Pattern Information Processing. ${ }^{19}$ Robust Method

Masashi Sugiyama
(Department of Computer Science)

Contact: W8E-505
sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/~sugi/

Outliers

- In practice, very large noise sometimes appears.
- Furthermore, irregular values can be observed by measurement trouble or by human error.
- Samples with such irregular values are called outliers.

Outliers (cont.)

121
\square LS criterion is sensitive to outliers.

$$
\hat{f}(x)=\alpha_{1}+\alpha_{2} x
$$

LS (without outlier)
LS (with outlier)
Even a single outlier can corrupt the learning result badly!

Today's Plan

- Robust learning method
- How to obtain solutions
- Standard form of quadratic programs
- Robustness and sparseness

Quadratic Loss

$$
J_{L S}(\boldsymbol{\alpha})=\sum_{i=1}^{n}\left(\hat{f}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2}
$$

- In LS, goodness-of-fit is measured by the squared loss.
- Therefore, even a single outlier has quadratic power to "pull" the learned function
The solution will be robust if the effect of outliers are deemphasized.

Huber's Robust Learning

$$
\begin{array}{rr}
\hat{\boldsymbol{\alpha}}_{\text {Huber }}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}}\left[\sum_{i=1}^{n} \rho\left(\hat{f}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)\right] & t>0 \\
\rho(y)=\left\{\begin{array}{cc}
\frac{1}{2} y^{2} & (|y| \leq t) \\
t|y|-\frac{1}{2} t^{2} & (|y|>t)
\end{array}\right.
\end{array}
$$

- Squared-loss for nonoutliers with small errors.
Linear penalty for outliers with large errors.
P. J. Huber, Robust Statistics, Wiley, New York, 1981.

How to Obtain Solutions

- How to deal with Huber's loss?
- Use the following lemma:

Lemma

$$
\begin{aligned}
\rho(y)= & \min _{v \in \mathbb{R}} g(v) \\
& g(v)=\frac{1}{2} v^{2}+t|y-v|
\end{aligned}
$$

See:
Mangasarian \& Musicant, Robust linear and support vector regression, IEEE Trans. Pattern Analysis and Machine Intelligence, 22(9), 950-955,2000

Proof of Lemma

- Here, we give a non-constructive proof.
- We explicitly compute $\min _{v \in \mathbb{R}} g(v)$ using $g^{\prime}(v)$.

$$
g(v)= \begin{cases}\frac{1}{2} v^{2}+t y-t v & (v \leq y) \\ \frac{1}{2} v^{2}-t y+t v & (v>y)\end{cases}
$$

$$
g^{\prime}(v)= \begin{cases}v-t & (v<y) \\ v+t & (v>y)\end{cases}
$$

Proof of Lemma (cont.)

127

- If $-t \leq y \leq t, g(v)$ is minimized at $v=y$.

- Then

$$
\min _{v \in \mathbb{R}} g(v)=g(y)=\frac{1}{2} y^{2}=\rho(y)
$$

Note: $g(v)$ is continuous

Proof of Lemma (cont.)

- If $y<-t, \quad g(v)$ is minimized at $v=-t$.

Then

$$
\begin{aligned}
\min _{v \in \mathbb{R}} g(v) & =g(-t)=\frac{1}{2} t^{2}+t|y+t|=-t y-\frac{1}{2} t^{2} \\
y<0 & =t|y|-\frac{1}{2} t^{2}=\rho(y)
\end{aligned}
$$

Proof of Lemma (cont.)

- If $y>t, \quad g(v)$ is minimized at $v=t$.

Then

$$
\begin{aligned}
\min _{v \in \mathbb{R}} g(v) & =g(t)=\frac{1}{2} t^{2}+t|y-t|=t y-\frac{1}{2} t^{2} \\
y>0 & =t|y|-\frac{1}{2} t^{2}=\rho(y)
\end{aligned}
$$

Q.E.D.

How to Obtain Solutions (cont.) ${ }^{30}$

■Using

$$
\rho(y)=\min _{v \in \mathbb{R}}\left[\frac{1}{2} v^{2}+t|y-v|\right]
$$

we have

$$
\begin{array}{r}
\hat{\boldsymbol{\alpha}}_{\text {Huber }}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}, \boldsymbol{v} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left[\frac{1}{2}\|\boldsymbol{v}\|^{2}+t\|\boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y}-\boldsymbol{v}\|_{1}\right] \\
\boldsymbol{X}_{i, j}=\varphi_{j}\left(\boldsymbol{x}_{i}\right) \\
\hat{\boldsymbol{\alpha}}_{\text {Huber }} \equiv \underset{\alpha \in \mathbb{R}^{b}}{\operatorname{argmin}}\left[\sum_{i=1}^{n} \rho\left(\hat{f}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)\right]
\end{array}
$$

How to Obtain Solutions (cont.) ${ }^{31}$

- Trick to avoid absolute value:

$$
\begin{array}{r}
\|\boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y}-\boldsymbol{v}\|_{1}=\min _{\boldsymbol{u} \in \mathbb{R}^{n}}\left[\sum_{i=1}^{n} u_{i}\right] \\
\text { subject to }-\boldsymbol{u} \leq \boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y}-\boldsymbol{v} \leq \boldsymbol{u}
\end{array}
$$

$\square \hat{\boldsymbol{\alpha}}_{\text {Huber }}$ is given as the solution of

$$
\begin{array}{r}
\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}, \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left[\frac{1}{2}\|\boldsymbol{v}\|^{2}+t \sum_{i=1}^{n} u_{i}\right] \\
\text { subject to }-\boldsymbol{u} \leq \boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y}-\boldsymbol{v} \leq \boldsymbol{u}
\end{array}
$$

Standard Form (Huber)

$$
\begin{array}{ll}
& \Rightarrow\binom{-u-X \alpha+v}{X \alpha-v-u} \leq\binom{-y}{y} \\
& \Rightarrow\binom{-X \Gamma_{\alpha}-\Gamma_{u}+\Gamma_{v}}{X \Gamma_{\alpha}-\Gamma_{u}-\Gamma_{v}} \beta \leq\binom{-y}{y}
\end{array}
$$

$$
\begin{aligned}
& \square \text { Let } \beta=\left(\begin{array}{l}
\boldsymbol{\alpha} \\
\boldsymbol{u} \\
\boldsymbol{v}
\end{array}\right) \quad \begin{array}{l}
\Gamma_{\boldsymbol{\alpha}}=\left(\boldsymbol{I}_{b}, \boldsymbol{O}_{b \times n}, \boldsymbol{O}_{b \times n}\right) \\
\Gamma_{\boldsymbol{u}}=\left(\boldsymbol{O}_{n \times b}, \boldsymbol{I}_{n}, \boldsymbol{O}_{n \times n}\right) \\
\Gamma_{\boldsymbol{v}}=\left(\boldsymbol{O}_{n \times b}, \boldsymbol{O}_{n \times n}, \boldsymbol{I}_{n}\right)
\end{array} \\
& \begin{aligned}
& \\
& \alpha=\boldsymbol{\Gamma}_{\boldsymbol{\alpha}} \boldsymbol{\beta} \quad u=\boldsymbol{\Gamma}_{\boldsymbol{u}} \boldsymbol{\beta} \quad v=\boldsymbol{\Gamma}_{\boldsymbol{v}} \boldsymbol{\beta} \\
& \frac{1}{2}\|\boldsymbol{v}\|^{2}+t \sum_{i=1}^{n} u_{i}=\frac{1}{2}\left\langle\boldsymbol{\Gamma}_{\boldsymbol{v}}^{\top} \boldsymbol{\Gamma}_{\boldsymbol{v}} \boldsymbol{\beta}, \boldsymbol{\beta}\right\rangle+\left\langle\boldsymbol{\beta}, t \boldsymbol{\Gamma}_{\boldsymbol{u}}^{\top} \mathbf{1}_{n}\right\rangle \\
&-\boldsymbol{u} \leq \boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y}-\boldsymbol{v} \leq \boldsymbol{u}
\end{aligned}
\end{aligned}
$$

Example of Huber's Method ${ }^{133}$

Robust and Sparse

■ Huber's method does not generally provide a sparse solution.
\square Combining Huber's loss with ℓ_{1} constraint.

$$
\begin{array}{r}
\hat{\boldsymbol{\alpha}}_{\text {SparseHuber }}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}}\left[\sum_{i=1}^{n} \rho\left(\hat{f}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)\right] \\
\text { subject to }\|\boldsymbol{\alpha}\|_{1} \leq C
\end{array}
$$

\square Solving quadratic programming problem is computationally rather demanding.
■ Is it possible to make it faster?

I1 Loss

- Quadratic term comes from Huber's loss.
ℓ_{1}-loss is linear.

$$
\sum_{i=1}^{n}\left|\hat{f}\left(\boldsymbol{x}_{i}\right)-y_{i}\right|
$$

Linear Programming Learning ${ }^{136}$

\square Combine ℓ_{1} loss with ℓ_{1} regularizer:

$$
\hat{\boldsymbol{\alpha}}_{L P}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left|\hat{f}\left(\boldsymbol{x}_{i}\right)-y_{i}\right|+\lambda \sum_{i=1}^{b}\left|\alpha_{i}\right|\right]
$$

How to Obtain Solutions

- Trick to avoid absolute value:

$$
\begin{aligned}
\|\boldsymbol{\alpha}\|_{1}=\min _{\boldsymbol{u} \in \mathbb{R}^{b}} & {\left[\sum_{i=1}^{b} u_{i}\right] } \\
& \text { subject to }-\boldsymbol{u} \leq \boldsymbol{\alpha} \leq \boldsymbol{u},
\end{aligned}
$$

$\square \hat{\boldsymbol{\alpha}}_{L P}$ is given as the solution of

$$
\begin{aligned}
\underset{\boldsymbol{\alpha}, \boldsymbol{u} \in \mathbb{R}^{b}, \boldsymbol{v} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left[\sum_{i=1}^{n} v_{i}+\lambda \sum_{i=1}^{b} u_{i}\right] \\
\text { subject to }-\boldsymbol{v} \leq \boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y} \leq \boldsymbol{v} \\
-\boldsymbol{u} \leq \boldsymbol{\alpha} \leq \boldsymbol{u}
\end{aligned}
$$

Linearly Constrained Linear ${ }^{138}$ Programming Problem

- Standard optimization software can solve the following form of linearly constrained linear programming problems.

$$
\begin{array}{r}
\min _{\boldsymbol{\beta}}\langle\boldsymbol{\beta}, \boldsymbol{q}\rangle \text { subject to } \boldsymbol{V} \boldsymbol{\beta} \leq \boldsymbol{v} \\
\boldsymbol{G} \boldsymbol{\beta}=\boldsymbol{g}
\end{array}
$$

Standard Form (LP)

Let $\beta=\left(\begin{array}{c}\boldsymbol{\alpha} \\ \boldsymbol{u} \\ \boldsymbol{v}\end{array}\right) \quad \begin{aligned} & \Gamma_{\boldsymbol{\alpha}}=\left(\boldsymbol{I}_{b}, \boldsymbol{O}_{b \times b}, \boldsymbol{O}_{b \times n}\right) \\ & \Gamma_{\boldsymbol{u}}=\left(\boldsymbol{O}_{b \times b}, \boldsymbol{I}_{b}, \boldsymbol{O}_{b \times n}\right) \\ & \Gamma_{\boldsymbol{v}}=\left(\boldsymbol{O}_{n \times b}, \boldsymbol{O}_{n \times b}, \boldsymbol{I}_{n}\right)\end{aligned}$
$\begin{aligned} \square{ }^{-} \alpha & =\boldsymbol{\Gamma}_{\boldsymbol{\alpha}} \boldsymbol{\beta} \quad u=\boldsymbol{\Gamma}_{\boldsymbol{u}} \boldsymbol{\beta} \quad v=\boldsymbol{\Gamma}_{\boldsymbol{v}} \boldsymbol{\beta} \\ \sum_{i=1}^{n} v_{i}+\lambda \sum_{i=1}^{b} u_{i} & =\left\langle\boldsymbol{\beta}, \boldsymbol{\Gamma}_{\boldsymbol{v}}^{\top} \mathbf{1}_{n}+\lambda \boldsymbol{\Gamma}_{\boldsymbol{u}}^{\top} \mathbf{1}_{b}\right\rangle\end{aligned}$
$\square-\boldsymbol{v} \leq \boldsymbol{X} \boldsymbol{\alpha}-\boldsymbol{y} \leq \boldsymbol{v} \quad-\boldsymbol{u} \leq \boldsymbol{\alpha} \leq \boldsymbol{u}$

$$
\left(\begin{array}{c}
-\boldsymbol{X} \boldsymbol{\Gamma}_{\boldsymbol{\alpha}}-\boldsymbol{\Gamma}_{\boldsymbol{v}} \\
\boldsymbol{X} \boldsymbol{\Gamma}_{\boldsymbol{\alpha}}-\boldsymbol{\Gamma}_{\boldsymbol{v}} \\
-\boldsymbol{\Gamma}_{\boldsymbol{\alpha}}-\boldsymbol{\Gamma}_{\boldsymbol{u}} \\
\boldsymbol{\Gamma}_{\boldsymbol{\alpha}}-\boldsymbol{\Gamma}_{\boldsymbol{u}}
\end{array}\right) \boldsymbol{\beta} \leq\left(\begin{array}{c}
-\boldsymbol{y} \\
\boldsymbol{y} \\
\mathbf{0}_{b} \\
\mathbf{0}_{b}
\end{array}\right)
$$

Sparseness and Robustness ${ }^{140}$

	Sparse- ness	Robust- ness	Optimi- zation
ℓ_{1} constrained LS	Yes	No	Quadratic
Huber's method	No	Yes	Quadratic
ℓ_{1} constrained Huber	Yes	Yes	Quadratic
Linear programming	Yes	Yes	Linear

Homework

- For your own toy 1-dimensional data, perform simulations using
- Linear/Gaussian kernel models
- Huber/linear-programming learning and analyze the results, e.g., by changing
- Target functions
- Number of samples
- Noise level

Including outliers in the dataset would be essential for this homework.

