Interpretation of Problem 3

Suppose that Alice and Bob share (|040p) +
1415))/v/2 and that they measure the observable Z
on their qubit. Then

1. Their measurement outcomes are the same.

2. Their outcome is random (outcome +1 has
probability 0.5).

3. No third party can know the measurement out-

comne.

Fact 1 means that they share the same bit. Fact 2
means that their bit is random. Fact 3 means that
their bit is secret. Thus, they share a secret common
random bit.

By using the same secret random bits, we can make
communication massages secret by the one-time pad.
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Quantum Fourier transform

I will explain the quantum factoring algorithm that
computes the pairs (p;, e;) from a given composit
number pi’---p&. where p;’s are pairwise distinct
prime numbers and e; is a positive integer. An im-
portant inqredient of the quantum factoring is the
quantum Fourier transform, on which I will concen-
trate today.

Discrete Fourier transform transforms (xq, ...,
rn_1) € CN to (yo, ..., yn—1) € CV, where

Z zjexp(2mijk/N). (1)

Quantum Fourier transform (QFT): Let {|0), ...,
I[N —1)} be an orthonormal basis of C. QFT trans-

forms

1 N-—1

7) — Ny kzo exp(2mijk/N)|k). (2)

This means that QFT transforms
I0‘0> —+ I1‘1> —+ -4+ .CEN_l‘N — ].>

into
Yol0) + 11 |1) + - +yn—1|N — 1),
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where y;, is the same as Eq. (1).

We shall show that QFT can be realized by a com-
bination of unitary operators acting on one or two
qubits. Recall that we cannot assume that any uni-
tary operator can be realized in quantum computa-
tion, otherwise we become unable to discuss the com-
putational complexity of quantum algorithms.
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Quantum Fourier transform 2

Hereafter we assume N = 2m, Define

Jij2 - Jn-Jejes1 - - Jm tO be
j12n—1+j22n—2+, . _|_]n_i_]£/2_i_]£+1/4+ . '+jm/2m_£+1’

where j; is either O or 1.
Fix 0 < 57 < 2™ We introduce a useful representation
of QFT.

1) @ [J2) @ -+ @ |jn) = [J)
1 2" —1

— W > exp(2mijk/2™)|k)
k=0

— 2n/2 > Z exp (2%232]@2 >V€1/€2kn>
k1=0,1  kp=0,1

27")|Fee)

0,1 kn=0,1 (=1

— 2n/2 ( exp(2mijk 2~ )kg>>

— 2n/2 + exp(2mij2~ )\1>>
(= 1

1

= 5.75(10) + exp(2mi0.5,)[1)) @ (10) + exp(2mi0.ju-1n)[1)) @

® (|0) + exp(27mi0.5172 - - - 7n)[1))
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The last equality may needs further explanation.

exp(27ij27")
= exp(2mi(jufa - - ju)27)
= exp(2mi(J1J2 " Jn—t-Jn—t11° " Jn))
= exp(2mi(jij2 - - Jnor)) - exp(27(0.Jp—ri1 - - - Jn))
= 1-exp(2mi(0.Jn—ts1--+Jn))
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Quantum Fourier transform 3

In summary, QFT transforms

171) @ |72) ® -+ @ |Jn)
into

(10)+exp(2i0. ) [1))@- @ (|0)+exp(2mi0.ji o - jn)|1)).
(3)
This equivalent representation of the QFT allows us

to find an efficient implementation of the QFT'. Define
the unitary operator Ry by

0) = [0), 1) = exp(2mi/2°)[1),
and the controlled-R;, by
00) — |00),]01) — |01),]10) — |10),]11) — exp(2mi/2%)|11).

The controlled-R;, applies Ry to the first qubit iff the
second qubit is 1. Observe that the effect by Ry is
symmetric on the first and the second qubits.
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Quantum Fourier transform 3

701g2) -+ dn) =

(10)-+exp(2mi0.ju)[1)) - (10)-+exp(2mi0.jujs - ju)|1)).
We shall show that n operations can produce |0) +
exp(27i0.5172 - - - jn)|1) in the first qubit. Recall that
HI0) = (10) + [1))/v/2 and HI1) = (0) — [1))/v/3.
1-1. Apply H to the first qubit, which changes the
first qubit to

1 J —i exp(2m20.7
EGOH(_D \1))_\/§(yo>+ p(2mi0.51)|1)),

while keeping other qubits unchanged.
1-2. Apply the controlled-R5 to the first and the sec-
ond qubit, which changes the first qubit to

L(\O) + exp(27i0.51j2)[1)),

V2

while keeping other qubits unchanged.
1-3. Apply the controlled-R3 to the first and the third
qubit, which changes the first qubit to

%m + exp(2mi0.j1j2js) 1)),

while keeping other qubits unchanged.
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1-n. Apply the controlled-R,, to the first and the n-th
qubit, which changes the first qubit to

1 o
75(\@ + exp(27i0.5172 - - - jn)|1)),

while keeping other qubits unchanged.
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Quantum Fourier transform 4

701d2) -+ gn) =

(10)+exp(2mi0.7,)[1)) - - - (|0)+-exp(2mi0.j1 2 - - Ju)[1)).
We shall show that n — 1 operations can produce
0) + exp(27i0.j2 - - - j,)|1) in the second qubit. Af-
ter finishing the operations in the previous page, the

quantum state is

75(‘(»+€Xp(2ﬂlo.]1]2...]n)’1>)®‘]2]3---]n>-

2-1. Apply H to the second qubit, which changes the
second qubit to

1 jo —L exp(2m20.9
EGOH(_D \1))_\/§(yo>+ p(2mi0.52)[1)),

while keeping other qubits unchanged.
2-2. Apply the controlled-R, to the second and the
third qubit, which changes the second qubit to

L(\0) + exp(27i0.5273)|1)),

V2

while keeping other qubits unchanged.
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2-3. Apply the controlled-R3 to the second and the
forth qubit, which changes the second qubit to

1 o
ﬁ(m} + exp(27i0.525354)[ 1)),

while keeping other qubits unchanged.

2-(n — 1). Apply the controlled-R,,_; to the second
and the n-th qubit, which changes the first qubit to

1 o
7§(\0} + exp(2mi0.j2Js - - - jn)| 1)),

while keeping other qubits unchanged.

2009-8-13



Quantum Fourier transform 5

701g2) -+ dn) =

(10)+exp(2mi0.)[1)) - - - (J0)-+exp(2mi0.51Ja - - ju)|1)).
We shall show that single operation can produce |0)+
exp(27i0.5,)|1) in the n-th qubit. After finishing the
operations in the previous pages on the first to the
(n — 1)-th qubits, the quantum state is
sz (10) +  exp(2mi0.jija ... a)[1)  (10)  +
exp(27i0.jajs - jn)1)) - - (10)+exp(2mi0. 1) 1))
R |Jn)-
n-1. Apply H to the n-th qubit, which changes the
n-th qubit to

1

i 1 o~
ﬁ(’m + (—1)") = ﬁ(lm + exp(27i0.5,)[1)),

while keeping other qubits unchanged.

Now the quantum state of the whole n qubits is
sz (10) + exp(2mi0.jija-. - 4n)l1))  (10) +
exp(2mi0.jajs - ja) 1)) -+ (|0)+exp(2mi0.ju_1ja)[1)
(10) + exp(27i0.jn)|1)),

which is the result of QFT in the reverse order of
qubits.

Observe that the number of operations is n(n+1)/2.
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Universal quantum operations

Any classical computation can be realized by the
AND, OR, NOT gates, and the computational com-
plexity can be measured as the number of necessary
gates.

QFT uses the n kinds of unitary operations instead
of a fixed set of operations. This makes the couting
of computational steps unfair.

It is known that any controlled-U operation can be
approximated by about [log(1/¢)]* operations in some
fixed set of operations, where € is the accuracy of
approximation defined by

I?SXHVH@ — Valp)]l.

Therefore, the degree of computational complexity of
QFT on n qubits is roughly proportional to n(n +

1)/2.
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Exercise

Submit your answer to the box in front of Room 311,
S3 building, by 17:00 Thursday, if you don’t finish by
12:10.

Let N =8 and n = 3. You must write detailed steps
in the computation.

1. Compute the QFT in Eq. (2) with j = 5.

2. Compute the QFT in Eq. (3) with j; =1, jo = 0,
j3 = 1.

3. Compute the QFT by using H, the controlled-Rs
and the controlled-R3 with j; =1, 50 =0, j3 = 1.

4. Compare the above results.

5. If your answers to the previous exercises were eval-
uated as incorrect, please indicate whether or not you
agree to that evaluation. Write which part in today’s
lecture was difficult for your understanding.
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