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Overview

Textbook

We follow the book:

e Matthias Beck and Sinai Robins, Computing the Continuous
Discretely. Integer-Point Enumeration in Polyhedra.
Undergraduate Texts in Mathematics. New York, Springer.
2007.

e The updated version is available at
http://math.sfsu.edu/beck/ccd.html
e Japanese translation will be available soon
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Overview

Lecture Style

e Language
e Spoken: in English or Japanese
e Slides: in English
e Report submission: in Japanese/English (up to you)

e Feedback

e Submission of a piece of paper at the end of each lecture
e Can be anonymous
e There might be a survey at the term end
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Overview

Goal

This is a course on mathematics and/or theory of computation

Goal of the course
e Study an example of mathematical thoughts that are benefitial

for algorithms design
e In this course, such an example = lattice-point counting in
convex polytopes

Prerequisites
e Nothing in particular
e Other than a moderate familiarity with freshmen math
(Calculus, Linear Algebra, Discrete Math)

e And eagerness to learn
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Overview

Evaluation

How to get a credit
Submission of exercise solutions

e Each lecture is accompanied with several exercises in the
textbook

e Students should assign themselves to different exercises

e Assignment should be done at the wiki page of the course in the
first-come-first-serve way

e Submission due: next lecture

Wiki:  http://www.is.titech.ac.jp/~okamoto/
cgi-bin /pukiwiki /index.php?DMCS09

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16 5/51



Overview

Administration

e Course Webpage

e http://www.is.titech.ac.jp/~okamoto/lect /2009 /dmcs/
e Reachable from the CompView website
(http://compview.titech.ac.jp/)

e This is in the Education Program for CompView
e Lecturer: Yoshio Okamoto

Email: okamoto at is.titech.ac.jp
Office: W904 in West 8th Bldg.
Int. Phone: 3871

Office hours: by appointment, or you can try your luck any time

e Remark: This lattice-point counting course will not be given
next year; Could be discrete geometry, data structures, graph
theory, extremal combinatorics, ..., I'm thinking
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Introduction

@ Introduction

@® Frobenius’ coin-exchange problem
Why use generating functions?
Two coins
Partial fractions and a surprising formula
Sylvester's result
Three and more coins

©® Concluding remarks
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Introduction

The basic computational problems

When a finite set Q is given implicitly...,
o Decide whether Q = & (decision)
e Find an element of Q if it exists (search)
e Count |Q] (counting)
e List all elements of Q (listing)
e Sample an element of £ uniformly at random (sampling)

They have some relationship

Counting is the most difficult in a certain sense
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Introduction

A kind of the most general setting

One setting
Q = PNZ9 where

e P a d-dimensional convex polyhedron (in the H-representation)
(the terminology will be defined through the course)

e 7 is the set of integers
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Introduction

A theoretical development

Q=Pnzd
Theorem (Barvinok, Math of OR '94)

P is rational, d is constant =
|P N Z can be computed in polynomial time

Implementations are also available

e LattE (Project led by De Loera)
http://www.math.ucdavis.edu/"latte/

e LattE macchiato (Koppe)
http://www.math.ucdavis.edu/~mkoppe/latte/

e barvinok (Verdoolaege)
http://www.kotnet.org/“skimo/barvinok /
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Introduction

More formally speaking...

Q=Pnzd
Theorem (Barvinok, Math of OR '94)

P is rational, d is constant =
The Ehrhart quasi-polynomial of P can be computed in poly time

So, in this course we look at
e lattice points in convex polyhedra

e Ehrhart (quasi-)polynomials
e and relationship with other subarea of mathematics
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Introduction

What's discrete volume?

vol P
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Introduction

What's discrete volume?

counting

integration

(combinatorics)

(analysis)

12 / 51

2009-04-16

DMCS'09 (1)

Y. Okamoto (Tokyo Tech)



Introduction

Lattice-point counting in convex polytopes

Number Theory Geometry

(Dedekind sums
Chapters 7 & 8

Combinatorics

(counting)

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16

13 / 51



Frobenius’ coin-exchange problem Why use generating functions?
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Frobenius' coin-exchange problem Why use generating functions?

A generating function of a sequence

Definition (Generating function)

Given a sequence {a,}, define its generating function as

F(z) = Z arz"

k>0

F(z) is a power series, but let's forget about the convergence for the
moment

e Generating functions are quite useful for many reasons

e Generating functions are main objects we deal with in this course
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Frobenius' coin-exchange problem Why use generating functions?

Example: Fibonacci sequence

Definition (Fibonacci sequence)

The Fibonacci sequence {f,} is defined as follows
o =0, =1
o frio="F1+fforall k>0

The first few numbers in the sequence are:
0,1,1,2, 3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

See http://www.research.att.com/"njas/sequences/

e Excellent source of integer sequences
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e F(z) the generating function for the Fibonacci sequence
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function

e F(z) the generating function for the Fibonacci sequence
e Then, by the recursion

> fen (1)
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function

e F(z) the generating function for the Fibonacci sequence
e Then, by the recursion

Z fipo 2 = Z (fes1 + f) 2

k>0 k>0
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function

e F(z) the generating function for the Fibonacci sequence
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ka+2zk:Z(fk+l+fk ka-i-lz +ka2 (1)

k>0 k>0 k>0 k>0
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function

e F(z) the generating function for the Fibonacci sequence

e Then, by the recursion

Z fio 2* = Z (fiyr + i) z

k>0 k>0

e The LHS of (1) is

Z fk+2 Zk _ % Z fk+2 Zk+2

k>0 k>0
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function

e F(z) the generating function for the Fibonacci sequence
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Frobenius' coin-exchange problem

Why use generating functions?

Discovery through the generating function

e F(z) the generating function for the Fibonacci sequence

e Then, by the recursion

Z fio 2* = Z (fiyr + i) z

k>0 k>0

e The LHS of (1) is

Z fk+2 Zk = l2 Z fk+2 Zk—’—2

k>0 k>0

Y. Okamoto (Tokyo Tech) DMCS'09 (1)

ka+12 +kaZ

k>0 k>0

= LY R = L (F@) - 2)

k>2

2009-04-16 17 / 51



Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function

F(z) the generating function for the Fibonacci sequence

e Then, by the recursion
ka+22k:Z(fk+l+fk ka-i-lz +ka2 (1)
k>0 k>0 k>0 k>0
e The LHS of (1) is
ka+22k = lka 2K = lX:szk = l(F(z) —2)
z2 + z2 z?2
k>0 k>0 k>2
e The RHS of (1) is

Z fk+1 Zk+z fk Zk

k>0 k>0
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function

F(z) the generating function for the Fibonacci sequence

e Then, by the recursion
ka+22k:Z(fk+l+fk ka-i-lz +ka2 (1)
k>0 k>0 k>0 k>0
e The LHS of (1) is
ka+22k = ika 2K = lX:szk = l(F(z) —2)
z2 + z2 z?2
k>0 k>0 k>2
e The RHS of (1) is
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function

e F(z) the generating function for the Fibonacci sequence
e Then, by the recursion

Z fipo 2 = Z (fipr + fi) 2 = Z fir1 2" + Z fiz" (1)

k>0 k>0 k>0 k>0

e The LHS of (1) is

1 1 1
ka+22k=?kaﬂzk”:;kazk: ;(F(Z)—Z)

k>0 k>0 k>2

e The RHS of (1) is

1 1
Z fri1 zk—l—z fi 25 = S Z fri1 Zk+1—|—z fi 25 = ;F(z)—i—F(z)

k>0 k>0 k>0 k>0
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e . (1) is rewritten as

L (F(2) —2) = ZF(2) + F(2)
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function (cont'd)

e . (1) is rewritten as

L (F2)—2) = F(2) + F(2)
e Equivalently, z
Fz) = 1—z—-22
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function (cont'd)

e . (1) is rewritten as

L (F@) - 2)= LF@) + F2)

72 z

e Equivalently,
z

Flz)= ———
(2) 1—z—22
e A fun to check (by a computer)

z

m:Z+22+223+3Z4+525+8z6—|—13z7+...
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e A partial fraction expansion gives us
z
F(z) =

VB 1B
1—7z— 22 1_1+2\/§Z 1 1—/5

(2)



Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function (cont'd)

e A partial fraction expansion gives us

Flz) = z VB 1B
Z—1—2—22—1——1+2‘/§z 1——1_2‘/52

e Remember the geometric series

1
ZXk:l—x

k>0
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function (cont'd)

e A partial fraction expansion gives us

z 1/v/5 1/v/5
= - (2)

— z

F(Z):l—z—zz_l__1+\/52_1_
2

e Remember the geometric series

=i ®

k>0
e Then, by setting x = %gz and x = %gz we have
z
F(z) =
(2) 1—z—22

1 14v5 ) 1 1-v5 \"
AL () Sa ()
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function (cont'd)

e We have

k
1 1+\/§Z 1 1-+5
\/gkzo 2 \/gkzo 2
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function (cont'd)

e We have
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Frobenius' coin-exchange problem Why use generating functions?

Discovery through the generating function (cont'd)

e We have

1 1+5 “ 1-5 ‘
fo- 5% (F7) -x()

B 1 145\ (1-vE\')
T 2 2 z

e Thus, we obtain a closed formula for the Fibonacci sequence
k k
f_ 1 (14VE) 1 (1-V5
KA 2 N
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Frobenius' coin-exchange problem Why use generating functions?

Usefulness of a generating function

e |t gives a closed formula of a sequence

k
1 [1++5 1 1—+5
NG 2 NG 2

e |t gives a short description of a sequence as a rational function

fu =

F(z) = ——

1—2z—22
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Frobenius' coin-exchange problem Why use generating functions?

Partial fraction expansion (in case you've never heard of that)

Theorem 1.1 (Partial fraction expansion)

Given any rational function

_ p(2)
L a0

where p is a polynomial of degree less than e; + e, + -+ - + e, and
the ax's are distinct, there exists a decomposition

m
Ck,1 Ck,2 Ck,
F(Z):Z(Z_ak'f‘ 2+"'+ﬁ>,

—1 (Z — ak)

where ¢, ; € C are unique.

Proof: Exercise 1.35 =
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Frobenius’ coin-exchange problem Two coins

@ Introduction

@® Frobenius’ coin-exchange problem
Why use generating functions?
Two coins
Partial fractions and a surprising formula
Sylvester's result
Three and more coins

©® Concluding remarks
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Frobenius' coin-exchange problem Two coins

What if the new coin system is introduced

Imagine we only have 4-yen, 7-yen, 9-yen, and 34-yen coins
Which price can be paid without making any change?

1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25
Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16 24 / 51
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Frobenius' coin-exchange problem Two coins

What if the new coin system is introduced

Imagine we only have 4-yen, 7-yen, 9-yen, and 34-yen coins
Which price can be paid without making any change?

1 x| 6 x |11 J[16 [21
2 x| 7 |12 V|17 V|2
3 x| 8 |13 |18 |23
4 |9 |1 |19 |28
5 x |10 x |15 /|20 /|25 /
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Frobenius' coin-exchange problem

Two coins

What if the new coin system is introduced

Imagine we only have 4-yen, 7-yen, 9-yen, and 34-yen coins

Which price can be paid without making any change?

W N

X <X X X

6
7
8
9
10

X LU X

11
12
13
14
15

L

16
17
18
19
20

LK

21
22
23
24
25

L

Exercise 1.20

The coins are coprime = Only finitely many prices cannot be paid
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Frobenius' coin-exchange problem Two coins

What if the new coin system is introduced

Imagine we only have 4-yen, 7-yen, 9-yen, and 34-yen coins
Which price can be paid without making any change?

1 x| 6 x |11 J[16 [21
2 x| 7 |12 V|17 V|2
3 x| 8 |13 |18 |23
4 |9 V0|14 |19 |24
5 x |10 x |15 /|20 /|25 /

Exercise 1.20
The coins are coprime = Only finitely many prices cannot be paid

Frobenius' coin-exchange problem, informally
Find the largest price that the coin system cannot allow us to pay
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Frobenius' coin-exchange problem Two coins

Frobenius' coin-exchange problem

A={a1,a,,...,a4} a set of coprime positive integers

Definition (Representable integer)

An integer n is representable by A if 3 non-negative integers
my,my,...,mg s.t. n=mya; +---+ Mgaq

Definition (Frobenius number)

g(A) = max number that's not representable by A

Frobenius' coin-exchange problem
Determine g(A)
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25 / 51



When d = 2 the situation is well studied

aj, ap coprime = g(a, a2) = a1ay — a1 — a I
o Quite simple

e But such a simple formula cannot be expected for larger d
We prove it in the next subsection
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Frobenius' coin-exchange problem

Sylvester's theorem

Two coins

More is known when d = 2

Theorem 1.3 (Sylvester's theorem, 1884)

. exactl
ai, a, coprime = y

representable

(a1 —1)(a2 — 1)
2

integers are not

Example: a; =3,a, =7 (~ a1a, — a; — ap = 11)

1 x| 6 J[11 x |16 [21

2 x| 7 |12 V|17 V|22 V

3 /| 8 x|13 |18 |23

4 x| 9 |14 |19 |24

5 x |10 |15 /|20 |25 /
Y. Okamoto (Tokyo Tech) DMCS'09 (1)
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pa(r) i= # { s, ma) € 2

A={a1,...,a4} a set of coprime positive integer
all m; >0
7° I ="
< mlal+---+mdad=n}
pa(n) = # representations of n by A
g(A) = max{n | pa(n) = 0}

u]
8]
i
it
it
S
¥l
i)



Frobenius' coin-exchange problem Two coins

Restricted partition functions and polytopes

Definition (Dilate)
The n-th dilate of any set S C R9 is

nS = {(nxq, nxa, ..., nxq) : (x1,...,%x4) € S}

If we define
P:{(xl,...,xd)ERd: all x; >0, xlal—|—~~—|—xdad:1} (4)

then we see that
e P is a polytope (defined in the next lecture), and

e pa(n) = #(nP NZ9)
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Frobenius' coin-exchange problem Two coins

Geometric picture for two coins

A={4,7}, thelines4x+7y =n, n=1,2,...
y
5

0
0 1 2 3 4 5 6 7 8 9 X
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Frobenius’ coin-exchange problem Partial fractions and a surprising formula

@ Introduction

@® Frobenius’ coin-exchange problem
Why use generating functions?
Two coins
Partial fractions and a surprising formula
Sylvester's result
Three and more coins

©® Concluding remarks
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Generating function for the restricted partition function

Concentrate on the case d = 2, so let A = {a, b} where a, b coprime
e Consider pg,py(n) = #{(k,1) € Z* : k,1 >0, ak + bl = n}
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Generating function for the restricted partition function

Concentrate on the case d = 2, so let A = {a, b} where a, b coprime
e Consider pg,py(n) = #{(k,1) € Z* : k,1 >0, ak + bl = n}
e Consider the product of the following two geometric series:

(i25) (%)
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Generating function for the restricted partition function

Concentrate on the case d = 2, so let A = {a, b} where a, b coprime
e Consider pg,py(n) = #{(k,1) € Z* : k,1 >0, ak + bl = n}
e Consider the product of the following two geometric series:

(1_123) (1_12b) = (1+Za+zza+"') (1—|—zb+zzb_|_...)
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Generating function for the restricted partition function

Concentrate on the case d = 2, so let A = {a, b} where a, b coprime
e Consider pg,py(n) = #{(k,1) € Z* : k,1 >0, ak + bl = n}
e Consider the product of the following two geometric series:

(1_123) (1_12b) = (1+Za+zza+"') (1—|—zb+zzb_|_...)

— § :E :Zakzbl

k>0 1>0
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Generating function for the restricted partition function

Concentrate on the case d = 2, so let A = {a, b} where a, b coprime
e Consider pg,py(n) = #{(k,1) € Z* : k,1 >0, ak + bl = n}

e Consider the product of the following two geometric series:

(1_123) (1_12b) = (1+22+22+ ) (1+22+ 2+
- Zzzakzbl

k>0 1>0

= Z p{a,b}(n) z"

n>0
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Generating function for the restricted partition function

Concentrate on the case d = 2, so let A = {a, b} where a, b coprime
e Consider pg,py(n) = #{(k,1) € Z* : k,1 >0, ak + bl = n}
e Consider the product of the following two geometric series:

(1_123) (1_12b) = (1+Za—|—zza+"') (1—|—zb+22b_|_...)

— § :E :Zakzbl

k>0 1>0

- Z p{a,b}(n) z"

n>0

e . this fn is the generating fn for the seq (p{a,b}(n)):io
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Generating function for the restricted partition function

Concentrate on the case d = 2, so let A = {a, b} where a, b coprime
e Consider pg,py(n) = #{(k,1) € Z* : k,1 >0, ak + bl = n}
e Consider the product of the following two geometric series:

(1_123) (1_12b) = (1+Za—|—zza+"') (1—|—zb+22b_|_...)

— E :E :Zakzbl

k>0 1>0

= Z p{a,b}(n) z"

n>0

e . this fn is the generating fn for the seq (p{a,b}(n)):io

The idea is to study the compact function on the LHS!
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Looking at the constant term by shifting

More convenient if we can look at the constant term after shifting

e Namely, pa(n) is the constant term of

o) =2 (11 oy~ 2 pealk

k>0

This is a Laurent series
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Looking at the constant term by shifting

More convenient if we can look at the constant term after shifting

e Namely, pa(n) is the constant term of

o) =2 (11 oy~ 2 pealk

k>0

This is a Laurent series

e To obtain pa(n) we only need to “evaluate” f(z) at z =0, but
this is impossible since f(z) has terms with negative exponents
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Looking at the constant term by shifting

More convenient if we can look at the constant term after shifting

e Namely, pa(n) is the constant term of

1
f(z) = a
()= Gy a e~ 2 Pealk
k>0
This is a Laurent series

e To obtain pa(n) we only need to “evaluate” f(z) at z =0, but
this is impossible since f(z) has terms with negative exponents

e We just need a contant term, so we subtract the terms with
negative exponents from f(z) and evaluate it at z =0

e (Or, we may use the residue theorem from complex analysis)
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

After a few minutes of computation...

We get
a—1 b—
1 1 n 1 1
Prapy(n) = o=+ o7+ -+ = ﬁ —Z o o
2. 2b ab ai (1-g)Ek b 1—8 )6
(7)
where

- 2r .. 2«
£, = e2™/? = cos = + i sin —
a a

is the a-th root of unity
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

After a few minutes of computation...

We get
a—1 b—
1 1 n 1 1
Prapy(n) = o=+ o7+ -+ = ﬁ —Z o o
2. 2b ab ai (1-g)Ek b 1—8 )6
(7)
where

- 2r .. 2«
£, = e2™/? = cos = + i sin —
a a

is the a-th root of unity

e Let's make it simpler and more understandable

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16 35 /51



Let x € R

|x] =max{n € Z|n< x}
(x} = x — |x]
X | |_XJ {x}
42 | 4 02
37| -4 03
! 7
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e When b =1, the problem gets one-dimensional
P{a,1} I‘l)

#{(k,1)eZ?:

k,1 >0, ak—l—l—n}



Frobenius' coin-exchange problem Partial fractions and a surprising formula

With help of this notation

e When b =1, the problem gets one-dimensional

pay(n) =#{(k,1) € Z?: k,1 >0, ak+I=n}
=#{keZ: k>0, ak < n}
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

With help of this notation

e When b =1, the problem gets one-dimensional

pay(n) =#{(k,1) € Z?: k,1 >0, ak+I=n}
=#{keZ: k>0, ak < n}

:#{keZ: nggg}
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

With help of this notation

e When b =1, the problem gets one-dimensional
pay(n) =#{(k,1) € Z?: k,1 >0, ak+I=n}
=#{keZ: k>0, ak < n}

—#{kez: o<k} = |2 41
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Frobenius' coin-exchange problem

With help of this notation

Partial fractions and a surprising formula

e When b =1, the problem gets one-dimensional

P{al} #{k/EZ2.k,/20,ak+/:n}
_#{kEZ. k >0, ak < n}

n n
:#{kGZ: ogkgg}:L J+1

e Therefore,

1 n
£+‘+‘+;“W:M“

(8)

Y. Okamoto (Tokyo Tech) DMCS'09 (1)
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

With help of this notation

e When b =1, the problem gets one-dimensional
pa(n) =#{(k,1) € Z*: k,1>0, ak+1=n}
=#{keZ: k>0, ak < n}

—#{kez: o<k} = |2 41

e Therefore,

1 1 n 134 1
5*5*?3?_1@:[;%1

122 1 ny 1 1
e it ©

k=1
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Popoviciu's theorem

e Exercise 1.22
a i (1—gb)ghn ad= (1—gk)ctthm

where b~! is an integer s.t. b"'h =1 mod a
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Popoviciu's theorem

e Exercise 1.22

1371 1 —1371 ) 9
o . nagan O

where b~! is an integer s.t. b"'h =1 mod a
e Therefore

14 b'n 1 1
3 T e L
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Popoviciu's theorem

e Exercise 1.22
a—1 a—1

o s maw O

k=1 k=1
where b~! is an integer s.t. b"'h =1 mod a
e Therefore

1= 1 bl 1 1
DN e S L

k=1
e Combining this with (7) gives the following theorem

Theorem 1.5 (Popoviciu's theorem, 1953)

_n b~in a'n ]
a, b coprime = Pras}(n) = g e s

where b'lb=1mod a, a la=1mod b O
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Frobenius' coin-exchange problem Partial fractions and a surprising formula

Geometric picture for two coins, again

A={4,7}, thelines4x+7y =n, n=1,2,...
y
5

0
0 1 2 3 4 5 6 7 8 9 X
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Frobenius’ coin-exchange problem Sylvester's result

@ Introduction

@® Frobenius’ coin-exchange problem
Why use generating functions?
Two coins
Partial fractions and a surprising formula
Sylvester's result
Three and more coins

©® Concluding remarks
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Frobenius' coin-exchange problem Sylvester’s result

What we're going to do now

Prove Theorems 1.2 and 1.3 from Theorem 1.5

Theorem 1.2
a;, ap coprime = g(ay,a) = aja, — a1 — a,

Theorem 1.3 (Sylvester's theorem, 1884)

(a1 —1)(a2 - 1)
2

representable

exactly integers are not

ai, a, coprime =

Theorem 1.5 (Popoviciu's theorem, 1953)

_n b~ln ain 1
a, b coprime = Prasy(n) = d L\ 2 Vb J"

where b™1b =1 mod a, a'a=1mod b

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16
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a, b coprime, n € [1,ab—1], afn, bfn =

Piapy(n) + prapy(ab—n) =1




a, b coprime, n € [1,ab—1], afn, bfn =

Piapy(n) + prapy(ab—n) =1
Proof: Use Theorem 5

ab
p{a,b}(ab - n) =

a;n_{b‘l(a:—”)}_{LZ_”)}Jrl

DA

u]
v
a
a
it
v
a

it
v



a, b coprime, n € [1,ab—1], afn, bfn =

Proof: Use Theorem 5

Piap}(n) + prapy(ab—n) =1
ab —
p{a7b}(ab — n) =

n b=t(ab — n)
ab
_o_ M

<) (=),
(=) (52

b




Frobenius' coin-exchange problem Sylvester’s result

We use a lemma

Lemma 1.6
a, b coprime, n € [1,ab—1], afn, bfn =

pa,p}(Nn) + prapy(ab—n) =1

Proof: Use Theorem 5

ooy (ab — 1) — aba; n {b‘l(ab— n)} - {Ls_n)} o

(%) follows by {—x} =1 —{x} for x ¢ Z

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16 42 /51



Frobenius' coin-exchange problem Sylvester’s result

We use a lemma

Lemma 1.6
a, b coprime, n € [1,ab—1], afn, bfn =

pa,p}(Nn) + prapy(ab—n) =1

Proof: Use Theorem 5

ooy (ab — 1) — aba; n {b‘l(ab— n)} - {Ls_n)} o

(1)—1-1- b~1in N atn
- ab a b

=1 pas(n)
(%) follows by {—x} =1 —{x} for x ¢ Z []
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® piapy(ab—a—b) =0

® piopy(ab—a—b+n) >0 forall n>0

(Exer 1.24 and Lem 1.6)




® piapy(ab—a—b) =0
® piopy(ab—a—b+n) >0 forall n>0
Proof of (2):
e Note {m

(Exer 1.24 and Lem 1.6)
i

1
<l——forallmeZ
a
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Frobenius' coin-exchange problem Sylvester’s result

Proof of Theorem 1.2

It suffices to prove the following two
©® ppapy(ab—a—b) =0 (Exer 1.24 and Lem 1.6)
® piopy(ab—a—b+n) >0 forall n>0

Proof of (2):

1
° Note{ﬂ}gl——forallmez

a a
e Then

ab—a—b+n 1 1
2 b—a—>b > (11— ) - [ 1—— 1
Py 7b}(a a +n) > b ( a) ( ) +
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Frobenius' coin-exchange problem Sylvester’s result

Proof of Theorem 1.2

It suffices to prove the following two
©® ppapy(ab—a—b) =0 (Exer 1.24 and Lem 1.6)
® piopy(ab—a—b+n) >0 forall n>0

Proof of (2):

1
° Note{ﬂ}gl——forallmez

a a
e Then
ab—a—b+n 1 1
p{a7b}(ab_a_b+”) > 5 (1—5) — (1—5) +1
~n
~ab
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Frobenius' coin-exchange problem Sylvester’s result

Proof of Theorem 1.2

It suffices to prove the following two
©® ppapy(ab—a—b) =0 (Exer 1.24 and Lem 1.6)
® piopy(ab—a—b+n) >0 forall n>0

Proof of (2):

1
° Note{ﬂ}gl——forallmez

a a
e Then
ab—a—b+n 1 1
p{a7b}(ab_a_b+”) > 5 (1—5) — (1—5) +1
= >0 O

ab

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16 43 /51



o Non-representable numbers all in [1,ab—1] (by Thm 1.2)



o Non-representable numbers all in [1,ab—1] (by Thm 1.2)
e aln or b|n = n representable
<O <F> <=r «E>» E ODAC
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Frobenius' coin-exchange problem Sylvester’s result

Proof of Theorem 1.3

o Non-representable numbers all in [1, ab—1] (by Thm 1.2)
e a|n or b|n = n representable

o Otherwise, exactly one of n and ab—n is representable (Lem 1.6)
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Frobenius' coin-exchange problem Sylvester’s result

Proof of Theorem 1.3

o Non-representable numbers all in [1, ab—1] (by Thm 1.2)

aln or b|n = n representable

Otherwise, exactly one of n and ab—n is representable (Lem 1.6)

(ab—1) — (b—1) — (a—1) + 0
2

# non-representable numbers =

Y. Okamoto (Tokyo Tech) DMCS'09 (1) 2009-04-16 44 / 51



Frobenius' coin-exchange problem Sylvester’s result

Proof of Theorem 1.3

o Non-representable numbers all in [1, ab—1] (by Thm 1.2)

e a|n or b|n = n representable

o Otherwise, exactly one of n and ab—n is representable (Lem 1.6)
. -.n

(ab—1) — (b—1) — (a—1)+0

# non-representable numbers = >
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Frobenius’ coin-exchange problem Three and more coins

@ Introduction

@® Frobenius’ coin-exchange problem
Why use generating functions?
Two coins
Partial fractions and a surprising formula
Sylvester's result
Three and more coins

©® Concluding remarks
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Frobenius' coin-exchange problem Three and more coins

Three coins

a, b, c coprime (Reminder: &, = e?™/?)

( ) n? I n/1 I 1 + 1
a,b,cy\ N — ~\| - T
Plab,c) 2abc 2 \ab ac bc

Ll 8, 8,8, 5, €
12\a " b b ab
a—1
1 1
_|__
a Zl (1— &) (1 — gke) gl
b—1
1 1
+_
b2 ) (=) &
12 1
_'__
c = (1-Ee)(1— &) &t
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Frobenius' coin-exchange problem

Fourier—Dedekind sums

Three and more coins

Reminder: &, = e?™i/P

Definition (Fourier-Dedekind sum)

b—1 kn
]' § b
Sn (a17a27"’7amv E 1 _ k31 kap

- b7) - (L&)
(13)

4

e Generalizes Dedekind sums (defined in Chapter 7)
e Studied thoroughly (in Chapter 8)
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Frobenius' coin-exchange problem Three and more coins

Three coins, rewritten

a, b, c coprime

n2

(n) +n 1+1+1

a,b,c}\ N - A\ L - I

Pla,b,c} 2abc 2 \ab ac bc
3

(233,20 ¢
12\a b ¢ bc a ab
+s ,(b,c;a)+ s ,(a,c;b)+s ,(a b;c)

4

For the derivation, and the extension to more coins, see the textbook
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11
p{a,b}(n) _

n
=ttt

131 lb

+3§:T_7?§§; Eé:l_spgn
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Concluding remarks

@ Introduction

@® Frobenius’ coin-exchange problem
Why use generating functions?
Two coins
Partial fractions and a surprising formula
Sylvester's result
Three and more coins
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Concluding remarks

Concluding remarks

e Frobenius' coin-exchange problem to see the relation of

o Combinatorics (generating functions)
o Geometry (convex polytopes)
e Number theory (Dedekind sums)

e Lots of problems still remain unsolved

Literature

e J.L. Ramirez-Alfonsin. The Diophantine Frobenius Problem.
Oxford University Press, 2006.
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