RF Devices and RF Circuit Design for Digital Communication

Agenda

- Fundamentals of RF Circuits
- Transmission Line
- Reflection Coefficient & Smith Chart
- Impedance Matching
- S-matrix Representation
- Amplifiers & Unilateral Gain
- RF Devices
- Digital RF

2009/07/03

Wireless Communication Engineering I

- Fundamentals of RF Circuits
 - Lumped-element circuits: $\lambda \gg L$, L is a typical length of device.

e.g.
$$\lambda = 30$$
 cm for $f = 1$ GHz

- Distributed-element circuits: $\lambda \sim L$

Lead Line becomes a coil and/or capacitance.

Historically **Rayleigh** analyzed an undersea cable based on distributed circuit concept.

→Image Impedance and Propagation Constant

- Basic distributed element: **Transmission Line**

F-matrix of Transmission Line

$$F = \begin{bmatrix} \cos\theta & jZ_0 \sin\theta \\ j\sin\theta/Z_0 & \cos\theta \end{bmatrix}$$

 Z_0 : Characteristic impedance of Transmission Line

$$\theta$$
: Phase delay $= \beta \ell = \omega \sqrt{\varepsilon \mu} \ell = \omega \ell / v$

 ℓ : length

v: velocity

Inductance, Capacitance, Filter, Impedance Transformer

Short-end

Open-end

Wireless Communication Engineering I 2009/07/03

2009/07/03

Wireless Communication Engineering I

Impedance Inverter : $ZL \Rightarrow Zin$

Shunt to Series Connection

Wireless Communication Engineering I 2009/07/03

2009/07/03

Wireless Communication Engineering I

Equivalent Circuit of Transmission Line by Foster Expansion

A Series Connection of Parallel Resonance Circuits

2009/07/03 Wireless Communication Engineering I

-Short (Open) - circuited load: \rightarrow Reactance element $X_{in} = Z_0 \tan \theta$: short-circuited load

 $0 < \theta < \pi/2$: Inductance $\theta \approx \pi/2$: Parallel resonance circuit $\pi/2 < \theta < \pi$: Capacitance

- -Stub
- -Quater-wavelength Transformer
- → Matching coating lense

2009/07/03 Wireless Commun

Wireless Communication Engineering I

Short-terminated Line Wireless Communication Engineering I

• Reflection coefficient (Γ) and Load Impedance (Z_L)

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}$$
: Bilinear mapping

 Z_0 : reference characteristic impedance

Circle to Circle Mapping (Moebius Transform)

Smith Chart

Wireless Communication Engineering I

2009/07/03

2009/07/03

Wireless Communication Engineering I

Reflection type amplifier

Reflection type phase modulator

13

• Voltage Standing Wave Ratio (VSWR)≥1

$$VSWR = \frac{V_{max}}{V_{min}} = \frac{V_i + V_r}{V_i - V_r}$$
$$\left| \Gamma \right| = \frac{V_r}{V_i} = \frac{VSWR - 1}{VSWR + 1}$$

 V_i : incident wave

 V_r : reflected wave

• Special Terminations / Circuits

-Matched load: $(Z_L = Z_0) \rightarrow \Gamma = 0$, No reflection

- Smith-chart and its usage

 $|\operatorname{Re}(Z_L)>0:|\Gamma|<1 \text{ (Passive)}|$

 $|\operatorname{Re}(Z_{I})| = 0: |\Gamma| = 1 \text{ (Lossless)}$

 $|\operatorname{Re}(Z_L) < 0: |\Gamma| > 1 \text{ (Active)}$

• Smith-chart (Bell Lab. 1950's)

$$Z_{\text{in}} = Z_0 \frac{Z_L + jZ_0 \tan \theta}{Z_0 + jZ_L \tan \theta}$$

$$Z_{L} \to \widetilde{Z}_{L} = \frac{Z_{L}}{Z_{0}} \to \Gamma_{L} = \frac{\widetilde{Z}_{L}-1}{\widetilde{Z}_{L}+1} \to$$

$$\Gamma_{\text{in}} = \Gamma_{L} \exp^{-j2\theta} \to \widetilde{Z}_{\text{in}} = \frac{1+\Gamma_{\text{in}}}{1-\Gamma_{\text{in}}} \to Z_{\text{in}}$$

2009/07/03

Impedance Transforming

Wireless Communication Engineering I 2009/07/03

16

Smith Chart

17

Wireless Communication Engineering I 2009/07/03

• How to use Smith-chart -Matching Circuit Design

Single-stub Matching

- Microstrip Line
 - Effective permittivity and guided wavelength
 - Characteristic Impedance
 - Several notes: Finite conductor thickness

Wireless Communication Engineering I 18 Wireless Communication Engineering I 2009/07/03 2009/07/03

Microstrip Line (Effective Permittivity)

2009/07/03 Wireless Communication Engineering I

Coaxial Line

$$Z_0 = \frac{138}{\sqrt{\varepsilon_r}} \log \frac{b}{a}$$

2009/07/03 Wireless Communication Engineering I 21

Pair-cable Line

$$Z_0 = 120 \cosh^{-1} \left(\frac{b}{a}\right)$$

2009/07/03

Wireless Communication Engineering I

22

Meta Material

- Right-Hand Transmission Line
- Left-Hand Transmission Line
- Composite RH/LH Transmission Line
- Compact Directional Coupler
- Super-Lense

2009/07/03

Wireless Communication Engineering I

25

Left-Handed: Phase velocity and group velocity are in opposite directions.

2009/07/03

Left-Handed Metamaterial: Miniaturization, but Narrow Bandwidth

Mutual coupling reduction between two dipole antennas using CRLH parasitic elements are clarified.

Wireless Communication Engineering I

2009/07/03 Wireless Communication Engineering I

29

When CRLH parasitic element is used, the value of S21 decreases sharply at around 750 MHz due to band rejection frequency of CRLH parasitic element.

2009/07/03 Wireless Communication Engineering I

720MHz dipole 750MHz dipole
25dBV/m
60dBV/m
40dBV/m 40dBV/m

720MHz dipole 750MHz dipole 60dBV/m 25dBV/m 40dBV/m 8dBV/m

With parasitic element

Electric field distribution spreads from 720 MHz dipole to 750 MHz dipole without parasitic element.

28

Electric filed distribution concentrates around 720MHz dipole with parasitic element.

2009/07/03 Wireless Communication Engineering I

• S-parameter and RF Circuit Design

-S-parameter (1950's ← Nuclear Physics)

voltage, current \rightarrow incident wave, reflected wave impedance \rightarrow reflection coefficient impedance matrix \rightarrow scattering matrix, [S]

For lossless circuit, S-matrix = Unitary Matrix

For lossy circuit, $S^{\dagger}S \leq I$ Para-unitary

For Reciprocal circuit, S-matrix = Symmetric matrix

2009/07/03

Wireless Communication Engineering I

2009/07/03

2009/07/03

32

Wireless Communication Engineering I

33

SVD (Singular Value Decomposition)

$$S=U^{\dagger}DV$$
 (Youla)

U,V: Unitary matrix (Lossless Circuit)

D: Diagonal Matrix (\rightarrow Isolated n-port circuit)

$$D = Diag[\lambda_1, ..., \lambda_n]$$

$$\lambda_i < 1$$
 \rightarrow resistance

$$\lambda_i > 1$$
 — negative resistance

Generalization of Darlington realization

- Basics of RF Circuit Design

• Impedance Matching Circuits

$$Z_g = Z_L^*$$

 Z_g : Generator Impedance

 Z_L : Load Impedance

Conjugate Matching

2009/07/03

Wireless Communication Engineering I

2009/07/03

36

38

Wireless Communication Engineering I

37

Unilateral Transducer Gain G_{TU}

(For the case, $S_{12} = 0$ Reverse transfer coefficient from output to input)

FET
$$S$$
 - parameter $\begin{vmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{vmatrix}$

$$G_{TU} = \frac{\left(1 - \left|\Gamma_{s}\right|^{2}\right)}{\left|1 - S_{11}\Gamma_{s}\right|^{2}} \cdot \left|S_{21}\right|^{2} \cdot \frac{\left(1 - \left|\Gamma_{L}\right|^{2}\right)}{\left|1 - S_{22}\Gamma_{L}\right|^{2}}$$

$$= G_{s} \cdot G_{0} \cdot G_{L}$$

$$G_{TU, \max} = \frac{1}{1 - \left| S_{11} \right|^2} \cdot \left| S_{21} \right|^2 \cdot \frac{1}{1 - \left| S_{22} \right|^2}$$

Input and Output Matching Circuit

Unilateral Gain U: Mason's Invariant

Circuit Invariant

- Unilateral Gain (U)
- Maximum Available Gain (MAG)
- Noise Measure (M)
- 2-state diode (m, Q)
- Circulator Invariant (α)
- Directional Coupler Invariant (K)

2009/07/03

2009/07/03

Wireless Communication Engineering I

2009/07/03

Wireless Communication Engineering I

40

2-state device

- On-state impedance Z1, Off-state impedance Z2
- M= $|Z1-Z2|/|Z1+Z2*| \Rightarrow$ Invariant w.r.t. Lossless 2port connection
- M= $|\Gamma 1-\Gamma 2|/|1-\Gamma 1\Gamma 2^*| \Rightarrow$ Optimum BPSK Direct Modulation Design

RF Devices

- Passive Components / Circuits
 - Reactance Elements
 - Distributed-element:Open-stub, Short-stub, Line GapWide Line, Narrow Line
 - Lumped-element:Spiral Inductor, Gap Capacitor, Thin Film Capacitor

2009/07/03

Wireless Communication Engineering I

Attenuators:

Thin Film Resistor

• Impedance Transformers: Quater-wavelength Impedance Transformer

$$Z_{\rm in} = \frac{Z_0^2}{Z_L}$$

Wireless Communication Engineering I

• Resonator:

- -Lumped Element Type
- -Microstrip Line Type
- -Dielectric Resonator Type (Good Ceramic)

Wireless Communication Engineering I

Distributing Components / Circuits

• Directional Coupler:

2009/07/03

Power Monitor, Balanced Type Modulator / Amplifier / Mixer Lossless reciprocal matched two-fold symmetry 4-port

- → Perfect Directional Coupler with 90deg. Phase Difference
- Coupled Line Type
- Inter-digital Type
- Branch Line Type
- Rat-race Type

2009/07/03 Wireless Communication Engineering I

2009/07/03

2009/07/03

Wireless Communication Engineering I

47

• Power Divider / Combiner:

Perfect Matching + Perfect Isolation → Absorbing Resistance

- Filter
 - Low Pass Filter (LPF):L, C Ladder Filter
 - Band Pass Filter (BPF):Half-wavelength transmission line resonator
 - −Band Stop Filter (BSF):

• Transmission Scheme and RF Circuits

Objectives: Low Power Consumption,
Higher Frequency, Small Size,
Low Weight

2009/07/03 Wireless Communication Engineering I 48 2009/07/03 Wireless Communication Engineering I 49

Block diagram of Transceiver

- Basic configuration of RF Circuits: Super-Heterodyne

Mixer: Up-conversion Down-conversion

Amplifier: Power Amp. (TX) Low Noise Amp. (RX)

Oscillator: Local Oscillator

Filter: LPF, BPF

TX Level Diagram

2009/07/03 Wireless Communication Engineering I

Digital RF Circuits

- RF-CMOS Technology
- Analog Signal Processing & Digital Signal Processing
- Continuous Time & Discrete Time
- Direct Conversion & Sampling
- Built-in RF Self Test & Calibration

RX Level Diagram

2009/07/03 Wireless Communication Engineering I

Typical Cell-Phone Block Diagram

2009/07/03

52

SoC Drives Cost Reduction

- ◆SoC Integration Includes:
 - Digital baseband
 - ❖ SRAM
 - Power management
 - Analog
 - * RF
 - Processors & Software
- The DRP technology enables digital implementation of traditional analog RF functions in standard CMOS
- Most advanced process technology used to maximize integration while minimizing cost
 - 90nm (shipping)
 - 65nm (mature design)
 - 45nm and beyond (preliminary)

56

58

2009/07/03

2009/07/03 Wireless Communication Engineering I

DRP/SoC Proven Across Many Products

2009/07/03 Wireless Communication Engineering I

Analog RF Challenges in DSM CMOS

- ■Power supply voltage overhead must scale to ~1Volt
- Passives need high quality inductors, caps, etc.
- Noise/clock coupling time-align to avoid interference
- Development time should not delay node migration of digital baseband processor portion.
- Cost need to minimize multiple pass testing and yield loss

Digital Transceiver Architecture

Conventional Direct Conversion is a Great Technology

- ... but not well suited for CMOS integration
 - ... and digital techniques improve perf/power
 - ... and digital provides a path to SDR!!

The DRP Approach for Transceivers

- Minimize analog and RF circuitry
 - Self-calibrate remaining analog (with dedicated processor)
 - Relax passive requirements as much as possible
- Digital approach speeds debug and development
- Self-test and calibration made possible
- Production yield dominated by silicon defect density

2009/07/03 Wireless Communication Engineering I 60

The DRP Approach (continued)

- Move functions to domains of CMOS-process strengths
 - Operate in fine time resolution, avoid fine voltage resolution.
 - Inductor area could be equal to ~100K gates (use digital!)
 - Use switched cap techniques excellent matching in DSM CMOS (not sensitive to process variations)
 - Logic and switched cap circuits can work well at low voltage

2009/07/03

Wireless Communication Engineering I

61

DRP RF Architecture

All-Digital PLL Vs. Conventional PLL

- The ADPLL is "Analog" only in FF, TDC and DCO
- Varactors operate in low sensitivity states ("on" or "off")
- Self-calibration is easy -- DCO gain can be assessed numerically
- Can lock very fast, dynamically change loop bandwidth (<10usec). and collect register settings for "instant restart" on frequency.

Drawbacks of Conventional Analog PLL

- Many analog functions = multiple noise sources
- Varactors in VCO are sensitive (high tuning factor, i.e. KVCO)

64

66

- Loop filter may be large, leaky capacitors (for open loop "freeze"), variances in passives...
- Hard to calibrate
- Lock times can be long (>100µsec)

2009/07/03 Wireless Communication Engineering I

All-Digital PLL (ADPLL)

2009/07/03 Wireless Communication Engineering I 65

Digitally-Controlled Oscillator Core

DCO Varactor Banks

High-speed dithering and dynamic element matching are used to achieve high resolution (LSB = \sim 1.5Hz).

2009/07/03 Wireless Communication Engineering I

2009/07/03 Wireless Communication Engineering I

Time-to-digital Converter (TDC)

- Quantized phase detector with resolution of about 20 ps
- DCO clock passes through the inverter chain
- Delayed outputs are sampled by FREF

2009/07/03 Wireless Communication Engineering I

68

70

Production Testing Simplification

- Extensive use of built-in-testing capabilities to reduce test costs.
- Tester is simple (low cost) and test time is minimal.

2009/07/03 Wireless Communication Engineering I 69

The DRP Technology - Summary

2009/07/03 Wireless Communication Engineering I