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Sparseness and
Continuous Model Choice

Two approaches to avoiding over-fitting:

Sparseness | Model parameter

Subspace LS Yes Discrete

Quadratically

constrained LS No Continuous

We want to have sparseness and
continuous model choice at the same time.
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Today’s Plan

Sparse learning method

How to deal with absolute values In
optimization

Standard form of quadratic programs
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Non-Linear Learning for ~ *°

Linear / Kernel Models
Linear / kernel models

b
= Z&ngz(w) Zaz L, wz
1=1

Non-linear learning
a = L(y)

L(-) :Non-linear function



11-Constrained LS 9

Restrict the search space within a
(rotated) hyper-cube.

Qy,crs = argmin Jp (o)
a€RP

subject to ||a||; < C

/1 — norm

See:
Tibshirani, Regression shrinkage and selection via the lasso,
Journal of the Royal Statistical Society, Series B, 58(1), 267-288,1996.

Chen, Donoho & Saunders, Atomic decomposition by basis pursuit,
SIAM Journal on Scientific Computing, 20(1), 33-61, 1998.



Why Sparse?

The solution Is often exactly on an axis.

Quadratically

¢ | i
1 constrained LS constrained LS



How to Obtain Solutions ™

Lagrangian:
Jocrs(a) = Jrs(a) + A([|afl = O)
A :Lagrange multiplier

Similar to QCLS, we practically start from
A (> 0) and solve

&y, crs = argmin Jy, o s ()
aeRP

It is often called ¢; regularized LS.



How to Obtain Solutions (cont.)’

How to deal with /;-norm?
Use the following lemma:

Lemma b

|||t = min ) w;
u€R? 4
1=1

subject to —u < a < u,

Note: Inequality In constraint Is component-wise

Intuition: Obtain smallest —wuy Uy
box that includes o




Proof of Lemma 103

Proof: Let 4= rgmmzuz

u€ERD _

SubJect to —u < o < u,

The constraint implies @; > |o] .
Suppose ; > |a;|. Then such 4; is not a
solution since w; = |az\ gives a smaller value:

Zuz<2uz

This implies that the solutlon satisfies @; = |a],

b

Ui = ) |ail = |ledh
-2, QE

which yields

D.)



How to Obtain Solutions (cont.)™

Qy,crs = argmin Jy, o s ()
a cRP

Joors(a) = Jrs(a) + Allall;
&y, crs IS given as the solution of

-
min |Jps(a) + )\Zui
i=1

o, uERP

subject to —u < a < u,

n

Tuste) =3 (F@) - w)

=1
= | Xa -yl



Linearly Constrained Quadratic™
Programming Problem

Standard optimization software can solve
the following form of linearly constrained
guadratic programming problems.

|1

subject to V3 < wv
GO =g



Transforming into Standard Forh?’

Let
3 = (a) I'a = (Ibyab)
( 'y = (0O, 1)
Then
a = TI',0
u = I',0

Use these expressions and replace all
a,u With 3 .



Standard Form 107

. |1 subject to V3 < wv
min {5@6,@ + <ﬂ,q>} GB— g
¢1-constrained LS can be expressed as
Q = 2r.X'Xxr, 5 — <a>
g = —2''X"y+ A1, Y
-r,—-T, I'a = (Ibyab)
Vo= ( ', — T, ) L', = (O, 1)
v = 09
G = Ogy
g = 0O Proof: Homework!



Example of Sparse Learning *°

Gaussian kernel model:

f@) =Y aik(@e)  K@a)=eop(-|o-a/|*/2)

Or
9®

_0.52. ....‘ ‘ ‘ J !_S _0.52. I.-.I | éllc.lz_ss

2

Over-fit can be avoided by properly
choosing the regularization factor M .
27 out of 50 parameters are exactly zero.



Feature Selection 109

If /1 CLS is combined with linear model with
respect to Input,
f(w) —a'xz x= (2, 2@ )T

some of the input variables are not used for

prediction. ‘ Important features
are automatically selected

Example: Gene selection

Generally, 2% combinations need to be
tested for feature selection (cf. SLS).

On the other hand, 7/, CLS only involves a
continuous model parameter .



Constrained LS
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Model Parameter
Sparseness .

parameter | learning
Subspace . Analytic
1S Yes Discrete (Linear)
Quadratically . Analytic
constrained LS No Continuous (Linear)
¢, constrained Ves Continuous Iterative

LS

(Non-linear)




Homework 111

Derive the standard quadratic programming
form of ¢, -constrained LS.

min E<Qﬁ,ﬁ>+<ﬁ,q>] Q = X XT,

= g = -2 X"y+ AT, 1,
subject to V3 < v T _T
Go=g V = ( To Ty >
v = 09
B < o ) G = Oy
N u g = 0



Homework (cont.) e

For your own toy 1-dimensional data,

perform simulations using
e Gaussian kernel models
e (;-constraint least-squares learning

and analyze the results, e.g., by changing
e Target functions
e Number of samples
e Noise level
Use 5-fold cross-validation for choosing
e Width of Gaussian kernel
e Regularization parameter
Compare the results of QCLS and ¢, CLS,

e.d., In terms of sparseness and accuracy.



