3. Local (Structural) Stress Based Fatigue Design

Contents

- Brief Review of Nominal Stress Based Fatigue Design
- Structural Stress Based Fatigue Design
 - -Fatigue Assessment of Welded Joints->Cope Hole Joints
 - >High Strength Steel Steels
- Stress Analysis Method for Root Cracks -Effective Notch Stress-

The Structural Hot-Spot Stress Approach

The Structural Hot-Spot Stress Approach is recommended for welded joints where there is no clearly defined nominal stress due to complicated geometric effects, and where the structural discontinuity is not comparable to a classified structural detail

- due to complicated geometry
- due to structural discontinuities
- due to complicated plate deformation

Definition of The Structural Hot-Spot Stress

 Hot Spot S-N Curves										
No	Structural detail	Description	Requirements	FAT Steel	FAT Alu.					
1	- 8 >	Butt joint	As welded, NDT	100	40					
2		Cruciform or T-joint with full penetration K-butt welds	K-butt welds, no lamellar tearing	100	40					
3	<u> </u>	Non load-carrying fillet welds	Transverse non-load carry- ing attachment, not thicker than main plate, as welded	100	40					
4		Bracket ends, ends of longitudinal stif- feners	Fillet welds welded around or not, as welded	100	40					
5		Cover plate ends and similar joints	As welded	100	40					
6	€ → →	Cruciform joints with load-carrying fillet welds	Fillet welds, as welded	90	36					

Hot Spot S-N Curves

No	Structural detail	Description	Requirements	FAT Steel	FAT Alu.
7	•	Lap joint with load carrying fillt welds	Fillet welds, as welded	90	36
8	L <u>≤ 1</u> 00 mm	Type "b" joint with short attachment	Fillet or full penetration weld, as welded	100	40
9	L > 100 mm	Type "b" joint with long attachment	Fillet or full penetration weld, as welded	90	36

Fatigue Assessment of Cope Hole Details in Steel Bridges

Effect of shear on weld with cope holes in IIW

 τ : shear stress in web at weld end σ : nominal stress in flange at weld end

Description	FAT	FAT	Requirements and Remarks
(St.= steel; Al.= aluminium)	St.	Al.	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	71 63 56 50 45 40 36	28 25 22 20 18 16 14	Analysis based on normal stress in flange and shear stress in web at weld ends. representation by formula?? steel 80· $(1 - \frac{\Delta \tau}{\Delta \sigma})$ but >=36 alum. 36· $(1 - \frac{\Delta \tau}{\Delta \sigma})$ but >=14

