Pattern Information Processing¹¹⁹ Robust Method

Masashi Sugiyama (Department of Computer Science)

Contact: W8E-505 <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi/

Outliers

- In practice, very large noise sometimes appears.
- Furthermore, irregular values can be observed by measurement trouble or by human error.
- Samples with such irregular values are called outliers.

Outliers (cont.)

121

LS criterion is sensitive to outliers.

Even a single outlier can corrupt the learning result badly!

Today's Plan

122

Robust learning method How to obtain solutions Standard form of quadratic programs Robustness and sparseness

Quadratic Loss

$$J_{LS}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \left(\hat{f}(\boldsymbol{x}_i) - y_i \right)^2$$

In LS, goodness-of-fit is measured by the squared loss.

- Therefore, even a single outlier has quadratic power to "pull" the learned function
- The solution will be robust if the effect of outliers are deemphasized.

123

Huber's Robust Learning ¹²⁴

$$\hat{\boldsymbol{\alpha}}_{Huber} = \underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}} \left[\sum_{i=1}^{n} \rho \left(\hat{f}(\boldsymbol{x}_{i}) - y_{i} \right) \right] \qquad t > 0$$

$$\rho(y) = \begin{cases} \frac{1}{2}y^2 & (|y| \le t) \\ t|y| - \frac{1}{2}t^2 & (|y| > t) \end{cases}$$

Squared-loss for nonoutliers with small errors.
Linear penalty for outliers with large errors.

P. J. Huber, Robust Statistics, Wiley, New York, 1981.

How to Obtain Solutions

125

How to deal with Huber's loss?

Use the following lemma:

Lemma

$$\rho(y) = \min_{v \in \mathbb{R}} g(v)$$

$$g(v) = \frac{1}{2}v^2 + t|y - v|$$

See:

Mangasarian & Musicant, Robust linear and support vector regression, IEEE Trans. Pattern Analysis and Machine Intelligence, 22(9), 950-955,2000

Proof of Lemma

• We explicitly compute $\min_{v \in \mathbb{R}} g(v)$ using g'(v).

$$g(v) = \begin{cases} \frac{1}{2}v^2 + ty - tv & (v \le y) \\ \frac{1}{2}v^2 - ty + tv & (v > y) \end{cases}$$

$$g'(v) = \begin{cases} v - t & (v < y) \\ v + t & (v > y) \end{cases}$$

How to Obtain Solutions (cont.)³⁰

Using $\rho(y) = \min_{v \in \mathbb{R}} \left[\frac{1}{2} v^2 + t |y - v| \right]$

we have

$$\hat{\boldsymbol{\alpha}}_{Huber} = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{b}, \boldsymbol{v} \in \mathbb{R}^{n}} \left[\frac{1}{2} \|\boldsymbol{v}\|^{2} + t \|\boldsymbol{X}\boldsymbol{\alpha} - \boldsymbol{y} - \boldsymbol{v}\|_{1} \right]$$

$$oldsymbol{X}_{i,j}=arphi_j(oldsymbol{x}_i)$$

$$\hat{\boldsymbol{\alpha}}_{Huber} \equiv \underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}} \left[\sum_{i=1}^{n} \rho \left(\hat{f}(\boldsymbol{x}_{i}) - y_{i} \right) \right]$$

How to Obtain Solutions (cont.)³¹

Trick to avoid absolute value:

$$egin{aligned} \|oldsymbol{X}oldsymbol{lpha}-oldsymbol{y}-oldsymbol{v}\|_1 &= \min_{oldsymbol{u}\in\mathbb{R}^n} \left[\sum_{i=1}^n u_i
ight] \end{aligned}$$

subject to $-u \leq X\alpha - y - v \leq u$

 $\hat{\alpha}_{Huber}$ is given as the solution of

$$\underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}, \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}}{\operatorname{argmin}} \left[\frac{1}{2} \|\boldsymbol{v}\|^{2} + t \sum_{i=1}^{n} u_{i} \right]$$
subject to $-\boldsymbol{u} \leq \boldsymbol{X}\boldsymbol{\alpha} - \boldsymbol{y} - \boldsymbol{v} \leq \boldsymbol{u}$

Standard Form (Huber)

Let
$$\beta = \begin{pmatrix} \alpha \\ u \\ v \end{pmatrix}$$

 $\Gamma_{\alpha} = (I_{b}, O_{b \times n}, O_{b \times n})$
 $\Gamma_{u} = (O_{n \times b}, I_{n}, O_{n \times n})$
 $\Gamma_{v} = (O_{n \times b}, O_{n \times n}, I_{n})$
 $\alpha = \Gamma_{\alpha}\beta$
 $u = \Gamma_{u}\beta$
 $v = \Gamma_{v}\beta$
 $\frac{1}{2} ||v||^{2} + t \sum_{i=1}^{n} u_{i} = \frac{1}{2} \langle \Gamma_{v}^{\top} \Gamma_{v} \beta, \beta \rangle + \langle \beta, t \Gamma_{u}^{\top} \mathbf{1}_{n} \rangle$
 $-u \leq X\alpha - y - v \leq u$
 $\left(\begin{array}{c} -u - X\alpha + v \\ X\alpha - v - u \end{array} \right) \leq \begin{pmatrix} -y \\ y \end{pmatrix}$
 $\left(\begin{array}{c} -X\Gamma_{\alpha} - \Gamma_{u} + \Gamma_{v} \\ X\Gamma_{\alpha} - \Gamma_{u} - \Gamma_{v} \end{array} \right) \beta \leq \begin{pmatrix} -y \\ y \end{pmatrix}$

Example of Huber's Method¹³³

Robust and Sparse

- Huber's method does not generally provide a sparse solution.
- **Combining Huber's loss with** ℓ_1 constraint.

$$\hat{\boldsymbol{\alpha}}_{SparseHuber} = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{b}} \left[\sum_{i=1}^{n} \rho \left(\hat{f}(\boldsymbol{x}_{i}) - y_{i} \right) \right]$$

subject to $\|\boldsymbol{\alpha}\|_1 \leq C$

- Solving quadratic programming problem is computationally rather demanding.
- Is it possible to make it faster?

Loss

Quadratic term comes from Huber's loss. *l*₁-loss is linear.

$$\sum_{i=1}^{n} \left| \hat{f}(\boldsymbol{x}_i) - y_i \right|$$

Linear Programming Learning¹³⁶

Combine ℓ_1 loss with ℓ_1 regularizer:

$$\hat{\boldsymbol{\alpha}}_{LP} = \underset{\boldsymbol{\alpha} \in \mathbb{R}^{b}}{\operatorname{argmin}} \left[\sum_{i=1}^{n} \left| \hat{f}(\boldsymbol{x}_{i}) - y_{i} \right| + \lambda \sum_{i=1}^{b} |\alpha_{i}| \right]$$

How to Obtain Solutions

Trick to avoid absolute value:

$$\|\boldsymbol{\alpha}\|_1 = \min_{\boldsymbol{u}\in\mathbb{R}^b} \left[\sum_{i=1}^b u_i\right]$$

subject to $-u < \alpha < u$,

137

 $\hat{\boldsymbol{\alpha}}_{LP}$ is given as the solution of

Linearly Constrained Linear ¹³⁸ Programming Problem

Standard optimization software can solve the following form of linearly constrained linear programming problems.

 $\min_{oldsymbol{eta}} \langle oldsymbol{eta}, oldsymbol{q}
angle \ ext{ subject to } oldsymbol{V} oldsymbol{eta} \leq oldsymbol{v} \ oldsymbol{G} oldsymbol{eta} = oldsymbol{g}$

Standard Form (LP)

Let
$$\beta = \begin{pmatrix} \alpha \\ u \\ v \end{pmatrix}$$

 $\Gamma_{\alpha} = (I_b, O_{b \times b}, O_{b \times n})$
 $\Gamma_{u} = (O_{b \times b}, I_b, O_{b \times n})$
 $\Gamma_{v} = (O_{n \times b}, O_{n \times b}, I_n)$
 $\alpha = \Gamma_{\alpha}\beta$
 $u = \Gamma_{u}\beta$
 $v = \Gamma_{v}\beta$
 $\sum_{i=1}^{n} v_i + \lambda \sum_{i=1}^{b} u_i = \langle \beta, \Gamma_v^{\top} \mathbf{1}_n + \lambda \Gamma_u^{\top} \mathbf{1}_b \rangle$
 $-v \leq X\alpha - y \leq v$
 $-u \leq \alpha \leq u$

$$egin{aligned} &igstarrow & X\Gamma_lpha - \Gamma_v \ X\Gamma_lpha - \Gamma_v \ -\Gamma_lpha - \Gamma_u \ \Gamma_lpha - \Gamma_u \end{pmatrix}eta &\leq egin{pmatrix} -y \ y \ 0_b \ 0_b \end{pmatrix} \end{aligned}$$

Sparseness and Robustness ¹⁴⁰

	Sparse- ness	Robust- ness	Optimi- zation
ℓ_1 constrained LS	Yes	No	Quadratic
Huber's method	No	Yes	Quadratic
ℓ_1 constrained Huber	Yes	Yes	Quadratic
Linear programming	Yes	Yes	Linear

Homework

For your own toy 1-dimensional data, perform simulations using

- Linear/Gaussian kernel models
- Huber/linear-programming learning
- and analyze the results, e.g., by changing
 - Target functions
 - Number of samples
 - Noise level

Including outliers in the dataset would be essential for this homework.