There will be no lecture on June 30. There were
lots of errors in the previous handout. I am sorry for
that. The corrected version follows.

Let |0), ..., |N — 1) be an orthonormal basis of an
N-dimensional space. The QFT transforms

1 N-—1

7)) — \/_ Z exp(2mijk/N)|k).

The inverse of QFT is given by
1 N—1

Z exp(—2mikl/N)|0). (1)

The inverse QFT can also be realized efficiently
(n(n + 1)/2 operations) by reversing the operation
of QFT.
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Phase estimation 1

Suppose that we have a unitary matrix U and its
eigenvector vector |u). Let exp(27if) be the eigen-
value to which |u) belongs to. We shall show how we
can compute 6.

Assumption: We are able to do the controlled-U?
operation for any 7 > 0.

Suppose that we apply the controlled-U? to (]0)y +
11))|u), with |u) being the target (we omit the nor-
malizing factor 1/4/2). Then the result is

0) ) + 1) @ U Ju)
= [0)|u) + |1) ® exp(2mi2’0)|u)
= (]0) + exp(271i2’0)[1)) @ |u)

Assume we have t qubits that are initialized to
(]0) + [1))/+/2, and apply the controlled-U% to the
j-th qubit (the rightmost is the zero-th). The result

1S

1
2172
1 2t—1

k=0
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(10) + exp(2mi2'0) (1)) ® - - - ® (|0) + exp(27i2°0)|1))

(2)



Applying the IQFT in Eq. (1) to the above state
yields

2::§E:exp

¢=0 k=0

2t 12t—1
( 27”’“) exp(27ikd)[0).
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Distribution of the measurement outcomes 1

Z > exp

t t
2121 ( ok
(=0 k=0

) exp(2mik0)|().

We shall compute the probability distribution of the
mesurement in the {|0), [1), |2), ..., [2* — 1)} basis.

(The observable is Z2t o' Bl (. ) Recall that 0 <
6 < 1, and we can write

0 = 0.byby - bybpyy -

Let b = byby---b;. We have 0 < b < 28 — 1. Let a.
be the coefficient of |(b+ ¢) mod 2) in the result of
the IQFT. We shall show that if ¢ is large then |a.]
is small. Observe that the coefficient of |¢) is

Z exp

12t1

= — Z exp (277@(9 €/2t)>]

Substituting ¢ with b + ¢ we have

1°= —2mik
( ik g) exp(2mikd)

1 2t 1

qe — —

5 2 lexp (2mi(0 — (b+c)/2))]F  (3)
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This is the sum of a geometric series, so it is equal to

o 11 —exp(2mi(2'0 — (b +¢)))
2t 1 —exp(2mi(6 — (b+ c)/2Y))

Define 6 = 0 — b/2", then

1 1—exp(2mi(2'0 — ¢))
&e = ¢ ;
2t 1 —exp(2mi(0 — ¢/2t))

We shall upper bound the probability of getting a
measurement outcome m such that |m — b| > e. We

have

p(lm —0b] >e) = Z | |,

—2t—lce<—e—1,e+1<c<2t—1
Since |1 — exp(iz)| < 2,

2
< .
= 2t1 — exp(27i(0 — ¢/2%))]

a
We have |1 — exp(ix)| > 2|z|/7 for —7 < x < 7 and
—m < 27(0 — ¢/2") <, it follows

1
< )
‘ — 2t+1‘5 _ C/Qt‘

[
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Therefore we have

Ap(jm —b| > e)

1
< +
BRI T T A DN o
1 1
< -
B 2t—1Z 2 i Z i1 (C — 1)2
— <c<—e—1 e+1<c<2
1
<2y !
e<c<2t—1-1
2711 e
< 2 .
< 9 /
- 1 2
= if e > 1.

<e—1>

Suppose that we want an accuracy of 27", that is,

10— m/2! < 27",

0 —m/2" < 27"
& 20 —m| <2

< [b—m|< 27" -1

We can see that e = 287" — 1 ensures the desired

accuracy. The probability of the accuracy below 27"
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is 1/2(27" — 2) In order for 1/2(2™" — 2) < €, we
need t > n + logy (2 + 1/2¢).
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Factor N = pq

Suppose that we are give N = pq, with distinct
primes p and ¢, and asked to compute p and g. We
assume that N is odd. In order to break the RSA,
we need this kind of computation.

Firstly randomly choose 2 < x < N — 1, and see if
ged(x, N) > 1. If so, then z = p or x = ¢.
Otherwise, compute the order of x modulo NV, that is

ord(z, N) = min{i > 1| 2’ mod N = 1}

If ged(x, N) > 1 then there is no ¢ such that z* mod
N = 1. So we have to exclude this case first.
Theorem 1 Choose an integer x uniformly at ran-
dom such that ged(z, N)=Tand 1 <x < N —1, de-
fine r = ord(z, V). Then the probability of the event
that 7 is even and 2'/2 mod N # N — 1is > 3/4.
Proof. Omitted. A copy of proof is proveded.
Assume that r is even and 2/? mod N # N — 1.
Otherwise choose x again until the above condition
is satisfied.

Theorem 2 Let z be an integer such that 2 < z <
N—2and 22 mod N = 1. Then at least one of gcd(z+
1,N) or ged(z — 1, N) is greater than 1 and divides
N.
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Proof. Omitted. A copy of proof is provided.
Thus, ged(z™/2? + 1 mod N, N) or ged(z"/2 — 1 mod
N, N) is equal to p or g.
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Computing the order of x modulo N

There is no known fast algorithm for computing the
order of x modulo N. I will introduce a fast quantum
algorithm.

Let 21 < N <28 —1and 0 < y < 2 — 1, define
the unitary operator U such that

Uly) = |xy mod N).

We define zy mod N = y if N <y < 2L — 1. The
order of x modulo N is related to the phase of eigen-
values of U as follows.
Recall r = ord(z, N). For 0 < s < r — 1, define the
L-qubit quantum state

1 = —2misk
[us) = Z exp ( s > |2z¥ mod NV).
Then we have
1 = —2misk
Ulus) = — ) exp ( ik ) Ulz" mod N)
Vit r

1= —2misk
= — ) exp ( il ) 2"t mod V)
VT i r

1 —omis(k— 1
= — ) exp ( mis(k )> 2" mod N)
VT i r
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r r
o2mwis\ 1 =2 —2misk
= exp ms) exp( e ) |z¥ mod N)
r T r
218
= exp )\u8>
r

If we can estimate the phase of the eigenvalue of |uy),
we know s/r. From which we could know r. The
obstacle is that the preparation of |u,) requires the
knowledge of r. Let us see how we can bypass this
difficulty.

1?“1

Z )
] zg (zexp( 20 L i )

We shall show that

= (—27r7lsk>
Z exp = 70k0

r

Consider the sequence 0k mod r, £ mod r, 2k mod r,
Define d = min{j > 1 | jkmodr = 0}. d
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must divide r otherwise rk mod r would not be zero.
Moreover, jk mod r = (j + d)k mod r. Therefore,

s=0 r

d—1

r —2misk
- e ()

On the other hand, if 0 < j # j' < d—1 then jk mod
r # j'k mod r, otherwise (7 — j')k mod r = 0, which
is a contradiction to the minimality of d. This means
that

—2mi0k —2milk —2mi(d — 1)k
exp . , eXP . ,. .., €XD .

are pairwise distinct roots of X? —1 = 0.

vi_1 _ f[(X e <—2m'sk>)

s=0 r

This means that

2
Zexp ( msk) _ 0
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This means that

1 r—1

W;\ug = |2° mod N) = |1).

If we use the phase estimation algorithm with |1),
then we get the outcome close s/r with probability
1/rfors=0,...,r—1.

The reason is as follows: For |u,) the probability of
outcome far from s/r is almost zero. This means
that measurement outcomes of distinct |ug) and |ugy )
do not (almost) overlap.

Let M be an observable with distinct nondegener-
ate eigenvalues Ay, ..., A, and 7q, ..., n,. Suppose
that a state |¢) gives measurement outcome \; with
probability p; and |¢) gives n; with probability g;.
Then (|p) + [1))/v/2 gives measurement outcomes \;
with probability p;/2 and 7; with probability ¢;/2.
Observe the similarity between (|¢) + |¢¥))/v/2 and
S5 us) /+/7. The reason is as follows.

Let |¢;) be the eigenvector of \; and |1);) be the eigen-
vector of n;. Then we have

‘90> — 051‘901>+"'+04m‘90m>7
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Thus

EEIEN
The rest of reasoning is your exercise.

In the next lecture, I will show that how to compute
r from a binary fractional ditits 0.b105...b; that is
close to s/r for some unknown 0 < s <r — 1.
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Exercise

Submit your answer to the box in front of Room 311,
S3 building, by 17:00 Thursday, if you don’t finish by
12:10.

1. Let N =3x7and x = 2. Compute r = ord(x, N).
2. Tell if 27/ # N — 1 mod N.

3. Tell if 27/2 — 1 or 2™/2 + 1 is a factor of V.

4. Compute |ug) with above values and s = 1.

5. Let U be as defined in the lecture. With above
r and N, what is the eigenvalue of U to which |uq)
belongs?

6. Explain why the state in Eq. (4) gives measure-
ment outcome \; with probability p;/2 and n; with
probability ¢;/2.

7. If your answers to the previous exercises were eval-
uated as incorrect, please indicate whether or not you
agree to that evaluation. Write which part in today’s
lecture was difficult for your understanding.
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