
Interpretation of Problem 3

Suppose that Alice and Bob share (|0A0B〉 +

|1A1B〉)/
√

2 and that they measure the observable Z

on their qubit. Then

1. Their measurement outcomes are the same.

2. Their outcome is random (outcome +1 has

probability 0.5).

3. No third party can know the measurement out-

come.

Fact 1 means that they share the same bit. Fact 2

means that their bit is random. Fact 3 means that

their bit is secret. Thus, they share a secret common

random bit.

By using the same secret random bits, we can make

communication massages secret by the one-time pad.
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Quantum Fourier transform

I will explain the quantum factoring algorithm that

computes the pairs (pi, ei) from a given composit

number pe1
1 · · · pem

m , where pi’s are pairwise distinct

prime numbers and ei is a positive integer. An im-

portant inqredient of the quantum factoring is the

quantum Fourier transform, on which I will concen-

trate today.

Discrete Fourier transform transforms (x0, . . . ,

xN−1) ∈ CN to (y0, . . . , yN−1) ∈ CN , where

yk =
1√
N

N−1∑
j=0

xj exp(2πijk/N). (1)

Quantum Fourier transform (QFT): Let {|0〉, . . . ,

|N −1〉} be an orthonormal basis of CN . QFT trans-

forms

|j〉 �→ 1√
N

N−1∑
k=0

exp(2πijk/N)|k〉. (2)

This means that QFT transforms

x0|0〉 + x1|1〉 + · · · + xN−1|N − 1〉
into

y0|0〉 + y1|1〉 + · · · + yN−1|N − 1〉,
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where yk is the same as Eq. (1).

We shall show that QFT can be realized by a com-

bination of unitary operators acting on one or two

qubits. Recall that we cannot assume that any uni-

tary operator can be realized in quantum computa-

tion, otherwise we become unable to discuss the com-

putational complexity of quantum algorithms.
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Quantum Fourier transform 2

Hereafter we assume N = 2n. Define

j1j2 . . . jn.j�j�+1 . . . jm to be

j12
n−1+j22

n−2+· · ·+jn+j�/2+j�+1/4+· · ·+jm/2m−�+1,

where ji is either 0 or 1.

Fix 0 ≤ j < 2n. We introduce a useful representation

of QFT.

|j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jn〉 = |j〉

�→ 1

2n/2

2n−1∑
k=0

exp(2πijk/2n)|k〉

=
1

2n/2

∑
k1=0,1

· · · ∑
kn=0,1

exp

(
2πij

n∑
�=1

k�2
−�

)
|k1k2 . . . kn〉

=
1

2n/2

∑
k1=0,1

· · · ∑
kn=0,1

n⊗
�=1

exp(2πijk�2
−�)|k�〉

=
1

2n/2

n⊗
�=1

⎛
⎝ ∑

k�=0,1

exp(2πijk�2
−�)|k�〉

⎞
⎠

=
1

2n/2

n⊗
�=1

(
|0〉 + exp(2πij2−�)|1〉

)

=
1

2n/2
(|0〉 + exp(2πi0.jn)|1〉) ⊗ (|0〉 + exp(2πi0.jn−1jn)|1〉) ⊗

· · · ⊗ (|0〉 + exp(2πi0.j1j2 · · · jn)|1〉)
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The last equality may needs further explanation.

exp(2πij2−�)

= exp(2πi(j1j2 · · · jn)2−�)

= exp(2πi(j1j2 · · · jn−�.jn−�+1 · · · jn))

= exp(2πi(j1j2 · · · jn−�)) · exp(2πi(0.jn−�+1 · · · jn))

= 1 · exp(2πi(0.jn−�+1 · · · jn))
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Quantum Fourier transform 3

In summary, QFT transforms

|j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jn〉

into

(|0〉+exp(2πi0.jn)|1〉)⊗· · ·⊗(|0〉+exp(2πi0.j1j2 · · · jn)|1〉).
(3)

This equivalent representation of the QFT allows us

to find an efficient implementation of the QFT. Define

the unitary operator Rk by

|0〉 �→ |0〉, |1〉 �→ exp(2πi/2k)|1〉,

and the controlled-Rk by

|00〉 �→ |00〉, |01〉 �→ |01〉, |10〉 �→ |10〉, |11〉 �→ exp(2πi/2k)|11〉.

The controlled-Rk applies Rk to the first qubit iff the

second qubit is 1. Observe that the effect by Rk is

symmetric on the first and the second qubits.
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Quantum Fourier transform 3

|j1〉|j2〉 · · · |jn〉 �→
(|0〉+exp(2πi0.jn)|1〉) · · · (|0〉+exp(2πi0.j1j2 · · · jn)|1〉).
We shall show that n operations can produce |0〉 +

exp(2πi0.j1j2 · · · jn)|1〉 in the first qubit. Recall that

H|0〉 = (|0〉 + |1〉)/√2 and H|1〉 = (|0〉 − |1〉)/√2.

1-1. Apply H to the first qubit, which changes the

first qubit to

1√
2
(|0〉 + (−1)j1|1〉) =

1√
2
(|0〉 + exp(2πi0.j1)|1〉),

while keeping other qubits unchanged.

1-2. Apply the controlled-R2 to the first and the sec-

ond qubit, which changes the first qubit to

1√
2
(|0〉 + exp(2πi0.j1j2)|1〉),

while keeping other qubits unchanged.

1-3. Apply the controlled-R3 to the first and the third

qubit, which changes the first qubit to

1√
2
(|0〉 + exp(2πi0.j1j2j3)|1〉),

while keeping other qubits unchanged.
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...

1-n. Apply the controlled-Rn to the first and the n-th

qubit, which changes the first qubit to

1√
2
(|0〉 + exp(2πi0.j1j2 . . . jn)|1〉),

while keeping other qubits unchanged.
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Quantum Fourier transform 4

|j1〉|j2〉 · · · |jn〉 �→

(|0〉+exp(2πi0.jn)|1〉) · · · (|0〉+exp(2πi0.j1j2 · · · jn)|1〉).
We shall show that n − 1 operations can produce

|0〉 + exp(2πi0.j2 · · · jn)|1〉 in the second qubit. Af-

ter finishing the operations in the previous page, the

quantum state is

1√
2
(|0〉 + exp(2πi0.j1j2 . . . jn)|1〉) ⊗ |j2j3 . . . jn〉.

2-1. Apply H to the second qubit, which changes the

second qubit to

1√
2
(|0〉 + (−1)j2|1〉) =

1√
2
(|0〉 + exp(2πi0.j2)|1〉),

while keeping other qubits unchanged.

2-2. Apply the controlled-R2 to the second and the

third qubit, which changes the second qubit to

1√
2
(|0〉 + exp(2πi0.j2j3)|1〉),

while keeping other qubits unchanged.
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2-3. Apply the controlled-R3 to the second and the

forth qubit, which changes the second qubit to

1√
2
(|0〉 + exp(2πi0.j2j3j4)|1〉),

while keeping other qubits unchanged.

...

2-(n − 1). Apply the controlled-Rn−1 to the second

and the n-th qubit, which changes the first qubit to

1√
2
(|0〉 + exp(2πi0.j2j3 . . . jn)|1〉),

while keeping other qubits unchanged.
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Quantum Fourier transform 5

|j1〉|j2〉 · · · |jn〉 �→
(|0〉+exp(2πi0.jn)|1〉) · · · (|0〉+exp(2πi0.j1j2 · · · jn)|1〉).
We shall show that single operation can produce |0〉+
exp(2πi0.jn)|1〉 in the n-th qubit. After finishing the

operations in the previous pages on the first to the

(n − 1)-th qubits, the quantum state is
1

2(n−1)/2 (|0〉 + exp(2πi0.j1j2 . . . jn)|1〉) (|0〉 +

exp(2πi0.j2j3 . . . jn)|1〉) · · · (|0〉+exp(2πi0.jn−1jn)|1〉)
⊗ |jn〉.
n-1. Apply H to the n-th qubit, which changes the

n-th qubit to

1√
2
(|0〉 + (−1)jn) =

1√
2
(|0〉 + exp(2πi0.jn)|1〉),

while keeping other qubits unchanged.

Now the quantum state of the whole n qubits is
1

2(n−1)/2 (|0〉 + exp(2πi0.j1j2 . . . jn)|1〉) (|0〉 +

exp(2πi0.j2j3 . . . jn)|1〉) · · · (|0〉+exp(2πi0.jn−1jn)|1〉)
(|0〉 + exp(2πi0.jn)|1〉),
which is the result of QFT in the reverse order of

qubits.

Observe that the number of operations is n(n+1)/2.
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Universal quantum operations

Any classical computation can be realized by the

AND, OR, NOT gates, and the computational com-

plexity can be measured as the number of necessary

gates.

QFT uses the n kinds of unitary operations instead

of a fixed set of operations. This makes the couting

of computational steps unfair.

It is known that any controlled-U operation can be

approximated by about [log(1/ε)]2 operations in some

fixed set of operations, where ε is the accuracy of

approximation defined by

max
|ϕ〉

‖V1|ϕ〉 − V2|ϕ〉‖.

Therefore, the degree of computational complexity of

QFT on n qubits is roughly proportional to n(n +

1)/2.
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Exercise

Submit your answer to the box in front of Room 311,

S3 building, by 17:00 Thursday, if you don’t finish by

12:10.

Let N = 8 and n = 3. You must write detailed steps

in the computation.

1. Compute the QFT in Eq. (2) with j = 5.

2. Compute the QFT in Eq. (3) with j1 = 1, j2 = 0,

j3 = 1.

3. Compute the QFT by using H, the controlled-R2

and the controlled-R3 with j1 = 1, j2 = 0, j3 = 1.

4. Compare the above results.

5. If your answers to the previous exercises were eval-

uated as incorrect, please indicate whether or not you

agree to that evaluation. Write which part in today’s

lecture was difficult for your understanding.
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