

Contents

- 1. Introduction
- 2. Fatigue Design Curve
- 3. Strength Categories of Joints and Their Basic Allowable Stress Ranges
- 4. Correction Factor for Basic Allowable Stress Ranges
- 5. Fatigue Assessment
- 6. Fatigue Design Curves from IIW and AASHTO

Fatigue Design Recommendations

Safety Assessment in the Fatigue Limit State of Steel Structural Members

> *Fatigue Design Recommendations For Steel Structures* By Japanese Society of Steel Construction (JSSC) 1993(in Japanese), 1995(in English)

> > The Reference of Today's Lecture

Other Organizations with Recommendations: AASHTO (American Association of State Highway and Transportation Officials), IIW (International Institute of Welding), ...

trength of Various Types of Steels						
t=20mm	MPa					
	σa	σy	σt	Price(¥)	σt/2.2	σy/1.7
SM400	140	235	400	96,000	182	138
SM490Y	210	355	490	104,500	223	209
SM570	255	450	570	138,500	259	265
HT690	310	590	690		314	347
HT780	350	690	780		355	406

C	too	C
U	にしし	J

Steels intended for the Recommendations are <u>carbon steel</u> and <u>low alloy steel</u>

Ultimate Strengths:

Steels ---- 330MPa-1GPa

Wires \longrightarrow up to 1.6GPa

Brittle fracture from fatigue crack Hoan-bridge in U.S.A

What's Fatigue

- Fatigue: Deterioration of a component caused by crack initiation and/or by the growth of cracks.
- Crack is initiated and propagate and causes fatigue failure of the component under the repetition of load.
- Fatigue limit : Fatigue strength under constant amplitude loading corresponding to a high number of cycles large enough to be considered infinite by a design code.

IIW Fatigue Recommendation 2005 Fe

Propagation Speed					
∆Kth 2	$MPa\sqrt{m}$			\frown	
C 2	.70E-11	da _	(
m 2	.75	$\overline{dN} = C$	$\left(\Delta K^{m} - \Delta K_{th}^{m}\right)$	↓ I	
Δσ 5	0 MP	a : JSSC F	atigue Design		
a(mm)	ΔК	da∕dN(m)	mm/0.1mil.cyc le		
1	2.802496	2.77683E-10	0.02776832		
5	6.266571	4.01785E-09	0.401785208		
10	8.862269	1.07105E-08	1.071048471		
20	12.53314	2.8069E-08	2.806902616		

Stress range and repetition Most influential factors on fatigue are stress range and number of repetition of it. Fatigue strength of steel itself is increased with their strength, but fatigue strength of weld joints has little dependency on the material strength.

 Fatigue strength : Fatigue crack is initiated from weld defects, notch, or stress concentrated part in weld joints and propagate. Residual stress influences on the fatigue strength.

Characteristics of fatigue damage 2

- Crack propagation
 After propagation, Crack will break the material with
 brittle fracture, or will stop propagation after the
 release of stress due to the cracking.
- Relation between stress range and fatigue life
 Linear relation on Log-Log plot
- Fatigue in highway bridge : People considered that Fatigue of primary member never happen except Steel deck under vehicle's load in Japan before.

Predominant Factors Controlling Fatigue Strength

- 1. Joint Types
- 2. The Magnitude of The Nominal Stress Range
- 3. Number of Stress Cycles

Joint Types

- 1. Welded Connections
 - o Transverse butt welded joints
 - o Longitudinal welded joints
 - o Cruciform joints
 - o Gusset joints
 - o Other welded joints
- 2. Cable Connections

Nominal Stress Ranges

Structures subjected to loads

	Type of Stree	ss for Fatig	ue Assessm	ent
Туре	Stress raisers	Stress determined	Assessment procedure	
A	General analysis of sectional forces using beam theory, no stress raiser considered	Gross average stress from sectional forces	not applicable for fatigue analysis, only component testing	Beam model
В	A + macrogeometrical effects due to the design of the component, but excluding stress risers due to the welded joint itself.	Range of nominal stress (also modified or local nominal stress)	Nominal stress approach	Shell model
С	A + B + structural discontinuities due to the structural detail of the welded joint, but excluding the notch effect of the weld toe transition	Range of hot-spot structural stress	hot-spot structural stress approach	Shell or Solid model
D	A + B + C + notch stress concentration due to the weld bead notches a) actual notch stress b) effective notch stress	Range of elastic notch stress (total stress)	a) Fracture mechanicsapproachb) effective notchstress approach	Solid detailed FEM model with bead

Fatigue Design Curves (2)

Cables and High Strength Bolts Subjected to Normal Stresses

Non-Welded Joints (2)					
3. Seamless tul	pes		B (155)		
4. Base plates	with circu	ılar holes	C (125)		
5 Base	(1) 1/5 <i>≤r/d</i> (JIS rought	ness of 50s or less)	B (155)		
plates with	(2) 1/10≤r/d <1/5 (JIS roughness of 50s or less)		C (125)		
cut out	(3) 1/5≤r/d (JIS roughness of 100s or less)		C (125)	3.	
gussets	(4) 1/10≤r/d<1/5 (JIS roughness of 100s or less)		D (100)	Q	KI/
	6	(1)1 <i>≤ n,</i> ≤4	B (155)		E.S.
6. Base plates of friction type bo	ot Ited	(2)5≤ <i>n</i> , ≤15	C (125)	6.1	
connection		(3)16≤ <i>n</i> ,	D (100)		
7. Base plates of bearing type bolted connection		B (155)			
8. Base plates with holes and bolts, which do not transfer the loads along the direction of stress			B (155)		

Longitudinal Welded Joints

1.(2)

Ú

1. Complete penetration	(1)with ground flush surfaces	B(155)	
from both sides	(2)as - welded	C(125)	
2. Partial penetration groov	ve welded joints	D(100)	- Comp
3. Fillet welded joints	3. Fillet welded joints		
4. Welded joints with	E(80)		
5. Intermittent fillet w	5. Intermittent fillet welded joints		
6. Welded joints with	copes	G(50)	
7. Welded joints	(1)1/5 ≤ r/d	D (100)	
adjacent to fillets of cut out gussets	(2)1/10≤r/d<1/5	E (80)	

Cruciform Joints (1) Non load-carrying type D(100) 1. Fillet welded joints with smooth weld toes D(100) 2. Fillet welded joints with finished weld toes E(80) 3. As-welded fillet welded joints onE(80) 4. Fillet welded joints including start and stop positi (1)*d*, ≤100 mm F(65) 5. Fillet welded joints of hollow section (2)*d.* > 100 mm G(50) Ú

С	Cruciform Joints (2)					
L	oad-	cal	rrying	type		
			(1) with smoo welded by co	th weld toes nfirmed method	D(100)	
6 pe	. Compl	ete	(2)with finis	hed weld toes	D(100)	
W	eld	,,,,	(*) as-wel	ded	E(80)	
			(4)hollow se (one si	ction ide welds)	F(65)	6. (1) (2) (3)
			(1)with smoo welded by co	th weld toes nfirmed method	E(80)	
atio	7. То	7. Toe failure (3) as-welded	hed weld toes	E(80)		
netr	failure		ded	F(65)	7.,8.	
al pe			(4)including positions	start and stop	F(65)	
artia	8. Root failure		H(40)	6.(4) <u>6.(4)</u> 9.		
let or p	9. Hollow section		H(40)			
Fill		(2)ro	oot failure (th	roat section)	H(40)	۰ ۲

G	iusset Jo	oints		
ß	1. Joints with fillet	(1)with finished weld toes	E(80)	1:(L≤100mm)
Isse	welded or groove welded gusset	(2)as - welded	F(65)	3,4(L>100mm)
le gi	2. Joints with groove weld	ed gusset with fillet	E(80)	
plar	3. Joints with fillet w	elded gusset	G(50)	2. r≥40mm
ıt of	4. Joints with	(1)with finished weld toes	F(65)	
õ	groove welded gusset (L>100mm)	(2)as-welded	G(50)	
ts		(1)1/3≤ <i>r/d</i>	D(100)	
usse	5. Joints with groove welded gusset with	(2)1/5 <i>≤r/d</i> <1/3	E(80)	
ne gi	miet	(3)1/10 <i>≤r/d</i> <1/5	F(65)	
plaı	6. Joints with groove	(1) with finished weld toes	G(50)	
In	welded gusset	(2)as - welded	H(40)	
7.	Base plate with lap-weld	ed gusset	H(40)	Û

Other Welded Joints					
1. Joints with fillet	(1) with finished weld toes	E(80)			
welded cover plates (I<300mm)	(2)as - welded	F(65)	1.,2.	2.(1)	
2. Joints with fillet	(1) with profiled end welds	D(100)		15	
(l>300mm)	(2)as - welded	G(50)	3.(1)	3.(2)	
3. Welded studs	(1)at base plates	E(80)			
•	(2)at stud sections	S(80)			
	(1)at base plates	H(40)			
4. Lapped joints	(2)at splice plates	H(40)			
	(3)at throat sections of end fillet welds	H(40)			
	(4) at throat sections of side fillet welds	S(80)		u	

Equivalent Stress Range

Constant amplitude stress range, which causes fatigue damage equivalent to the same repeated number of variable amplitude stresses

Fatigue Assessment Based on Equivalent Stress Range

This equation should be satisfied.

$$(\gamma_b \cdot \gamma_w \cdot \gamma_i) \Delta \sigma_d \leq \Delta \sigma_R$$

where

 $\Delta \sigma_d$ = design stress range = equivalent stress range, $\Delta \sigma_e$

 $\Delta \sigma_R$ = allowable stress range

Basic of fatigue design in Steel highway bridge in Japan

Fatigue design guideline for steel highway bridge

- Avoid low fatigue strength joints and joints whose quality is uncontrolable.
- > Use tough structural detail to fatigue : refer to "Fatigue of steel bridge"
- Require quality control of welding to assure fatigue strength. (Allowable defect size, inspection area)
- > Guideline is adopted to temporary members for election, stiffening, etc..

Comparison of St	reng	th Categ	ories
Transverse butt welded	joints		
	JSSC	IIW	ASSHTO
With ground flush surfaces	155	125	125
As-welded joint → both side welds	100	100 (toe angle = 30)	89
Annuman		80 (other toe angle)	

Comparison of St	reng	th Cate	gories
Cruciform joints → Non loa	ad-carryi	ng type	
	JSSC	IIW	ASSHTO
Fillet welded joints with finished welded toes	100	100	-
As-welded fillet welded joints	80	80	89
	*		

Comparison of S	trengtl	h Cate	gories
Gusset joints → Out-of-plane gusset	JSSC	IIW	ASSHTO
Joints with fillet welded or groove welded gusset (L<=100 mm) → as-welded	65	80 (L<50) 71 (L<150)	89 (L<50) 71 (50 <l<100)< td=""></l<100)<>
	≥		

Comparison of Strength Categories

Gusset joints			
→ In-plane gusset	JSSC	IIW	ASSHTO
Joints with groove welded gusset → as-welded	40	50 (L<150)	89 (L<50)
	_	45 (L<300)	71 (50 <l<100)< td=""></l<100)<>
	\geq	40 (L>300)	For L>100 56 (t<25) 40 (t>25)

Comparison of Strength Categories				
Lapped joints				
	JSSC	IIW	ASSHTO	
At base plates and splice plates	40	50	40	
	\geqslant			

