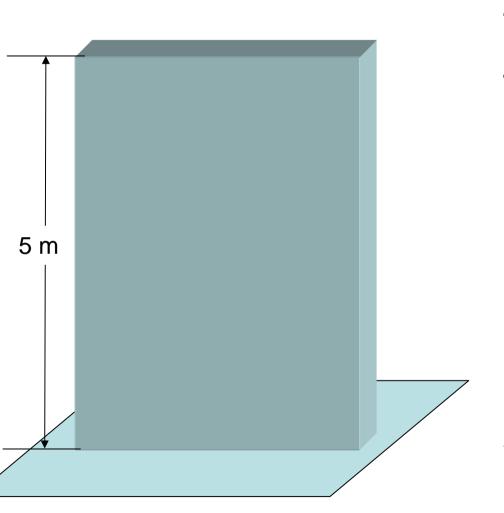
	弾性	粘性	粘弾性
微視的			
巨視的			

巨視的な粘度一具体的な粘度の値

気体	10	μPa·s
液体(水)	1	mPa·s
溶融ポリマー	1	kPa·s
ガラス(800)	10	kPa·s
液体と固体の境界	1	TPa·s
ガラス(常温),コンクリート	10~100	PPa·s

指数	接頭語	読み	指数	接頭語	読み
10 ¹⁸	E	エクサ	10 ⁻³	m	ミリ
10 ¹⁵	Р	ペタ	10 ⁻⁶	μ	マイクロ
10 ¹²	Т	テラ	10 ⁻⁹	n	ナノ
10 ⁹	G	ギガ	10 ⁻¹²	р	ピコ
10 ⁶	М	メガ	10 ⁻¹⁵	f	フェムト
10 ³	K	‡ D	10 ⁻¹⁸	А	アト

Quiz



高さ5mのガラス板が垂直に 立っているとする

ガラスの粘度 : 10¹⁶ Pa s

ガラスの密度 : 2.5 g/cm³

問1 ガラス板の底の部分が 自重で1%縮むのにどの〈ら いの時間がかかるか?

問2 ガラス板の高さの時間 変化を表す式を示せ

Quizの答え

$$500 \times 2.5 \times g = 12.25 \text{ N/cm}^2 = 12.25 \times 10^4 \text{ Pa}$$

$$\frac{d\varepsilon}{dt} = \frac{\sigma}{\eta} = \frac{12.25 \times 10^4}{10^{16}} \approx 10^{-11} \text{ s}^{-1}$$

1年間は約3千万秒

$$3\times10^7$$
 s/year

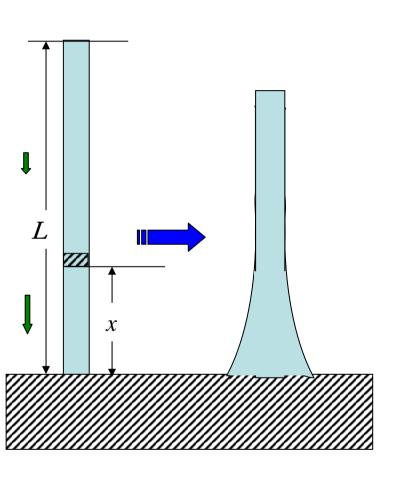
ひずみ速度

$$3 \times 10^{-4} \text{ year}^{-1}$$

3000年でひずみが1

30年でひずみが1%

粘性体の自重による変形



微小領域に加わる荷重

$$\rho g A_0 (L_0 - x)$$

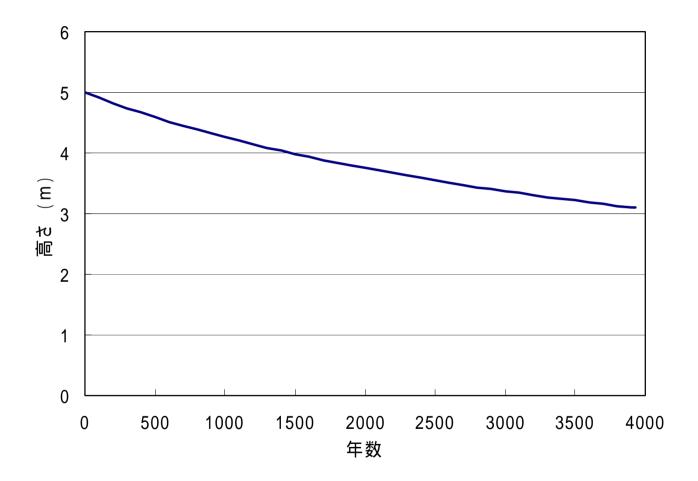
微小領域のひずみ速度

$$\eta \frac{1}{\ell} \frac{d\ell}{dt} = \frac{\rho g A_0 (L_0 - x)}{A}$$

時刻 t における局所ひずみ

$$\frac{\ell}{\ell_0} = \frac{\eta}{\eta + \rho g(L_0 - x)t}$$

全長 =
$$\int_0^{L_0} \frac{\ell}{\ell_0} dx = \frac{\eta}{\rho gt} \ln(1 + \frac{\rho gt}{\eta} L_0)$$



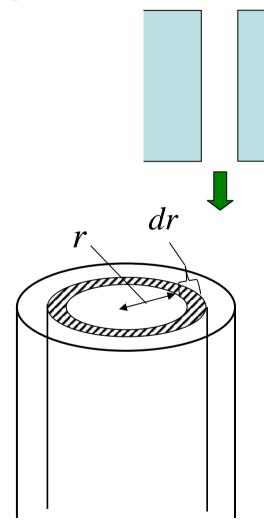
巨視的な粘性

円管内の流れ 速度分布

$$u = \frac{\Delta P}{4L\eta} \left(R^2 - r^2 \right)$$

体積流量 ハーゲン ポアゼーユの式 Hagen Poiseuilleの式

$$Q = \frac{\pi \Delta P}{8L\eta} R^4$$



これから学ぶ粘性論

流体力学 Navier-stokesの方程式

運動方程式 + ニュートン流体のレオロジー方程式

Navier-stokes の方程式から Hagen-Poiseuilleの式を導く

流体力学

運動方程式

$$\rho \frac{Dv_i}{Dt} = \rho K_i + \frac{\partial T_{ji}}{\partial x_i}$$

ニュートン流体の レオロジー方程式

$$T_{ij} = -(p + \frac{2}{3}\mu I_e)\delta_{ij} + 2\mu e_{ij}$$

Navier-Stokesの方程式

$$\frac{D\mathbf{v}}{Dt} = \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}$$
$$= \mathbf{K} - \frac{1}{\rho} \nabla p + \frac{1}{3} \nu \nabla (\nabla \cdot \mathbf{v}) + \nu \Delta \mathbf{v}$$

N-S方程式 円柱座標 z方向成分

$$(\frac{\partial v_z}{\partial t} + \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z})$$

$$= K_z - \frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{\eta}{\rho} (\frac{\partial^2 v_z}{\partial r^2} + \frac{1}{r} \frac{\partial v_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2})$$