
There will be no lecture on June 30. There were

lots of errors in the previous handout. I am sorry for

that. The corrected version follows.

Let |0〉, . . . , |N − 1〉 be an orthonormal basis of an

N -dimensional space. The QFT transforms

|j〉 �→ 1√
N

N−1∑
k=0

exp(2πijk/N)|k〉.

The inverse of QFT is given by

|k〉 �→ 1√
N

N−1∑
�=0

exp(−2πik�/N)|�〉. (1)

The inverse QFT can also be realized efficiently

(n(n + 1)/2 operations) by reversing the operation

of QFT.
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Phase estimation 1

Suppose that we have a unitary matrix U and its

eigenvector vector |u〉. Let exp(2πiθ) be the eigen-

value to which |u〉 belongs to. We shall show how we

can compute θ.

Assumption: We are able to do the controlled-U2j

operation for any j ≥ 0.

Suppose that we apply the controlled-U2j
to (|0〉 +

|1〉)|u〉, with |u〉 being the target (we omit the nor-

malizing factor 1/
√

2). Then the result is

|0〉|u〉 + |1〉 ⊗ U 2j |u〉
= |0〉|u〉 + |1〉 ⊗ exp(2πi2jθ)|u〉
= (|0〉 + exp(2πi2jθ)|1〉) ⊗ |u〉

Assume we have t qubits that are initialized to

(|0〉 + |1〉)/√2, and apply the controlled-U 2j
to the

j-th qubit (the rightmost is the zero-th). The result

is

1

2t/2
(|0〉 + exp(2πi2t−1θ)|1〉) ⊗ · · · ⊗ (|0〉 + exp(2πi20θ)|1〉)

=
1

2t/2

2t−1∑
k=0

exp(2πikθ)|k〉. (2)
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Applying the IQFT in Eq. (1) to the above state

yields

1

2t

2t−1∑
�=0

2t−1∑
k=0

exp

(−2πik�

2t

)
exp(2πikθ)|�〉.
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Distribution of the measurement outcomes 1

1

2t

2t−1∑
�=0

2t−1∑
k=0

exp

(−2πik�

2t

)
exp(2πikθ)|�〉.

We shall compute the probability distribution of the

mesurement in the {|0〉, |1〉, |2〉, . . . , |2t − 1〉} basis.

(The observable is
∑2t−1

j=0 βj |j〉〈j|.) Recall that 0 ≤
θ < 1, and we can write

θ = 0.b1b2 · · · btbt+1 · · · .
Let b = b1b2 · · · bt. We have 0 ≤ b ≤ 2t − 1. Let αc

be the coefficient of |(b + c) mod 2t〉 in the result of

the IQFT. We shall show that if c is large then |αc|
is small. Observe that the coefficient of |�〉 is

1

2t

2t−1∑
k=0

exp

(−2πik�

2t

)
exp(2πikθ)

=
1

2t

2t−1∑
k=0

[exp
(
2πi(θ − �/2t)

)
]k

Substituting � with b+ c we have

αc =
1

2t

2t−1∑
k=0

[exp
(
2πi(θ − (b+ c)/2t)

)
]k (3)
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This is the sum of a geometric series, so it is equal to

αc =
1

2t
· 1 − exp(2πi(2tθ − (b+ c)))

1 − exp(2πi(θ − (b+ c)/2t))

Define δ = θ − b/2t, then

αc =
1

2t
· 1 − exp(2πi(2tδ − c))

1 − exp(2πi(δ − c/2t))

We shall upper bound the probability of getting a

measurement outcome m such that |m − b| > e. We

have

p(|m− b| > e) =
∑

−2t−1<c≤−e−1,e+1≤c<2t−1

|αc|2.

Since |1 − exp(ix)| ≤ 2,

|αc| ≤ 2

2t|1 − exp(2πi(δ − c/2t))| .

We have |1 − exp(ix)| ≥ 2|x|/π for −π ≤ x ≤ π and

−π ≤ 2π(δ − c/2t) ≤ π, it follows

|αc| ≤ 1

2t+1|δ − c/2t| .
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Therefore we have

4p(|m− b| > e)

≤ ∑
−2t−1<c≤−e−1

1

(2tδ − c)2
+

∑
e+1≤c<2t−1

1

(2tδ − c)2

≤ ∑
−2t−1<c≤−e−1

1

c2
+

∑
e+1≤c<2t−1

1

(c− 1)2

≤ 2
∑

e≤c<2t−1−1

1

c2

≤ 2
∫ 2t−1−1

e−1

dc

c2

≤ 2
∫ ∞

e−1

dc

c2

=
2

(e− 1)
if e > 1.

Suppose that we want an accuracy of 2−n, that is,

|θ −m/2t| < 2−n.

|θ −m/2t| < 2−n

⇔ |2tθ −m| < 2t−n

⇐ |b−m| < 2t−n − 1.

We can see that e = 2t−n − 1 ensures the desired

accuracy. The probability of the accuracy below 2−n
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is 1/2(2t−n − 2) In order for 1/2(2t−n − 2) < ε, we

need t ≥ n+ log2(2 + 1/2ε).
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Factor N = pq

Suppose that we are give N = pq, with distinct

primes p and q, and asked to compute p and q. We

assume that N is odd. In order to break the RSA,

we need this kind of computation.

Firstly randomly choose 2 ≤ x ≤ N − 1, and see if

gcd(x,N) > 1. If so, then x = p or x = q.

Otherwise, compute the order of x modulo N , that is

ord(x,N) = min{i ≥ 1 | xi mod N = 1}
If gcd(x,N) > 1 then there is no i such that xi mod

N = 1. So we have to exclude this case first.

Theorem 1 Choose an integer x uniformly at ran-

dom such that gcd(x,N) = 1 and 1 ≤ x ≤ N − 1, de-

fine r = ord(x,N). Then the probability of the event

that r is even and xr/2 mod N �= N − 1 is ≥ 3/4.

Proof. Omitted. A copy of proof is proveded.

Assume that r is even and xr/2 mod N �= N − 1.

Otherwise choose x again until the above condition

is satisfied.

Theorem 2 Let z be an integer such that 2 ≤ z ≤
N−2 and z2 mod N = 1. Then at least one of gcd(z+

1, N) or gcd(z − 1, N) is greater than 1 and divides

N .
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Proof. Omitted. A copy of proof is provided.

Thus, gcd(xr/2 + 1 mod N,N) or gcd(xr/2 − 1 mod

N,N) is equal to p or q.
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Computing the order of x modulo N

There is no known fast algorithm for computing the

order of x modulo N . I will introduce a fast quantum

algorithm.

Let 2L−1 ≤ N ≤ 2L − 1 and 0 ≤ y ≤ 2L − 1, define

the unitary operator U such that

U |y〉 = |xy mod N〉.
We define xy mod N = y if N ≤ y ≤ 2L − 1. The

order of x modulo N is related to the phase of eigen-

values of U as follows.

Recall r = ord(x,N). For 0 ≤ s ≤ r − 1, define the

L-qubit quantum state

|us〉 =
1√
r

r−1∑
k=0

exp

(−2πisk

r

)
|xk mod N〉.

Then we have

U |us〉 =
1√
r

r−1∑
k=0

exp

(−2πisk

r

)
U |xk mod N〉

=
1√
r

r−1∑
k=0

exp

(−2πisk

r

)
|xk+1 mod N〉

=
1√
r

r∑
k=1

exp

(−2πis(k − 1)

r

)
|xk mod N〉
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= exp
(

2πis

r

)
1√
r

r∑
k=1

exp

(−2πisk

r

)
|xk mod N〉

= exp
(

2πis

r

)
1√
r

r−1∑
k=0

exp

(−2πisk

r

)
|xk mod N〉

= exp
(

2πis

r

)
|us〉

If we can estimate the phase of the eigenvalue of |us〉,
we know s/r. From which we could know r. The

obstacle is that the preparation of |us〉 requires the

knowledge of r. Let us see how we can bypass this

difficulty.

1√
r

r−1∑
s=0

|us〉

=
1

r

r−1∑
k=0

(
r−1∑
s=0

exp

(−2πisk

r

))
|xk mod N〉

We shall show that

r−1∑
s=0

exp

(−2πisk

r

)
= rδk0

Consider the sequence 0k mod r, k mod r, 2k mod r,

. . . . Define d = min{j ≥ 1 | jk mod r = 0}. d
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must divide r otherwise rk mod r would not be zero.

Moreover, jk mod r = (j + d)k mod r. Therefore,

r−1∑
s=0

exp

(−2πisk

r

)

=
r

d

d−1∑
s=0

exp

(−2πisk

r

)

On the other hand, if 0 ≤ j �= j ′ ≤ d−1 then jk mod

r �= j ′k mod r, otherwise (j − j ′)k mod r = 0, which

is a contradiction to the minimality of d. This means

that

exp

(−2πi0k

r

)
, exp

(−2πi1k

r

)
, . . . , exp

(−2πi(d− 1)k

r

)

are pairwise distinct roots of Xd − 1 = 0.

Xd − 1 =
d−1∏
s=0

(X − exp

(−2πisk

r

)
)

= Xd + · · · +
d−1∑
s=0

exp

(−2πisk

r

)
X − 1.

This means that

d−1∑
s=0

exp

(−2πisk

r

)
= 0.
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This means that

1√
r

r−1∑
s=0

|us〉 = |x0 mod N〉 = |1〉.

If we use the phase estimation algorithm with |1〉,
then we get the outcome close s/r with probability

1/r for s = 0, . . . , r − 1.

The reason is as follows: For |us〉 the probability of

outcome far from s/r is almost zero. This means

that measurement outcomes of distinct |us〉 and |us′〉
do not (almost) overlap.

Let M be an observable with distinct nondegener-

ate eigenvalues λ1, . . . , λm and η1, . . . , ηn. Suppose

that a state |ϕ〉 gives measurement outcome λi with

probability pi and |ψ〉 gives ηi with probability qi.

Then (|ϕ〉+ |ψ〉)/√2 gives measurement outcomes λi

with probability pi/2 and ηi with probability qi/2.

Observe the similarity between (|ϕ〉 + |ψ〉)/√2 and∑r−1
s=0 |us〉/√r. The reason is as follows.

Let |ϕi〉 be the eigenvector of λi and |ψi〉 be the eigen-

vector of ηi. Then we have

|ϕ〉 = α1|ϕ1〉 + · · · + αm|ϕm〉,
|ψ〉 = β1|ψ1〉 + · · · + βn|ψn〉.
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Thus

|ϕ〉 + |ψ〉√
2

=
m∑

i=1

αi√
2
|ϕi〉 +

n∑
i=1

βi√
2
|ψi〉. (4)

The rest of reasoning is your exercise.

In the next lecture, I will show that how to compute

r from a binary fractional ditits 0.b1b2 . . . bt that is

close to s/r for some unknown 0 ≤ s ≤ r − 1.
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Exercise

Submit your answer to the box in front of Room 311,

S3 building, by 17:00 Thursday, if you don’t finish by

12:10.

1. Let N = 3×7 and x = 2. Compute r = ord(x,N).

2. Tell if xr/2 �= N − 1 mod N .

3. Tell if xr/2 − 1 or xr/2 + 1 is a factor of N .

4. Compute |us〉 with above values and s = 1.

5. Let U be as defined in the lecture. With above

x and N , what is the eigenvalue of U to which |u1〉
belongs?

6. Explain why the state in Eq. (4) gives measure-

ment outcome λi with probability pi/2 and ηi with

probability qi/2.

7. If your answers to the previous exercises were eval-

uated as incorrect, please indicate whether or not you

agree to that evaluation. Write which part in today’s

lecture was difficult for your understanding.
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