Continued fraction

r: the order of '’ modulo N’.

We are given
X = O.blbg ce bt

that is close to s/r with high probability. The re-
maining task is to compute r from b.by...b;. r can
be determined by the continued fraction algorithm.

A continued fraction is
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where a1, ..., ay are positive integers and ag > 0.
Denote the value of Eq. (1) by |ag, a1, ..., ay].

The representation of a continued fraction of rational

x can be found, for example, as follows:
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Recall that we have to find r from

r = O.blbg...bt

such that z is close to s/r. We have the following

theorem.

Theorem 1: Let [ag, ..., ay] be the continued frac-
tion of z. If |x — s/r| < 55 and ged(s,r) = 1, then
s/r is equal to |ag, ..., a,| for some 0 < n < N.
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number of qubits used for phase estimation). If we

We can make |z — s/r| < by increasing t (the
execute the order finding several times, we will even-
tually have ged(s,r) = 1. If we assume Theorem
1, the factorization can be found as follows: Com-
pute the continued fraction of x as |ag, ..., ay]. For
each 0 < n < N, write |ag, ..., a,] as p,/q, and
check whether ¢, satisfies that (z')% mod N" = 1 and
(z")4/2 £1 is a factor of N’. If it is the case, we found
a factor of N’. Otherwise, try again.

Thus, if we assume Theorem 1, then what we have
to do is to check the speed (required computational

time) of continued fraction computation.
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Cost of continued fraction

Theorem 2: Let |ag, ..., ay] be the continued frac-
tion of rational x > 1. Define py = ag, o = 1,

p1 =1+ apar, ¢1 = ay,

Pn = GQuPn—1 1 Pn—2,
n = anQn—l+Qn—2-

Then we have

— = lag, - . ., ]
dn

forn=0,..., N.

From the above theorem we can evaluate the required
number of computational steps. Observe that p, >
Pn—1 and ¢, > ¢,—1. So we have p, > 2p,_o and
qn > 2¢n_o. If x =p/q > 1 then N <log, p.
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Proof of Theorem 1

Theorem 1: Let |ag, ..., ay] be the continued frac-
tion of z. If |x — s/r| < 55 and ged(s,r) = 1, then
s/r is equal to |aq, ..., a;] for some 0 <7 < N.

Proof (almost the same as the textbook): Let |ao,
..., ay] be the continured fraction of s/r, also define
(as in Theorem 2)

Pn = QupPn—1 + Pn—2,
Gn = QpQn-1 T Gn—2.
Notice that s = p,, and r = ¢,,. Define 0 by

Dn 0
xr = -+ )
¢ 2q3

The assumption in the theorem implies |§] < 1. Also
define A by

/\ —_9 (ann—l - ann—l) B Gn—1 .
0 Gn

This definitiion of \ implies

AP, + Dn—1
Tr = :
)\Qn —|_ Qn—l
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To see this equality, substituting the definition of A
gives

AP + Pn—1

)‘Qn —|_ 4n—1

[2 <ann—lgann—1> . Qn—l] Do 4 Pt

dn

[2 (qnpn—lgpn(hb—1> . Qn—1i| G+ Q1

dn

- =4

The last equality can be verified by a tedious compu-
tation.

We can assume that n is even, because if n is odd
then |ag, ..., a,| = lag, ..., ap, — 1, 1].

Theorem 3: For n > 1 we have ¢,pn_1 — PnQn_1 =
(—1)™.

Proof can be done by induction on n.

By using Theorem 3 on the definition of A

/\ — 9 (ann—l o ann—l) o dn—1

0 Gn
we get
A = 2(_1)71 . n—1
0 Gn
. 2 dn—1
5
> 2—1=1
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By Theorem 2 and the definition of A, we see that
T = |ag,...,0n, A\

Since A is a rational number > 1, it has the continued
fraction [bg, ..., by|. Therefore, x = |ag, ..., an, by,
.., by]. Theorem 1 has been proved.
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Exercise

Submit your answer to the box in front of Room 311,
S3 building, by 17:00 Thursday, if you don’t finish by
12:10.

Let N' =15, 2/ =7, and x = 0.110001.

1. Compute the continued fraction of x.

2. Let [ag, ..., ay] be the continued fraction of x.
Detemine the index n such that ¢, is the order of '
modulo N'; where p,/q, = |ag, - .., Gy

3. If your answers to the previous exercises were eval-
uated as incorrect, please indicate whether or not you
agree to that evaluation. Write which part in today’s
lecture was difficult for your understanding.
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