5¢ 5¢ 0’ _
OX? ay2 T2

o _ 20
a2 P o oy?

Very important equation in science and engineering

Bl Maxwell's Equation for Scalar Potential
B Incompressible Navier-Stokes Equation
B Steady State of Diffusion (Thermal Conduction) Equation

Poisson Equation

1-dimensional case:
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2-dimensional case:
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Poisson Equation

N x N linear coupling equations
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Poisson Equation ’s
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Gauss Elimination Method is not available, because
the matrix size is too large.

Sparse Matrix:
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3-D Poisson Equation JIE Matrix Solver  JE

GSIC
\ O11s P11 Relaxation Method:
0r11 P211 *Point Jacobi
-Gauss-Seidel
*SOR
(I)i,j,k = AX® Pi,jk . .
*|CCG (Incomplete Conjugate Gradient)
*ILUCR (Incomplete LU Conjugate Residual)
\ Oninn PN-LN N *BiCGStab (Bi-conjugate Conjugate Gradient Stabilize)
Onn Prnn B Advantage: Memory and CPU time
For example, N, x N, x N, =100x100x100 Ml Disadvantage : No guarantee to be solved
Double precision 8 byte x (1000000)? = 8x1012=8 TB limited types of matrix

c.f. TSUBAME : 20TB
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Point Jacobi Method ; Point Jacobi Method ’s
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Expecting iterative convergence: Starting from the initial value (I)? ,
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lterative calculations give (I)lj : (I)Zj : ¢?; RIRIN ¢?+1

i ‘d)?*l ~ ¢’;‘ < ¢ is satidfied, the iteration has been
converged.

If 5" = (I)'; , (I)r; is the solution of Poisson equation.
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Point Jacobi Method JIE
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von Neumann'’s stability analysis
for the iterative process:

Assuming the perturbation ¢ =8¢" "
6¢n+1/8¢n :%(eikAx +e—ikAx): cos kAX

The iteration process is stable, but slow.
Actual stability depends on the source term.
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Introduction of the relaxation factor : ®

Stability analysis 8¢"" /80" = (1- ®) + wCOSKAX < 1
(0<w<))

Small 8¢""' /384" means rapid decrease of the error.

o =1 is found to be the fastest convergence of Jacobi

Iteration method.
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SOR Method k

Any faster convergence technique ?

n+1

When we calculate ¢ , if (I)rj”i has been calculated,
n+l

it is better convergence to use (I) .

n+1 ((I) n+1
¢ i —AX°p, )
This iteration method is called “Gauss-Seidel” method.
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SOR Method

Introductlon of the relaxatlon factor 0

The stability analysis shows that the iteration
process is stable for0<w < 2.

Acceleration of the iteration : 1 <o < 2.
SOR (Successive Over-relaxation) Method

The fastest convergence is achieved for o ~ 1.82 .
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www.sim.gsic.titech.ac.jp/Lecture/CFD2008/program17.tgz
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