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Outliers 120

In practice, very large noise sometimes
appears.

Furthermore, Irregular values can be
observed by measurement trouble or by
human error.

Samples with such irregular values are
called outliers.



Outliers (cont.) el

LS criterion IS sensitive to outliers.
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Even a single outlier can corrupt the
learning result badly!
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Today’s Plan

Robust learning method

How to obtain solutions

Standard form of quadratic programs
Robustness and sparseness



Quadratic Loss 1ed

LI 2
Tes(e) =3 (Fl@) — i)

1=1
In LS, goodness-of-fit iIs measured by the
sqguared loss.
Therefore, even a single outlier has
guadratic power to “pull” the learned function
The solution will be robust |
If the effect of outliers
are deemphasized.




Huber’'s Robust Learning **

CAVHfu,befr’ — argmin Z P (f(wz) — yz)
L 1=1

a cRP

,
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tlyl — zt*  (Jy| > t)

—— Huber

s [ Squared-loss for non-
’ outliers with small errors.

Linear penalty for outliers
with large errors.

P. J. Huber, Robust Statistics, Wiley, New York, 1981.



How to Obtain Solutions %

How to deal with Huber’s loss?
Use the following lemma:

Lemma
py) = glellgg(v)
1 2
g(v) = 5V T tly — v

See:
Mangasarian & Musicant, Robust linear and support vector regression,
IEEE Trans. Pattern Analysis and Machine Intelligence, 22(9), 950-955,2000



Proof of Lemma 126

Here, we give a non-constructive proof.

e We explicitly compute HlelllR’{l g(v) using ¢’ (v).
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Proof of Lemma (cont.) '

olf —t<y<t, g(v)isminimizedat v =1y .

A

e Then 1

min g(v) = g(y) = 5¥° = p(y)

Note: g¢(v)is continuous



Proof of Lemma (cont.) *°

olfy < —t, g¢g(v)isminimized at v = —t1.
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Proof of Lemma (cont.) %

olf y >t , ¢g(v) isminimizedat v=1t

/
o

Then y—1t>0

1 1
j =g(t) = t* +tly —t| =ty — =¢°
%%g(v) g(t) St y —t| =ty 5

1
y > 0 =t|y|—§t2=p(y) 0ED



How to Obtain Solutions (cont.)™

Using

1,
p— — t _
p(Y) e {20 +tly v\}

we have

. . 1
Girnuer = argmin | Jlo]P + ] Xa —y ol
aERY veER™

Xi,j — Spj(wz')

QL Huber = argmin [zn:p (f(wz) _ yz>]

b
a€R® | =1



How to Obtain Solutions (cont.)™

Trick to avoid absolute value:

n
Xa—y - vl = win |Su
| X~y — vl = min .1uz
=1

subject to — u< Xa—-y—v<u
Qruber IS given as the solution of

a€RV u,vER™

R
argmin §HUH —I—t;ui

subject to —u < Xa—y—v<u




Standard Form (Huber)

Qo o = (Ip,Opxn, Opxn)
Let — u u — (Onxngnaaan)

v v — (OnxbaOanaIn)

) -8 =T ~T.0
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Example of Huber’'s Metho
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Robust and Sparse 134

Huber’'s method does not generally
provide a sparse solution.

Combining Huber’s loss with ¢, constraint.

N
CAVSpa'rseHube'r — argmiﬂ E P (f(wz) — yz>
a€R? ] 1

subject to ||a||; < C
Solving quadratic programming problem is
computationally rather demanding.

Is It possible to make It faster?



11 Loss 135

Quadratic term comes from Huber’s loss.
¢1-loss is linear.




Linear Programming Learning"*°

Combine ¢, loss with ¢, regularizer:

n b ]

Q,p = argmin E
a ERD

1+ il
=1




How to Obtain Solutions **'

Trick to avoid absolute value:

b
lafly = min [ Y v,
R =1 i

uERD

subject to —u < a < u,
arp is given as the solution of

n b N
argmin Z Vi + A Z U;
i=1

b

subject to —v < Xa —y < v

—u<aoa<u




Linearly Constrained Linear **°
Programming Problem

Standard optimization software can solve
the following form of linearly constrained
linear programming problems.

mﬂin{,@, q) subject to V3 <w
GB=g



Standard Form (LP)

Qo a = Ly, Opxp, Opxn)

Let 7= ( u ) uw = (Obxp, I, Opxn)
v v — (OnxbaanxbaIn)

) -8 =T ~T,0

b
Zvi + )\Zui (B,T g1, + AT, 1)
i=1

1=1

v< Xa—y<w u<oa<u

[~y )
Yy
0

\ 0




Sparseness and Robustness **°

Sparse- | Robust-| Optimi-
ness ness zation
¢1 constrained LS Yes No |Quadratic
Huber’'s method No Yes |Quadratic
¢1 constrained Huber| Yes Yes |Quadratic
Linear programming | Yes Yes Linear




Homework 141

For your own toy 1-dimensional data,
perform simulations using

e Linear/Gaussian kernel models
e Huber/linear-programming learning

and analyze the results, e.g., by changing
e Target functions
e Number of samples
e Noise level

Including outliers Iin the dataset would be
essential for this homework.



