

$$
\begin{aligned}
\# \text { non-representable numbers } & =\frac{(a b-1)-(b-1)-(a-1)+0}{2} \\
& =\frac{(a-1)(b-1)}{2} \quad \square
\end{aligned}
$$

(1) Introduction
(2) Frobenius' coin-exchange problem Why use generating functions?
Two coins
Partial fractions and a surprising formula Sylvester's result
Three and more coins
(3) Concluding remarks

Three coins
a, b, c coprime (Reminder: $\xi_{b}=e^{2 \pi i / b}$)

$$
\begin{aligned}
p_{\{a, b, c\}}(n)= & \frac{n^{2}}{2 a b c}+\frac{n}{2}\left(\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c}\right) \\
& +\frac{1}{12}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}+\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}\right) \\
& +\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{k b}\right)\left(1-\xi_{a}^{k c}\right) \xi_{a}^{k n}} \\
& +\frac{1}{b} \sum_{k=1}^{b-1} \frac{1}{\left(1-\xi_{b}^{k c}\right)\left(1-\xi_{b}^{k a}\right) \xi_{b}^{k n}} \\
& +\frac{1}{c} \sum_{k=1}^{c-1} \frac{1}{\left(1-\xi_{c}^{k a}\right)\left(1-\xi_{c}^{k b}\right) \xi_{c}^{k n}}
\end{aligned}
$$

Fourier-Dedekind sums

Reminder: $\xi_{b}=e^{2 \pi i / b}$

Definition (Fourier-Dedekind sum)

$$
\begin{equation*}
s_{n}\left(a_{1}, a_{2}, \ldots, a_{m} ; b\right):=\frac{1}{b} \sum_{k=1}^{b-1} \frac{\xi_{b}^{k n}}{\left(1-\xi_{b}^{k a_{1}}\right)\left(1-\xi_{b}^{k a z_{2}}\right) \cdots\left(1-\xi_{b}^{k a_{m}}\right)} \tag{13}
\end{equation*}
$$

- Generalizes Dedekind sums (defined in Chapter 7)
- Studied thoroughly (in Chapter 8)

Three coins, rewritten
a, b, c coprime

$$
\begin{aligned}
p_{\{a, b, c\}}(n)= & \frac{n^{2}}{2 a b c}+\frac{n}{2}\left(\frac{1}{a b}+\frac{1}{a c}+\frac{1}{b c}\right) \\
& +\frac{1}{12}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}+\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b}\right) \\
& +s_{-n}(b, c ; a)+s_{-n}(a, c ; b)+s_{-n}(a, b ; c)
\end{aligned}
$$

For the derivation, and the extension to more coins, see the textbook

Two coins, revisited

Eq. (7) for two coins

$$
\begin{aligned}
p_{\{a, b\}}(n)= & \frac{1}{2 a}+\frac{1}{2 b}+\frac{n}{a b} \\
& +\frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{\left(1-\xi_{a}^{k b}\right) \xi_{a}^{k n}}+\frac{1}{b} \sum_{j=1}^{b-1} \frac{1}{\left(1-\xi_{b}^{j a}\right) \xi_{b}^{j n}} \\
= & \frac{1}{2 a}+\frac{1}{2 b}+\frac{n}{a b}+s_{-n}(b ; a)+s_{-n}(a ; b)
\end{aligned}
$$

(1) Introduction
(2) Frobenius' coin-exchange problem Why use generating functions?
Two coins
Partial fractions and a surprising formula Sylvester's result
Three and more coins
(3) Concluding remarks

Concluding remarks

- Frobenius' coin-exchange problem to see the relation of
- Combinatorics (generating functions)
- Geometry (convex polytopes)
- Number theory (Dedekind sums)
- Lots of problems still remain unsolved

Literature

- J.L. Ramírez-Alfonsín. The Diophantine Frobenius Problem. Oxford University Press, 2006.

